

MongoDB Manual Contents

See About MongoDB Documentation for more information about the MongoDB Documentation
project, this Manual and additional editions of this text.

	Introduction

	Installation
	Install on Linux
	Install MongoDB on Red Hat Enterprise, CentOS, or Fedora

	Install MongoDB on Ubuntu

	Install MongoDB on Debian

	Install MongoDB on Linux Systems

	Install MongoDB on OS X

	Install MongoDB on Windows

	Install MongoDB Enterprise on Linux

	Install MongoDB Enterprise on Windows

	Getting Started with MongoDB

	Generate Test Data

	MongoDB CRUD Operations
	MongoDB CRUD Introduction

	MongoDB CRUD Concepts
	Read Operations
	Cursors

	Query Optimization

	Query Plans

	Distributed Queries

	Write Operations
	Write Concern

	Distributed Write Operations

	Write Operation Performance

	Bulk Inserts in MongoDB

	Record Padding

	MongoDB CRUD Tutorials
	Insert Documents

	Query Documents

	Limit Fields to Return from a Query

	Iterate a Cursor in the mongo Shell

	Analyze Query Performance

	Modify Documents

	Remove Documents

	Perform Two Phase Commits

	Create Tailable Cursor

	Isolate Sequence of Operations

	Create an Auto-Incrementing Sequence Field

	Limit Number of Elements in an Array after an Update

	MongoDB CRUD Reference
	Write Concern Reference

	SQL to MongoDB Mapping Chart

	The bios Example Collection

	MongoDB Drivers and Client Libraries

	Data Models
	Data Modeling Introduction

	Data Modeling Concepts
	Data Model Design

	Operational Factors and Data Models

	GridFS

	Data Model Examples and Patterns
	Model Relationships Between Documents
	Model One-to-One Relationships with Embedded Documents

	Model One-to-Many Relationships with Embedded Documents

	Model One-to-Many Relationships with Document References

	Model Tree Structures
	Model Tree Structures with Parent References

	Model Tree Structures with Child References

	Model Tree Structures with an Array of Ancestors

	Model Tree Structures with Materialized Paths

	Model Tree Structures with Nested Sets

	Model Specific Application Contexts
	Model Data for Atomic Operations

	Model Data to Support Keyword Search

	Data Model Reference
	Documents

	Database References

	GridFS Reference

	ObjectId

	BSON Types

	Administration
	Administration Concepts
	Operational Strategies
	Backup Strategies for MongoDB Systems

	Monitoring for MongoDB

	Run-time Database Configuration

	Import and Export MongoDB Data

	Production Notes

	Data Management
	Data Center Awareness
	Operational Segregation in MongoDB Deployments

	Capped Collections

	Expire Data from Collections by Setting TTL

	Optimization Strategies for MongoDB
	Evaluate Performance of Current Operations

	Use Capped Collections for Fast Writes and Reads

	Optimize Query Performance

	Design Notes

	Administration Tutorials
	Configuration, Maintenance, and Analysis
	Use Database Commands

	Manage mongod Processes

	Terminate Running Operations

	Analyze Performance of Database Operations

	Monitor MongoDB with SNMP

	Rotate Log Files

	Manage Journaling

	Store a JavaScript Function on the Server

	Upgrade to the Latest Revision of MongoDB

	MongoDB Tutorials

	Backup and Recovery
	Backup and Restore with MongoDB Tools

	Backup and Restore with Filesystem Snapshots

	Restore a Replica Set from MongoDB Backups

	Backup and Restore Sharded Clusters
	Backup a Small Sharded Cluster with mongodump

	Backup a Sharded Cluster with Filesystem Snapshots

	Backup a Sharded Cluster with Database Dumps

	Schedule Backup Window for Sharded Clusters

	Restore a Single Shard

	Restore a Sharded Cluster

	Copy Databases Between Instances

	Recover Data after an Unexpected Shutdown

	MongoDB Scripting
	Server-side JavaScript

	Data Types in the mongo Shell

	Write Scripts for the mongo Shell

	Getting Started with the mongo Shell

	Access the mongo Shell Help Information

	mongo Shell Quick Reference

	Administration Reference
	UNIX ulimit Settings

	System Collections

	MongoDB Extended JSON

	Database Profiler Output

	Journaling Mechanics

	Exit Codes and Statuses

	Security
	Security Introduction

	Security Concepts
	Access Control

	Inter-Process Authentication

	Sharded Cluster Security

	Network Exposure and Security

	Security and MongoDB API Interfaces

	System Event Auditing

	Security Tutorials
	Network Security Tutorials
	Configure Linux iptables Firewall for MongoDB

	Configure Windows netsh Firewall for MongoDB

	Connect to MongoDB with SSL

	Upgrade a Cluster to Use SSL

	Access Control Tutorials
	Enable Authentication

	Create a User Administrator

	Add a User to a Database

	Define MongoDB Access Roles

	Modify User Privileges

	View Existing Access Roles

	Change a User’s Password

	Generate a Key File

	Deploy MongoDB with Kerberos Authentication

	Authenticate with x.509 Certificate

	Authenticate Using SASL and LDAP

	Configure System Events Auditing

	Create a Vulnerability Report

	Security Reference
	System-Defined Roles

	system.roles Collection

	system.users Collection

	Resource Document

	Privilege Actions

	Default MongoDB Port

	Audit Operations

	Security Release Notes

	Aggregation
	Aggregation Introduction

	Aggregation Concepts
	Aggregation Pipeline

	Map-Reduce

	Single Purpose Aggregation Operations

	Aggregation Mechanics
	Aggregation Pipeline Optimization

	Aggregation Pipeline Limits

	Aggregation Pipeline and Sharded Collections

	Map-Reduce and Sharded Collections

	Map Reduce Concurrency

	Aggregation Examples
	Aggregation with the Zip Code Data Set

	Aggregation with User Preference Data

	Map-Reduce Examples

	Perform Incremental Map-Reduce

	Troubleshoot the Map Function

	Troubleshoot the Reduce Function

	Aggregation Reference
	Aggregation Commands Comparison

	SQL to Aggregation Mapping Chart

	Aggregation Interfaces

	Indexes
	Index Introduction

	Index Concepts
	Index Types
	Single Field Indexes

	Compound Indexes

	Multikey Indexes

	Geospatial Indexes and Queries
	2dsphere Indexes

	2d Indexes

	Haystack Indexes

	2d Index Internals

	Text Indexes

	Hashed Index

	Index Properties
	TTL Indexes

	Unique Indexes

	Sparse Indexes

	Index Creation

	Indexing Tutorials
	Index Creation Tutorials
	Create an Index

	Create a Compound Index

	Create a Unique Index

	Create a Sparse Index

	Create a Hashed Index

	Build Indexes on Replica Sets

	Build Indexes in the Background

	Build Old Style Indexes

	Index Management Tutorials
	Remove Indexes

	Rebuild Indexes

	Manage In-Progress Index Creation

	Return a List of All Indexes

	Measure Index Use

	Geospatial Index Tutorials
	Create a 2dsphere Index

	Query a 2dsphere Index

	Create a 2d Index

	Query a 2d Index

	Create a Haystack Index

	Query a Haystack Index

	Calculate Distance Using Spherical Geometry

	Text Search Tutorials
	Enable Text Search

	Create a text Index

	Search String Content for Text

	Specify a Language for Text Index

	Create text Index with Long Name

	Control Search Results with Weights

	Limit the Number of Entries Scanned

	Create text Index to Cover Queries

	Indexing Strategies
	Create Indexes to Support Your Queries

	Use Indexes to Sort Query Results

	Ensure Indexes Fit in RAM

	Create Queries that Ensure Selectivity

	Indexing Reference

	Replication
	Replication Introduction

	Replication Concepts
	Replica Set Members
	Replica Set Primary

	Replica Set Secondary Members
	Priority 0 Replica Set Members

	Hidden Replica Set Members

	Delayed Replica Set Members

	Replica Set Arbiter

	Replica Set Deployment Architectures
	Three Member Replica Sets

	Replica Sets with Four or More Members

	Geographically Distributed Replica Sets

	Replica Set High Availability
	Replica Set Elections

	Rollbacks During Replica Set Failover

	Replica Set Read and Write Semantics
	Write Concern for Replica Sets

	Read Preference

	Read Preference Processes

	Replication Processes
	Replica Set Oplog

	Replica Set Data Synchronization

	Master Slave Replication

	Replica Set Tutorials
	Replica Set Deployment Tutorials
	Deploy a Replica Set

	Deploy a Replica Set for Testing and Development

	Deploy a Geographically Redundant Replica Set

	Add an Arbiter to Replica Set

	Convert a Standalone to a Replica Set

	Add Members to a Replica Set

	Remove Members from Replica Set

	Replace a Replica Set Member

	Member Configuration Tutorials
	Adjust Priority for Replica Set Member

	Prevent Secondary from Becoming Primary

	Configure a Hidden Replica Set Member

	Configure a Delayed Replica Set Member

	Configure Non-Voting Replica Set Member

	Convert a Secondary to an Arbiter

	Replica Set Maintenance Tutorials
	Change the Size of the Oplog

	Force a Member to Become Primary

	Resync a Member of a Replica Set

	Configure Replica Set Tag Sets

	Reconfigure a Replica Set with Unavailable Members

	Manage Chained Replication

	Change Hostnames in a Replica Set

	Configure a Secondary’s Sync Target

	Troubleshoot Replica Sets

	Replication Reference
	Replica Set Commands

	Replica Set Configuration

	The local Database

	Replica Set Member States

	Read Preference Reference

	Sharding
	Sharding Introduction

	Sharding Concepts
	Sharded Cluster Components
	Shards

	Config Servers

	Sharded Cluster Architectures
	Sharded Cluster Requirements

	Production Cluster Architecture

	Sharded Cluster Test Architecture

	Sharded Cluster Behavior
	Shard Keys

	Sharded Cluster High Availability

	Sharded Cluster Query Routing

	Sharding Mechanics
	Sharded Collection Balancing

	Chunk Migration Across Shards

	Chunk Splits in a Sharded Cluster

	Shard Key Indexes

	Sharded Cluster Metadata

	Sharded Cluster Tutorials
	Sharded Cluster Deployment Tutorials
	Deploy a Sharded Cluster

	Considerations for Selecting Shard Keys

	Shard a Collection Using a Hashed Shard Key

	Enable Authentication in a Sharded Cluster

	Add Shards to a Cluster

	Deploy Three Config Servers for Production Deployments

	Convert a Replica Set to a Replicated Sharded Cluster

	Convert Sharded Cluster to Replica Set

	Sharded Cluster Maintenance Tutorials
	View Cluster Configuration

	Migrate Config Servers with the Same Hostname

	Migrate Config Servers with Different Hostnames

	Replace a Config Server

	Migrate a Sharded Cluster to Different Hardware

	Backup Cluster Metadata

	Configure Behavior of Balancer Process in Sharded Clusters

	Manage Sharded Cluster Balancer

	Remove Shards from an Existing Sharded Cluster

	Sharded Cluster Data Management
	Create Chunks in a Sharded Cluster

	Split Chunks in a Sharded Cluster

	Migrate Chunks in a Sharded Cluster

	Merge Chunks in a Sharded Cluster

	Modify Chunk Size in a Sharded Cluster

	Tag Aware Sharding

	Manage Shard Tags

	Enforce Unique Keys for Sharded Collections

	Shard GridFS Data Store

	Troubleshoot Sharded Clusters

	Sharding Reference
	Config Database

	Sharding Command Quick Reference

	Frequently Asked Questions
	FAQ: MongoDB Fundamentals

	FAQ: MongoDB for Application Developers

	FAQ: The mongo Shell

	FAQ: Concurrency

	FAQ: Sharding with MongoDB

	FAQ: Replica Sets and Replication in MongoDB

	FAQ: MongoDB Storage

	FAQ: Indexes

	FAQ: MongoDB Diagnostics

	Reference
	Operators
	Query and Projection Operators
	Comparison Query Operators
	$gt

	$gte

	$in

	$lt

	$lte

	$ne

	$nin

	Logical Query Operators
	$or

	$and

	$not

	$nor

	Element Query Operators
	$exists

	$type

	Evaluation Query Operators
	$mod

	$regex

	$where

	Geospatial Query Operators
	$geoWithin

	$geoIntersects

	$near

	$nearSphere

	$geometry

	$maxDistance

	$center

	$centerSphere

	$box

	$polygon

	$uniqueDocs

	Query Operator Array
	$all

	$elemMatch (query)

	$size

	Projection Operators
	$ (projection)

	$elemMatch (projection)

	$slice (projection)

	Update Operators
	Field Update Operators
	$inc

	$mul

	$rename

	$setOnInsert

	$set

	$unset

	$min

	$max

	$currentDate

	Array Update Operators
	$ (update)

	$addToSet

	$pop

	$pullAll

	$pull

	$pushAll

	$push

	$each

	$slice

	$sort

	$position

	Bitwise Update Operator
	$bit

	Isolation Update Operator
	$isolated

	Aggregation Framework Operators
	Pipeline Aggregation Operators
	$project (aggregation)

	$match (aggregation)

	$limit (aggregation)

	$skip (aggregation)

	$unwind (aggregation)

	$group (aggregation)

	$sort (aggregation)

	$geoNear (aggregation)

	$out (aggregation)

	Group Aggregation Operators
	$addToSet (aggregation)

	$first (aggregation)

	$last (aggregation)

	$max (aggregation)

	$min (aggregation)

	$avg (aggregation)

	$push (aggregation)

	$sum (aggregation)

	Boolean Aggregation Operators
	$and (aggregation)

	$or (aggregation)

	$not (aggregation)

	Comparison Aggregation Operators
	$cmp (aggregation)

	$eq (aggregation)

	$gt (aggregation)

	$gte (aggregation)

	$lt (aggregation)

	$lte (aggregation)

	$ne (aggregation)

	Arithmetic Aggregation Operators
	$add (aggregation)

	$divide (aggregation)

	$mod (aggregation)

	$multiply (aggregation)

	$subtract (aggregation)

	String Aggregation Operators
	$concat (aggregation)

	$strcasecmp (aggregation)

	$substr (aggregation)

	$toLower (aggregation)

	$toUpper (aggregation)

	Array Aggregation Operators
	$size (aggregation)

	Aggregation Projection Expressions
	$map (aggregation)

	$let (aggregation)

	$literal (aggregation)

	Date Aggregation Operators
	$dayOfYear (aggregation)

	$dayOfMonth (aggregation)

	$dayOfWeek (aggregation)

	$year (aggregation)

	$month (aggregation)

	$week (aggregation)

	$hour (aggregation)

	$minute (aggregation)

	$second (aggregation)

	$millisecond (aggregation)

	Conditional Aggregation Operators
	$cond (aggregation)

	$ifNull (aggregation)

	Query Modifiers
	$comment

	$explain

	$hint

	$maxScan

	$maxTimeMS

	$max

	$min

	$orderby

	$returnKey

	$showDiskLoc

	$snapshot

	$query

	$natural

	Database Commands
	Aggregation Commands
	aggregate

	count

	distinct

	group

	mapReduce

	Geospatial Commands
	geoNear

	geoSearch

	geoWalk

	Query and Write Operation Commands
	insert

	update

	delete

	findAndModify

	text

	getLastError

	getPrevError

	resetError

	eval

	Authentication Commands
	logout

	authenticate

	copydbgetnonce

	getnonce

	User Management Commands
	createUser

	updateUser

	dropUser

	dropAllUsersFromDatabase

	grantRolesToUser

	revokeRolesFromUser

	usersInfo

	Role Management Commands
	createRole

	updateRole

	dropRole

	dropAllRolesFromDatabase

	grantPrivilegesToRole

	revokePrivilegesFromRole

	grantRolesToRole

	revokeRolesFromRole

	rolesInfo

	Replication Commands
	replSetFreeze

	replSetGetStatus

	replSetInitiate

	replSetMaintenance

	replSetReconfig

	replSetStepDown

	replSetSyncFrom

	resync

	applyOps

	isMaster

	getoptime

	Sharding Commands
	flushRouterConfig

	addShard

	cleanupOrphaned

	checkShardingIndex

	enableSharding

	listShards

	removeShard

	getShardMap

	getShardVersion

	mergeChunks

	setShardVersion

	shardCollection

	shardingState

	unsetSharding

	split

	splitChunk

	splitVector

	medianKey

	moveChunk

	movePrimary

	isdbgrid

	Administration Commands
	renameCollection

	copydb

	dropDatabase

	drop

	create

	clone

	cloneCollection

	cloneCollectionAsCapped

	closeAllDatabases

	convertToCapped

	filemd5

	dropIndexes

	fsync

	clean

	connPoolSync

	compact

	collMod

	reIndex

	setParameter

	getParameter

	repairDatabase

	touch

	shutdown

	logRotate

	Diagnostic Commands
	listDatabases

	dbHash

	driverOIDTest

	listCommands

	availableQueryOptions

	buildInfo

	collStats

	connPoolStats

	dbStats

	cursorInfo

	dataSize

	diagLogging

	getCmdLineOpts

	netstat

	ping

	profile

	validate

	top

	indexStats

	whatsmyuri

	getLog

	hostInfo

	serverStatus

	features

	isSelf

	Internal Commands
	handshake

	recvChunkAbort

	recvChunkCommit

	recvChunkStart

	recvChunkStatus

	replSetFresh

	mapreduce.shardedfinish

	transferMods

	replSetHeartbeat

	replSetGetRBID

	migrateClone

	replSetElect

	writeBacksQueued

	writebacklisten

	Testing Commands
	testDistLockWithSkew

	testDistLockWithSyncCluster

	captrunc

	emptycapped

	godinsert

	_hashBSONElement

	journalLatencyTest

	sleep

	replSetTest

	forceerror

	skewClockCommand

	configureFailPoint

	System Events Auditing Commands
	logApplicationMessage

	mongo Shell Methods
	Collection Methods
	db.collection.aggregate()

	db.collection.count()

	db.collection.copyTo()

	db.collection.createIndex()

	db.collection.getIndexStats()

	db.collection.indexStats()

	db.collection.dataSize()

	db.collection.distinct()

	db.collection.drop()

	db.collection.dropIndex()

	db.collection.dropIndexes()

	db.collection.ensureIndex()

	db.collection.find()

	db.collection.findAndModify()

	db.collection.findOne()

	db.collection.getIndexes()

	db.collection.getShardDistribution()

	db.collection.getShardVersion()

	db.collection.group()

	db.collection.insert()

	db.collection.isCapped()

	db.collection.mapReduce()

	db.collection.reIndex()

	db.collection.remove()

	db.collection.renameCollection()

	db.collection.save()

	db.collection.stats()

	db.collection.storageSize()

	db.collection.totalSize()

	db.collection.totalIndexSize()

	db.collection.update()

	db.collection.validate()

	Cursor Methods
	cursor.addOption()

	cursor.batchSize()

	cursor.count()

	cursor.explain()

	cursor.forEach()

	cursor.hasNext()

	cursor.hint()

	cursor.limit()

	cursor.map()

	cursor.maxTimeMS()

	cursor.max()

	cursor.min()

	cursor.next()

	cursor.objsLeftInBatch()

	cursor.readPref()

	cursor.showDiskLoc()

	cursor.size()

	cursor.skip()

	cursor.snapshot()

	cursor.sort()

	cursor.toArray()

	Database Methods
	db.addUser()

	db.auth()

	db.changeUserPassword()

	db.cloneCollection()

	db.cloneDatabase()

	db.commandHelp()

	db.copyDatabase()

	db.createCollection()

	db.currentOp()

	db.dropDatabase()

	db.eval()

	db.fsyncLock()

	db.fsyncUnlock()

	db.getCollection()

	db.getCollectionNames()

	db.getLastError()

	db.getLastErrorObj()

	db.getMongo()

	db.getName()

	db.getPrevError()

	db.getProfilingLevel()

	db.getProfilingStatus()

	db.getReplicationInfo()

	db.getSiblingDB()

	db.help()

	db.hostInfo()

	db.isMaster()

	db.killOp()

	db.listCommands()

	db.loadServerScripts()

	db.logout()

	db.printCollectionStats()

	db.printReplicationInfo()

	db.printShardingStatus()

	db.printSlaveReplicationInfo()

	db.removeUser()

	db.repairDatabase()

	db.resetError()

	db.runCommand()

	db.serverBuildInfo()

	db.serverStatus()

	db.setProfilingLevel()

	db.shutdownServer()

	db.stats()

	db.version()

	User Management Methods
	db.createUser()

	Definition

	Considerations

	Required Access

	Example

	db.dropAllUsers()

	db.dropUser()

	db.grantRolesToUser()

	db.revokeRolesFromUser()

	db.getUser()

	db.getUsers()

	Role Management Methods
	db.grantRolesToRole()

	db.revokeRolesFromRole()

	db.getRole()

	db.getRoles()

	Replication Methods
	rs.add()

	rs.addArb()

	rs.conf()

	rs.freeze()

	rs.help()

	rs.initiate()

	rs.printReplicationInfo()

	rs.printSlaveReplicationInfo()

	rs.reconfig()

	rs.remove()

	rs.slaveOk()

	rs.status()

	rs.stepDown()

	rs.syncFrom()

	Sharding Methods
	sh._adminCommand()

	sh._checkFullName()

	sh._checkMongos()

	sh._lastMigration()

	sh.addShard()

	sh.addShardTag()

	sh.addTagRange()

	sh.disableBalancing()

	sh.enableBalancing()

	sh.enableSharding()

	sh.getBalancerHost()

	sh.getBalancerState()

	sh.help()

	sh.isBalancerRunning()

	sh.moveChunk()

	sh.removeShardTag()

	sh.setBalancerState()

	sh.shardCollection()

	sh.splitAt()

	sh.splitFind()

	sh.startBalancer()

	sh.status()

	sh.stopBalancer()

	sh.waitForBalancer()

	sh.waitForBalancerOff()

	sh.waitForDLock()

	sh.waitForPingChange()

	Subprocess Methods
	clearRawMongoProgramOutput()

	rawMongoProgramOutput()

	run()

	runMongoProgram()

	runProgram()

	startMongoProgram()

	stopMongoProgram()

	stopMongoProgramByPid()

	stopMongod()

	waitMongoProgramOnPort()

	waitProgram()

	Object Constructors and Methods
	Date()

	UUID()

	ObjectId.getTimestamp()

	ObjectId.toString()

	ObjectId.valueOf()

	Connection Methods
	Mongo.getDB()

	Mongo.getReadPrefMode()

	Mongo.getReadPrefTagSet()

	Mongo.setReadPref()

	mongo.setSlaveOk()

	Mongo()

	connect()

	Native Methods
	cat()

	version()

	cd()

	copyDbpath()

	resetDbpath()

	fuzzFile()

	getHostName()

	getMemInfo()

	hostname()

	_isWindows()

	listFiles()

	load()

	ls()

	md5sumFile()

	mkdir()

	pwd()

	quit()

	rand()

	removeFile()

	_srand()

	MongoDB Package Components
	mongod

	mongos

	mongo

	mongod.exe

	mongos.exe

	mongodump

	mongorestore

	bsondump

	mongooplog

	mongoimport

	mongoexport

	mongostat

	mongotop

	mongosniff

	mongoperf

	mongofiles

	Configuration File Options

	mongod Parameters

	MongoDB Limits and Thresholds

	Connection String URI Format

	Glossary

	Release Notes
	Release Notes for MongoDB 2.4

	Release Notes for MongoDB 2.2

	Release Notes for MongoDB 2.0

	Release Notes for MongoDB 1.8

	Release Notes for MongoDB 1.6

	Release Notes for MongoDB 1.4

	Release Notes for MongoDB 1.2.x

	Release Notes for MongoDB 2.6 (Development Series 2.5.x)

	Default Write Concern Change

Install MongoDB

MongoDB runs on most platforms and supports both 32-bit and 64-bit
architectures.

Installation Guides

See

Release Notes for information about specific releases
of MongoDB.

Linux

Install on Linux

	Install on Linux
	Install MongoDB on Red Hat Enterprise, CentOS, or Fedora

	Install MongoDB on Ubuntu

	Install MongoDB on Debian

	Install MongoDB on Linux Systems

OS X

Install MongoDB on OS X

	Install MongoDB on OS X

Windows

Install MongoDB on Windows

	Install MongoDB on Windows

MongoDB Enterprise

Install MongoDB Enterprise on Linux

Install MongoDB Enterprise on Windows

	Install MongoDB Enterprise on Linux

	Install MongoDB Enterprise on Windows

First Steps with MongoDB

After you have installed MongoDB, consider the following documents as
you begin to learn about MongoDB:

	Getting Started with MongoDB

	An introduction to the basic operation and use of MongoDB.

	Generate Test Data

	To support initial exploration, generate test data to facilitate testing.

	Getting Started with MongoDB

	Generate Test Data

See also

MongoDB CRUD Concepts and Data Models.

Install on Linux

These documents provide instructions to install MongoDB for various
Linux systems.

Recommended

For easy installation, MongoDB provides packages for popular
Linux distributions. The following guides detail the installation
process for these systems:

	Install on Red Hat Enterprise Linux

	Install MongoDB on Red Hat Enterprise, CentOS, Fedora and related Linux systems using .rpm packages.

	Install on Ubuntu

	Install MongoDB on Ubuntu Linux systems using .deb packages.

	Install on Debian

	Install MongoDB on Debian systems using .deb packages.

For systems without supported packages, refer to the Manual
Installation tutorial.

Manual Installation

Although packages are the preferred installation method, for Linux systems
without supported packages, see the following guide:

	Install on Other Linux Systems

	Install MongoDB on other Linux systems from the MongoDB archives.

	Install MongoDB on Red Hat Enterprise, CentOS, or Fedora

	Install MongoDB on Ubuntu

	Install MongoDB on Debian

	Install MongoDB on Linux Systems

Install MongoDB on Red Hat Enterprise, CentOS, or Fedora

This tutorial outlines the steps to install MongoDB on
Red Hat Enterprise Linux, CentOS Linux, Fedora Linux and related
systems. The tutorial uses .rpm packages to install. While some of
these distributions include their own MongoDB packages, the official
MongoDB packages are generally more up to date.

Packages

The MongoDB downloads repository contains two packages:

	mongo-10gen-server

This package contains the mongod and mongos
daemons from the latest stable release and associated
configuration and init scripts. Additionally, you can use this
package to install daemons from a previous release of MongoDB.

	mongo-10gen

This package contains all MongoDB tools from the latest stable
release. Additionally, you can use this package to install
tools from a previous release of
MongoDB. Install this package on all production MongoDB hosts and
optionally on other systems from which you may need to administer
MongoDB systems.

Install MongoDB

Configure Package Management System (YUM)

Create a /etc/yum.repos.d/mongodb.repo file to hold the
following configuration information for the MongoDB repository:

Tip

For production deployments, always run MongoDB on 64-bit
systems.

If you are running a 64-bit system, use the following configuration:

[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/
gpgcheck=0
enabled=1

If you are running a 32-bit system, which is not recommended for
production deployments, use the following configuration:

[mongodb]
name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/i686/
gpgcheck=0
enabled=1

Install Packages

Issue the following command (as root or with sudo) to install
the latest stable version of MongoDB and the associated tools:

yum install mongo-10gen mongo-10gen-server

When this command completes, you have successfully installed MongoDB!

Manage Installed Versions

You can use the mongo-10gen and mongo-10gen-server packages to
install previous releases of MongoDB. To install a specific release, append the
version number, as in the following example:

yum install mongo-10gen-2.2.3 mongo-10gen-server-2.2.3

This installs the mongo-10gen and mongo-10gen-server packages
with the 2.2.3 release. You can specify any available version of
MongoDB; however yum will upgrade the mongo-10gen and
mongo-10gen-server packages when a newer version becomes
available. Use the following pinning procedure to prevent unintended
upgrades.

To pin a package, add the following line to your /etc/yum.conf
file:

exclude=mongo-10gen,mongo-10gen-server

Control Scripts

Warning

With the introduction of systemd in Fedora 15, the control
scripts included in the packages available in the MongoDB downloads repository
are not compatible with Fedora systems. A correction is
forthcoming, see SERVER-7285 [https://jira.mongodb.org/browse/SERVER-7285] for more information, and in
the mean time use your own control scripts or install using the
procedure outlined in Install MongoDB on Linux Systems.

The packages include various control scripts,
including the init script /etc/rc.d/init.d/mongod. These packages
configure MongoDB using the /etc/mongod.conf file in conjunction
with the control scripts.

As of version 2.5.4, there are no control scripts for
mongos. mongos is only used in sharding
deployments. You can use the mongod init script
to derive your own mongos control script.

Run MongoDB

Important

You must SELinux to allow MongoDB to start on Fedora systems.
Administrators have two options:

	enable access to the relevant ports (e.g. 27017) for SELinux. See
Configuration Options for more information on MongoDB’s
default ports.

	disable SELinux entirely. This requires a system reboot and may have
larger implications for your deployment.

Start MongoDB

The MongoDB instance stores its data files in the /var/lib/mongo
and its log files in /var/log/mongo, and run using the mongod
user account. If you change the user that runs the MongoDB process, you
must modify the access control rights to the /var/lib/mongo and
/var/log/mongo directories.

Start the mongod process by issuing the following command
(as root or with sudo):

service mongod start

You can verify that the mongod process has started
successfully by checking the contents of the log file at
/var/log/mongo/mongod.log.

You may optionally ensure that MongoDB will start following a system
reboot by issuing the following command (with root privileges:)

chkconfig mongod on

Stop MongoDB

Stop the mongod process by issuing the following command
(as root or with sudo):

service mongod stop

Restart MongoDB

You can restart the mongod process by issuing the following
command (as root or with sudo):

service mongod restart

Follow the state of this process by watching the output in the
/var/log/mongo/mongod.log file to watch for errors or important
messages from the server.

Install MongoDB on Ubuntu

This tutorial outlines the steps to install MongoDB on Ubuntu
Linux systems. The tutorial uses .deb packages to install. Although
Ubuntu include its own MongoDB packages, the official MongoDB packages
are generally more up to date.

Note

If you use an older Ubuntu that does not use Upstart, (i.e. any
version before 9.10 “Karmic”) please follow the instructions on the
Install MongoDB on Debian tutorial.

Package Options

The MongoDB downloads repository provides the mongodb-10gen package,
which contains the latest stable release. Additionally you can
install previous releases of MongoDB.

You cannot install this package concurrently with the mongodb,
mongodb-server, or mongodb-clients packages provided by Ubuntu.

Install MongoDB

Configure Package Management System (APT)

The Ubuntu package management tool (i.e. dpkg and apt)
ensure package consistency and authenticity by requiring that
distributors sign packages with GPG keys. Issue the following command
to import the MongoDB public GPG Key [http://docs.mongodb.org/10gen-gpg-key.asc]:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10

Create a /etc/apt/sources.list.d/mongodb.list file using the
following command.

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

Now issue the following command to reload your repository:

sudo apt-get update

Install Packages

Issue the following command to install the latest stable version of
MongoDB:

sudo apt-get install mongodb-10gen

When this command completes, you have successfully installed MongoDB!
Continue for configuration and start-up suggestions.

Manage Installed Versions

You can use the mongodb-10gen package to install previous versions
of MongoDB. To install a specific release, append the version number
to the package name, as in the following example:

apt-get install mongodb-10gen=2.2.3

This will install the 2.2.3 release of MongoDB. You can specify
any available version of MongoDB; however apt-get will upgrade
the mongodb-10gen package when a newer version becomes
available. Use the following pinning procedure to prevent unintended
upgrades.

To pin a package, issue the following command at the system prompt to
pin the version of MongoDB at the currently installed version:

echo "mongodb-10gen hold" | sudo dpkg --set-selections

Control Scripts

The packages include various control scripts,
including the init script /etc/rc.d/init.d/mongod. These packages
configure MongoDB using the /etc/mongod.conf file in conjunction
with the control scripts.

As of version 2.5.4, there are no control scripts for
mongos. mongos is only used in sharding
deployments. You can use the mongod init script
to derive your own mongos control script.

Run MongoDB

The MongoDB instance stores its data files in the /var/lib/mongo
and its log files in /var/log/mongo, and run using the mongod
user account. If you change the user that runs the MongoDB process, you
must modify the access control rights to the /var/lib/mongo and
/var/log/mongo directories.

Start MongoDB

You can start the mongod process by issuing the following
command:

sudo service mongodb start

You can verify that mongod has started successfully by checking the
contents of the log file at /var/log/mongodb/mongodb.log.

Stop MongoDB

As needed, you may stop the mongod process by issuing the
following command:

sudo service mongodb stop

Restart MongoDB

You may restart the mongod process by issuing the
following command:

sudo service mongodb restart

Install MongoDB on Debian

This tutorial outlines the steps to install MongoDB on Debian
systems. The tutorial uses .deb packages to install. While some
Debian distributions include their own MongoDB packages, the official
MongoDB packages are generally more up to date.

Note

This tutorial applies to both Debian systems and versions of Ubuntu
Linux prior to 9.10 “Karmic” which do not use Upstart. Other Ubuntu
users will want to follow the Install MongoDB on Ubuntu
tutorial.

Package Options

The downloads repository provides the mongodb-10gen package,
which contains the latest stable release. Additionally you can
install previous releases of MongoDB.

You cannot install this package concurrently with the mongodb,
mongodb-server, or mongodb-clients packages that
your release of Debian may include.

Install MongoDB

Configure Package Management System (APT)

The Debian package management tools (i.e. dpkg and apt) ensure
package consistency and authenticity by requiring that distributors
sign packages with GPG keys.

1

Import MongoDB PGP Key

Issue the following command to add the MongoDB public GPG Key [http://docs.mongodb.org/10gen-gpg-key.asc] to the system key ring.

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10

2

Create a sources.list file for MongoDB

Create a /etc/apt/sources.list.d/mongodb.list file

echo 'deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

3

Reload Local Package Database

Issue the following command to reload the local package database:

sudo apt-get update

Install Packages

Issue the following command to install the latest stable version of
MongoDB:

sudo apt-get install mongodb-10gen

When this command completes, you have successfully installed MongoDB!

Manage Installed Versions

You can use the mongodb-10gen package to install previous versions
of MongoDB. To install a specific release, append the version number
to the package name, as in the following example:

apt-get install mongodb-10gen=2.2.3

This will install the 2.2.3 release of MongoDB. You can specify
any available version of MongoDB; however apt-get will upgrade
the mongodb-10gen package when a newer version becomes available. Use
the following pinning procedure to prevent unintended upgrades.

To pin a package, issue the following command at the system prompt to
pin the version of MongoDB at the currently installed version:

echo "mongodb-10gen hold" | sudo dpkg --set-selections

Control Scripts

The packages include various control scripts,
including the init script /etc/rc.d/init.d/mongod. These packages
configure MongoDB using the /etc/mongod.conf file in conjunction
with the control scripts.

As of version 2.5.4, there are no control scripts for
mongos. mongos is only used in sharding
deployments. You can use the mongod init script
to derive your own mongos control script.

Run MongoDB

The MongoDB instance stores its data files in the /var/lib/mongo
and its log files in /var/log/mongo, and run using the mongod
user account. If you change the user that runs the MongoDB process, you
must modify the access control rights to the /var/lib/mongo and
/var/log/mongo directories.

Start MongoDB

Issue the following command to start mongod:

sudo /etc/init.d/mongodb start

You can verify that mongod has started successfully by checking the
contents of the log file at /var/log/mongodb/mongodb.log.

Stop MongoDB

Issue the following command to stop mongod:

sudo /etc/init.d/mongodb stop

Restart MongoDB

Issue the following command to restart mongod:

sudo /etc/init.d/mongodb restart

Install MongoDB on Linux Systems

Compiled versions of MongoDB for Linux provide a simple option for
installing MongoDB for other Linux systems without supported packages.

Installation Process

MongoDB provides archives for both 64-bit and 32-bit Linux. Follow the
installation procedure appropriate for your system.

Install for 64-bit Linux

1

Download the Latest Release

In a system shell, download the latest release for 64-bit Linux.

curl -O http://downloads.mongodb.org/linux/mongodb-linux-x86_64-2.5.4.tgz

You may optionally specify a different version to download.

2

Extract MongoDB From Archive

Extract the files from the downloaded archive.

tar -zxvf mongodb-linux-x86_64-2.5.4.tgz

3

Optional. Copy MongoDB to Target Directory

Copy the extracted folder into another location, such as
mongodb.

mkdir -p mongodb
cp -R -n mongodb-linux-x86_64-2.5.4/ mongodb

4

Optional. Configure Search Path

To ensure that the downloaded binaries are in your PATH, you can
modify your PATH and/or create symbolic links to the MongoDB
binaries in your /usr/local/bin directory
(/usr/local/bin is already in your PATH). You can find the
MongoDB binaries in the bin/ directory within the archive.

Install for 32-bit Linux

1

Download the Latest Release

In a system shell, download the latest release for 32-bit Linux.

curl -O http://downloads.mongodb.org/linux/mongodb-linux-i686-2.5.4.tgz

You may optionally specify a different version to download.

2

Extract MongoDB From Archive

Extract the files from the downloaded archive.

tar -zxvf mongodb-linux-i686-2.5.4.tgz

3

Optional. Copy MongoDB to Target Directory

Copy the extracted folder into another location, such as
mongodb.

mkdir -p mongodb
cp -R -n mongodb-linux-i686-2.5.4/ mongodb

4

Optional. Configure Search Path

To ensure that the downloaded binaries are in your PATH, you can
modify your PATH and/or create symbolic links to the MongoDB
binaries in your /usr/local/bin directory
(/usr/local/bin is already in your PATH). You can find the
MongoDB binaries in the bin/ directory within the archive.

Run MongoDB

Set Up the Data Directory

Before you start mongod for the first time, you will need
to create the data directory (i.e. dbpath). By default, mongod writes
data to the /data/db directory.

1

Create dbpath

To create the default dbpath directory, use the following
command:

mkdir -p /data/db

2

Set dbpath Permissions

Ensure that the user that runs the mongod process has read
and write permissions to this directory. For example, if you will run
the mongod process, change the owner of the /data/db
directory:

chown mongodb /data/db

You must create the mongodb user separately.

You can specify an alternate path for data files using the
--dbpath option to mongod. If
you use an alternate location for your data directory, ensure that this
user can write to the alternate data directory.

Start MongoDB

To start mongod, run the executable mongod at the
system prompt.

For example, if your PATH includes the location of the
mongod binary, enter mongod at the system prompt.

mongod

If your PATH does not include the location of the mongod
binary, enter the full path to the mongod binary.

Starting mongod without any arguments starts a MongoDB
instance that writes data to the /data/db directory. To specify an
alternate data directory, start mongod with the
--dbpath option:

mongod --dbpath <some alternate directory>

Whether using the default /data/db or an alternate directory,
ensure that the user account running mongod has read and
write permissions to the directory.

Stop MongoDB

To stop the mongod instance, press Control+C in the
terminal where the mongod instance is running.

Install MongoDB on OS X

Platform Support

Starting in version 2.4, MongoDB only supports OS X versions 10.6
(Snow Leopard) on Intel x86-64 and later.

MongoDB is available through the popular OS X package manager Homebrew [http://mxcl.github.com/homebrew/] or through the MongoDB Download
site.

Install MongoDB with Homebrew

Homebrew [http://brew.sh/] [1]
installs binary packages based on published “formulae”. The following
commands will update brew to the latest packages and install
MongoDB.

In a terminal shell, use the following sequence of commands to
update``brew`` to the latest packages and install MongoDB:

brew update
brew install mongodb

Later, if you need to upgrade MongoDB, run the following
sequence of commands to update the MongoDB installation on your system:

brew update
brew upgrade mongodb

	[1]	Homebrew requires some initial
setup and configuration. This configuration is beyond the scope of
this document.

Manual Installation

1

Download the Latest Release

In a system shell, download the latest release for 64-bit OS X.

curl -O http://downloads.mongodb.org/osx/mongodb-osx-x86_64-2.5.4.tgz

You may optionally specify a different version to download.

2

Extract MongoDB From Archive

Extract the files from the downloaded archive.

tar -zxvf mongodb-osx-x86_64-2.5.4.tgz

3

Optional. Copy MongoDB to Target Directory

Copy the extracted folder into another location, such as
mongodb.

mkdir -p mongodb
cp -R -n mongodb-osx-x86_64-2.5.4/ mongodb

4

Optional. Configure Search Path

To ensure that the downloaded binaries are in your PATH, you can
modify your PATH and/or create symbolic links to the MongoDB
binaries in your /usr/local/bin directory
(/usr/local/bin is already in your PATH). You can find the
MongoDB binaries in the bin/ directory within the archive.

Run MongoDB

Set Up the Data Directory

Before you start mongod for the first time, you will need to
create the data directory. By default, mongod writes data to
the /data/db/ directory.

1

Create dbpath

To create the default dbpath directory, use the following
command:

mkdir -p /data/db

2

Set dbpath Permissions

Ensure that the user that runs the mongod process has read
and write permissions to this directory. For example, if you will run
the mongod process, change the owner of the /data/db
directory:

chown `id -u` /data/db

You must create the mongodb user separately.

You can specify an alternate path for data files using the
--dbpath option to mongod. If
you use an alternate location for your data directory, ensure that the
alternate directory has the appropriate permissions.

Start MongoDB

To start mongod, run the executable mongod at the
system prompt.

For example, if your PATH includes the location of the
mongod binary, enter mongod at the system prompt.

mongod

If your PATH does not include the location of the mongod
binary, enter the full path to the mongod binary.

The previous command starts a mongod instance that writes
data to the /data/db/ directory. To specify an alternate data
directory, start mongod with the --dbpath option:

mongod --dbpath <some alternate directory>

Whether using the default /data/db/ or an alternate directory,
ensure that the user account running mongod has read and
write permissions to the directory.

Stop MongoDB

To stop the mongod instance, press Control+C in the
terminal where the mongod instance is running.

Install MongoDB on Windows

Platform Support

Starting in version 2.2, MongoDB does not support Windows XP. Please
use a more recent version of Windows to use more recent releases of
MongoDB.

Important

If you are running any edition of Windows Server 2008
R2 or Windows 7, please install a hotfix to resolve an issue with
memory mapped files on Windows [http://support.microsoft.com/kb/2731284].

Procedure

Select MongoDB for Windows

There are three builds of MongoDB for Windows:

	MongoDB for Windows Server 2008 R2 edition (i.e. 2008R2)
only runs on Windows Server 2008 R2, Windows 7 64-bit, and newer
versions of Windows. This build takes advantage of recent
enhancements to the Windows Platform and cannot operate on older
versions of Windows.

	MongoDB for Windows 64-bit runs on any 64-bit version of Windows
newer than Windows XP, including Windows Server 2008 R2 and Windows
7 64-bit.

	MongoDB for Windows 32-bit runs on any 32-bit version of Windows
newer than Windows XP. 32-bit versions of MongoDB are only intended
for older systems and for use in testing and development systems.
32-bit versions of MongoDB only support databases smaller than 2GB.

Tip

To find which version of Windows you are running, enter the
following command in the Command Prompt:

wmic os get osarchitecture

Download MongoDB for Windows

	Download the latest production release of MongoDB from the MongoDB
downloads page [http://www.mongodb.org/downloads]. Ensure you
download the correct version of MongoDB for your Windows system. The
64-bit versions of MongoDB will not work with 32-bit Windows.

	Extract the downloaded archive.

	In Windows Explorer, find the MongoDB download file, typically in
the default Downloads directory.

	Extract the archive to C:\ by right clicking on the archive
and selecting Extract All and browsing to C:\.

	Optional. Move the MongoDB directory to another location. For
example, to move the directory to C:\mongodb directory:

	Go Start Menu > All Programs >
Accessories.

	Right click Command Prompt, and select Run
as Administrator from the popup menu.

	In the Command Prompt, issue the following commands:

cd \
move C:\mongodb-win32-* C:\mongodb

Note

MongoDB is self-contained and does not have any other system
dependencies. You can run MongoDB from any folder you choose. You
may install MongoDB in any directory (e.g. D:\test\mongodb)

Run MongoDB

Set up the Environment

MongoDB requires a data folder to store all
data. MongoDB’s default data directory path is \data\db. Create
this folder using the following commands from a Command
Prompt:

md \data\db

Note

You may specify an alternate path for \data\db with the
dbpath setting for mongod.exe, as in the
following example:

"C:\Program Files\MongoDB\bin\mongod.exe" --dbpath d:\test\mongodb\data

If your path includes spaces, enclose the entire path in double
quotes, for example:

"C:\Program Files\MongoDB\bin\mongod.exe" --dbpath "d:\test\mongo db data"

Start MongoDB

To start MongoDB, execute from the Command Prompt:

"C:\Program Files\MongoDB\bin\mongod.exe"

This starts the main MongoDB database process. The waiting for
connections message in the console output indicates that the
mongod.exe process is running successfully.

Note

Depending on the security level of your system, Windows may pop
up a Security Alert dialog box about blocking “some
features” of "C:\Program Files\MongoDB\bin\mongod.exe" from communicating
on networks. All users should select Private Networks, such
as my home or work network and click Allow access. For
additional information on security and MongoDB, please read the
Security Concepts page.

Warning

Do not make mongod.exe visible on public networks
without running in “Secure Mode” with the auth setting.
MongoDB is designed to be run in trusted environments and the
database does not enable “Secure Mode” by default.

To connect to MongoDB using the mongo.exe shell,
open a Command Prompt and issue the following command:

"C:\Program Files\MongoDB\bin\mongo.exe"

Note

Executing "C:\Program Files\MongoDB\bin\mongo.exe" starts
the mongo.exe shell in a separate Command
Prompt window.

The mongo.exe shell connects to
mongod.exe running on the localhost interface and port
27017 by default. At the mongo.exe prompt,
use the following commands to insert a document in the test
collection, and then retrieve that record:

db.test.save({ a: 1 })
db.test.find()

See also

mongo and mongo Shell Methods. To
develop applications using .NET, see the documentation of
C# and MongoDB [http://docs.mongodb.org/ecosystem/drivers/csharp] for more information.

Configure a Windows Service for MongoDB

Set up MongoDB Enterprise Windows Server as a Windows
Service that starts automatically at boot time.

Configure Directories and Files

Create a configuration file
and a directory path for MongoDB log output (logpath):

	Create a specific directory for MongoDB log files:

md "C:\Program Files\MongoDB\log"

	Create a configuration file for the logpath option for
MongoDB in the Command Prompt:

echo logpath="C:\Program Files\MongoDB\log\mongo.log" > "C:\Program Files\MongoDB\mongod.cfg"

Install and Run the MongoDB Service

Run all of the following commands in Command Prompt with
“Administrative Privileges:”

	Install the MongoDB service:

"C:\Program Files\MongoDB\bin\mongod.exe" --config "C:\Program Files\MongoDB\mongod.cfg" --install

	Modify the path to the mongod.cfg file as needed.

Important

For --install to succeed,
you must specify the logpath run-time option.

Note

To use an alternate dbpath, specify the path in the
configuration file (e.g. "C:\Program Files\MongoDB\mongod.cfg",) or use
--dbpath from the command line.

If the dbpath directory does not exist,
mongod.exe will not start. The default value for
dbpath is \data\db.

Stop or Remove the MongoDB Service

To stop the MongoDB service use the following command:

net stop MongoDB

To remove the MongoDB service use the following command:

"C:\Program Files\MongoDB\bin\mongod.exe" --remove

Install MongoDB Enterprise on Linux

New in version 2.2.

MongoDB Enterprise [http://www.mongodb.com/products/mongodb-enterprise] is available on
four platforms and contains support for several features related to
security and monitoring.

Required Packages

Changed in version 2.4.4: MongoDB Enterprise uses Cyrus SASL instead of GNU SASL.
Earlier 2.4 Enterprise versions use GNU SASL (libgsasl)
instead. See the 2.4 version of this document [http://docs.mongodb.org/v2.4/tutorial/install-mongodb-enterprise.txt] for more information

To use MongoDB Enterprise, you must install several
prerequisites. The names of the packages vary by distribution and are
as follows:

	Debian or Ubuntu 12.04 require: libssl0.9.8, snmp, snmpd,
cyrus-sasl2-dbg, cyrus-sasl2-mit-dbg, libsasl2-2,
libsasl2-dev, libsasl2-modules, and
libsasl2-modules-gssapi-mit. Issue a command such as the
following to install these packages:

sudo apt-get install libssl0.9.8 snmp snmpd cyrus-sasl2-dbg cyrus-sasl2-mit-dbg libsasl2-2 libsasl2-dev libsasl2-modules libsasl2-modules-gssapi-mit

	CentOS and Red Hat Enterprise Linux 6.x and 5.x, as well as Amazon
Linux AMI require: net-snmp, net-snmp-libs, openssl,
net-snmp-utils, cyrus-sasl, cyrus-sasl-lib,
cyrus-sasl-devel, and cyrus-sasl-gssapi. Issue a command
such as the following to install these packages:

sudo yum install openssl net-snmp net-snmp-libs net-snmp-utils cyrus-sasl cyrus-sasl-lib cyrus-sasl-devel cyrus-sasl-gssapi

	SUSE Enterprise Linux requires libopenssl0_9_8, libsnmp15,
slessp1-libsnmp15, snmp-mibs, cyrus-sasl,
cyrus-sasl-devel, and cyrus-sasl-gssapi. Issue a command such
as the following to install these packages:

sudo zypper install libopenssl0_9_8 libsnmp15 slessp1-libsnmp15 snmp-mibs cyrus-sasl cyrus-sasl-devel cyrus-sasl-gssapi

Install MongoDB Enterprise Binaries

When you have installed the required packages, and downloaded the
Enterprise packages [http://www.mongodb.com/products/mongodb-enterprise] you can install
the packages using the same procedure as a standard installation
of MongoDB on Linux Systems.

Note

.deb and .rpm packages for Enterprise releases are
available for some platforms. You can use these to install MongoDB
directly using the dpkg and rpm utilities.

Use the sequence of commands below to download and extract
MongoDB Enterprise packages appropriate for your distribution:

Ubuntu 12.04

curl -O http://downloads.10gen.com/linux/mongodb-linux-x86_64-subscription-ubuntu1204-2.5.4.tgz
tar -zxvf mongodb-linux-x86_64-subscription-ubuntu1204-2.5.4.tgz
cp -R -n mongodb-linux-x86_64-subscription-ubuntu1204-2.5.4/ mongodb

Red Hat Enterprise Linux 6.x

curl -O http://downloads.10gen.com/linux/mongodb-linux-x86_64-subscription-rhel62-2.5.4.tgz
tar -zxvf mongodb-linux-x86_64-subscription-rhel62-2.5.4.tgz
cp -R -n mongodb-linux-x86_64-subscription-rhel62-2.5.4/ mongodb

Amazon Linux AMI

curl -O http://downloads.10gen.com/linux/mongodb-linux-x86_64-subscription-amzn64-2.5.4.tgz
tar -zxvf mongodb-linux-x86_64-subscription-amzn64-2.5.4.tgz
cp -R -n mongodb-linux-x86_64-subscription-amzn64-2.5.4/ mongodb

SUSE Enterprise Linux

curl -O http://downloads.10gen.com/linux/mongodb-linux-x86_64-subscription-suse11-2.5.4.tgz
tar -zxvf mongodb-linux-x86_64-subscription-suse11-2.5.4.tgz
cp -R -n mongodb-linux-x86_64-subscription-suse11-2.5.4/ mongodb

Run MongoDB

Note

The Enterprise packages currently include an example SNMP
configuration file named mongod.conf. This file is not a
MongoDB configuration file.

Set Up the Data Directory

Before you start mongod for the first time, you will need
to create the data directory (i.e. dbpath). By default, mongod writes
data to the /data/db directory.

1

Create dbpath

To create the default dbpath directory, use the following
command:

mkdir -p /data/db

2

Set dbpath Permissions

Ensure that the user that runs the mongod process has read
and write permissions to this directory. For example, if you will run
the mongod process, change the owner of the /data/db
directory:

chown mongodb /data/db

You must create the mongodb user separately.

You can specify an alternate path for data files using the
--dbpath option to mongod. If
you use an alternate location for your data directory, ensure that this
user can write to the alternate data directory.

Start MongoDB

To start mongod, run the executable mongod at the
system prompt.

For example, if your PATH includes the location of the
mongod binary, enter mongod at the system prompt.

mongod

If your PATH does not include the location of the mongod
binary, enter the full path to the mongod binary.

Starting mongod without any arguments starts a MongoDB
instance that writes data to the /data/db directory. To specify an
alternate data directory, start mongod with the
--dbpath option:

mongod --dbpath <some alternate directory>

Whether using the default /data/db or an alternate directory,
ensure that the user account running mongod has read and
write permissions to the directory.

Stop MongoDB

To stop the mongod instance, press Control+C in the
terminal where the mongod instance is running.

Next Steps

As you begin to use MongoDB, consider the
Getting Started with MongoDB and MongoDB Tutorials resources. To
read about features only available in MongoDB Enterprise, consider:
Monitor MongoDB with SNMP and
Deploy MongoDB with Kerberos Authentication.

Install MongoDB Enterprise on Windows

New in version 2.6.0.

Synopsis

This tutorial describes the procedure for installing MongoDB
Enterprise on Microsoft Windows systems.

Operating MongoDB on Windows is similar to MongoDB on other
platforms. Most components behave the same.

Requirements

MongoDB Enterprise Server for Windows requires Windows Server 2008
R2 or later. The MSI installer includes all other software dependencies.

Procedures

Download MongoDB Enterprise for Windows

Download the latest production release of MongoDB Enterprise [http://www.mongodb.com/products/mongodb-enterprise]

Install MongoDB Enterprise for Windows

Run the downloaded MSI installer. Make configuration choices as
prompted.

Note

MongoDB is self-contained and does not have any other
system dependencies. You can install MongoDB into any folder
(e.g. D:\test\mongodb) and run it from there. The installation
wizard includes an option to select an installation directory.

Run MongoDB Enterprise on Windows

Set up the Environment

MongoDB requires a data folder to store all
data. MongoDB’s default data directory path is \data\db. Create
this folder using the following commands from a Command
Prompt:

md \data\db

Note

You may specify an alternate path for \data\db with the
dbpath setting for mongod.exe, as in the
following example:

"C:\Program Files\MongoDB\bin\mongod.exe" --dbpath d:\test\mongodb\data

If your path includes spaces, enclose the entire path in double
quotes, for example:

"C:\Program Files\MongoDB\bin\mongod.exe" --dbpath "d:\test\mongo db data"

Start MongoDB

To start MongoDB, execute from the Command Prompt:

"C:\Program Files\MongoDB\bin\mongod.exe"

This starts the main MongoDB database process. The waiting for
connections message in the console output indicates that the
mongod.exe process is running successfully.

Note

Depending on the security level of your system, Windows may pop
up a Security Alert dialog box about blocking “some
features” of "C:\Program Files\MongoDB\bin\mongod.exe" from communicating
on networks. All users should select Private Networks, such
as my home or work network and click Allow access. For
additional information on security and MongoDB, please read the
Security Concepts page.

Warning

Do not make mongod.exe visible on public networks
without running in “Secure Mode” with the auth setting.
MongoDB is designed to be run in trusted environments and the
database does not enable “Secure Mode” by default.

To connect to MongoDB using the mongo.exe shell,
open a Command Prompt and issue the following command:

"C:\Program Files\MongoDB\bin\mongo.exe"

Note

Executing "C:\Program Files\MongoDB\bin\mongo.exe" starts
the mongo.exe shell in a separate Command
Prompt window.

The mongo.exe shell connects to
mongod.exe running on the localhost interface and port
27017 by default. At the mongo.exe prompt,
use the following commands to insert a document in the test
collection, and then retrieve that record:

db.test.save({ a: 1 })
db.test.find()

See also

mongo and mongo Shell Methods. To
develop applications using .NET, see the documentation of
C# and MongoDB [http://docs.mongodb.org/ecosystem/drivers/csharp] for more information.

Configure a Windows Service for MongoDB Enterprise

Set up MongoDB Enterprise Windows Server as a Windows
Service that starts automatically at boot time.

Configure Directories and Files

Create a configuration file
and a directory path for MongoDB log output (logpath):

	Create a specific directory for MongoDB log files:

md "C:\Program Files\MongoDB\log"

	Create a configuration file for the logpath option for
MongoDB in the Command Prompt:

echo logpath="C:\Program Files\MongoDB\log\mongo.log" > "C:\Program Files\MongoDB\mongod.cfg"

Install and Run the MongoDB Service

Run all of the following commands in Command Prompt with
“Administrative Privileges:”

	Install the MongoDB service:

"C:\Program Files\MongoDB\bin\mongod.exe" --config "C:\Program Files\MongoDB\mongod.cfg" --install

	Modify the path to the mongod.cfg file as needed.

Important

For --install to succeed,
you must specify the logpath run-time option.

Note

To use an alternate dbpath, specify the path in the
configuration file (e.g. "C:\Program Files\MongoDB\mongod.cfg",) or use
--dbpath from the command line.

If the dbpath directory does not exist,
mongod.exe will not start. The default value for
dbpath is \data\db.

Stop or Remove the MongoDB Service

To stop the MongoDB service use the following command:

net stop MongoDB

To remove the MongoDB service use the following command:

"C:\Program Files\MongoDB\bin\mongod.exe" --remove

Getting Started with MongoDB

This tutorial addresses the following aspects of MongoDB use:

	Connect to a Database
	Connect to a mongod

	Select a Database

	Display mongo Help

	Create a Collection and Insert Documents

	Insert Documents using a For Loop or a JavaScript Function

	Working with the Cursor
	Iterate over the Cursor with a Loop

	Use Array Operations with the Cursor

	Query for Specific Documents

	Return a Single Document from a Collection

	Limit the Number of Documents in the Result Set

	Next Steps with MongoDB

This tutorial provides an introduction to basic database operations
using the mongo shell. mongo is a part of the
standard MongoDB distribution and provides a full JavaScript
environment with a complete access to the JavaScript language
and all standard functions as well as a full database interface for
MongoDB. See the mongo JavaScript API [http://api.mongodb.org/js] documentation and
the mongo shell JavaScript Method Reference.

The tutorial assumes that you’re running MongoDB on a Linux or OS X
operating system and that you have a running database server; MongoDB
does support Windows and provides a Windows distribution with
identical operation. For instructions on installing MongoDB and
starting the database server, see the appropriate installation document.

Connect to a Database

In this section, you connect to the database server, which runs as
mongod, and begin using the mongo shell to
select a logical database within the database instance and access the
help text in the mongo shell.

Connect to a mongod

From a system prompt, start mongo by issuing the
mongo command, as follows:

mongo

By default, mongo looks for a database server listening on
port 27017 on the localhost interface. To connect to a server
on a different port or interface, use the
--port and --host
options.

Select a Database

After starting the mongo shell your session will use the
test database by default. At any time, issue the following operation
at the mongo to report the name of the current database:

db

	From the mongo shell, display the list of
databases, with the following operation:

show dbs

	Switch to a new database named mydb, with the following
operation:

use mydb

	Confirm that your session has the mydb database as context, by
checking the value of the db object, which returns the name
of the current database, as follows:

db

At this point, if you issue the show dbs operation again, it will
not include the mydb database. MongoDB will not permanently
create a database until you insert data into that database. The
Create a Collection and Insert Documents section describes the process
for inserting data.

New in version 2.4: show databases also returns a list of databases.

Display mongo Help

At any point, you can access help for the mongo shell using
the following operation:

help

Furthermore, you can append the .help() method to some JavaScript
methods, any cursor object, as well as the db and
db.collection objects to return additional help information.

Create a Collection and Insert Documents

In this section, you insert documents into a new collection
named testData within the new database named
mydb.

MongoDB will create a collection implicitly upon its first use. You do
not need to create a collection before inserting data. Furthermore,
because MongoDB uses dynamic schemas, you also
need not specify the structure of your documents before inserting them
into the collection.

	From the mongo shell, confirm you are in the mydb
database by issuing the following:

db

	If mongo does not return mydb for the previous
operation, set the context to the mydb database, with the
following operation:

use mydb

	Create two documents named j and k by using the following
sequence of JavaScript operations:

j = { name : "mongo" }
k = { x : 3 }

	Insert the j and k documents into the testData
collection with the following sequence of operations:

db.testData.insert(j)
db.testData.insert(k)

When you insert the first document, the mongod will
create both the mydb database and the testData collection.

	Confirm that the testData collection exists. Issue
the following operation:

show collections

The mongo shell will return the list of the collections
in the current (i.e. mydb) database. At this point, the only
collection is testData. All mongod databases also have
a system.indexes collection.

	Confirm that the documents exist in the testData collection by
issuing a query on the collection using the
find() method:

db.testData.find()

This operation returns the following results. The ObjectId values will be unique:

{ "_id" : ObjectId("4c2209f9f3924d31102bd84a"), "name" : "mongo" }
{ "_id" : ObjectId("4c2209fef3924d31102bd84b"), "x" : 3 }

All MongoDB documents must have an _id field with a unique
value. These operations do not explicitly specify a value for the
_id field, so mongo creates a unique ObjectId value for the field before inserting it into the
collection.

Insert Documents using a For Loop or a JavaScript Function

To perform the remaining procedures in this tutorial, first add more
documents to your database using one or both of the procedures described
in Generate Test Data.

Working with the Cursor

When you query a collection, MongoDB returns a “cursor” object
that contains the results of the query. The mongo shell then
iterates over the cursor to display the results. Rather than returning
all results at once, the shell iterates over the cursor 20 times to
display the first 20 results and then waits for a request to iterate
over the remaining results. In the shell, use enter it to iterate
over the next set of results.

The procedures in this section show other ways to work with a cursor.
For comprehensive documentation on cursors, see
Iterate the Returned Cursor.

Iterate over the Cursor with a Loop

Before using this procedure, make sure to add at least 25 documents to a
collection using one of the procedures in
Generate Test Data. You can name your database and
collections anything you choose, but this procedure will assume the
database named test and a collection named testData.

	In the MongoDB JavaScript shell, query the testData collection
and assign the resulting cursor object to the c variable:

var c = db.testData.find()

	Print the full result set by using a while loop to iterate over
the c variable:

while (c.hasNext()) printjson(c.next())

The hasNext() function returns true if the cursor has documents.
The next() method returns the next document. The
printjson() method renders the document in a JSON-like format.

The operation displays 20 documents. For example, if the documents
have a single field named x, the operation displays the field as
well as each document’s ObjectId:

{ "_id" : ObjectId("51a7dc7b2cacf40b79990be6"), "x" : 1 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be7"), "x" : 2 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be8"), "x" : 3 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be9"), "x" : 4 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bea"), "x" : 5 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990beb"), "x" : 6 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bec"), "x" : 7 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bed"), "x" : 8 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bee"), "x" : 9 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bef"), "x" : 10 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf0"), "x" : 11 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf1"), "x" : 12 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf2"), "x" : 13 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf3"), "x" : 14 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf4"), "x" : 15 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf5"), "x" : 16 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf6"), "x" : 17 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf7"), "x" : 18 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf8"), "x" : 19 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf9"), "x" : 20 }

Use Array Operations with the Cursor

The following procedure lets you manipulate a cursor object as if it
were an array:

	In the mongo shell, query the testData collection
and assign the resulting cursor object to the c variable:

var c = db.testData.find()

	To find the document at the array index 4, use the following
operation:

printjson(c [4])

MongoDB returns the following:

{ "_id" : ObjectId("51a7dc7b2cacf40b79990bea"), "x" : 5 }

When you access documents in a cursor using the array index
notation, mongo first calls the cursor.toArray()
method and loads into RAM all documents returned by the cursor. The
index is then applied to the resulting array. This operation
iterates the cursor completely and exhausts the cursor.

For very large result sets, mongo may run out of
available memory.

For more information on the cursor, see Iterate the Returned Cursor.

Query for Specific Documents

MongoDB has a rich query system that allows you to select and filter
the documents in a collection along specific fields and values. See
Query Documents and Read Operations
for a full account of queries in MongoDB.

In this procedure, you query for specific documents in the testData
collection by passing a “query document” as a parameter to the
find() method. A query document
specifies the criteria the query must match to return a document.

In the mongo shell, query for all documents where the x
field has a value of 18 by passing the { x : 18 } query document
as a parameter to the find() method:

db.testData.find({ x : 18 })

MongoDB returns one document that fits this criteria:

{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf7"), "x" : 18 }

Return a Single Document from a Collection

With the findOne() method you can return a
single document from a MongoDB collection. The findOne() method takes the same parameters as
find(), but returns a document rather
than a cursor.

To retrieve one document from the testData collection, issue the
following command:

db.testData.findOne()

For more information on querying for documents, see the
Query Documents and Read Operations documentation.

Limit the Number of Documents in the Result Set

To increase performance, you can constrain the size of the result by
limiting the amount of data your application must receive over the
network.

To specify the maximum number of documents in the result set, call the
limit() method on a cursor, as in the
following command:

db.testData.find().limit(3)

MongoDB will return the following result, with different
ObjectId values:

{ "_id" : ObjectId("51a7dc7b2cacf40b79990be6"), "x" : 1 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be7"), "x" : 2 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be8"), "x" : 3 }

Next Steps with MongoDB

For more information on manipulating the documents in a database as
you continue to learn MongoDB, consider the following resources:

	MongoDB CRUD Operations

	SQL to MongoDB Mapping Chart

	MongoDB Drivers and Client Libraries

Generate Test Data

This tutorial describes how to quickly generate test data as you need
to test basic MongoDB operations.

Insert Multiple Documents Using a For Loop

You can add documents to a new or existing collection by using a JavaScript
for loop run from the mongo shell.

	From the mongo shell, insert new documents into the
testData collection using the following for loop. If the
testData collection does not exist, MongoDB creates the
collection implicitly.

for (var i = 1; i <= 25; i++) db.testData.insert({ x : i })

	Use find() to query the collection:

db.testData.find()

The mongo shell displays the first 20 documents in the
collection. Your ObjectId values will be
different:

{ "_id" : ObjectId("51a7dc7b2cacf40b79990be6"), "x" : 1 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be7"), "x" : 2 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be8"), "x" : 3 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990be9"), "x" : 4 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bea"), "x" : 5 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990beb"), "x" : 6 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bec"), "x" : 7 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bed"), "x" : 8 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bee"), "x" : 9 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bef"), "x" : 10 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf0"), "x" : 11 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf1"), "x" : 12 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf2"), "x" : 13 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf3"), "x" : 14 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf4"), "x" : 15 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf5"), "x" : 16 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf6"), "x" : 17 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf7"), "x" : 18 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf8"), "x" : 19 }
{ "_id" : ObjectId("51a7dc7b2cacf40b79990bf9"), "x" : 20 }

	The find() returns a cursor. To iterate
the cursor and return more documents use the it operation in
the mongo shell. The mongo shell will exhaust
the cursor, and return the following documents:

{ "_id" : ObjectId("51a7dce92cacf40b79990bfc"), "x" : 21 }
{ "_id" : ObjectId("51a7dce92cacf40b79990bfd"), "x" : 22 }
{ "_id" : ObjectId("51a7dce92cacf40b79990bfe"), "x" : 23 }
{ "_id" : ObjectId("51a7dce92cacf40b79990bff"), "x" : 24 }
{ "_id" : ObjectId("51a7dce92cacf40b79990c00"), "x" : 25 }

Insert Multiple Documents with a mongo Shell Function

You can create a JavaScript function in your shell session to generate
the above data. The insertData() JavaScript function, shown here,
creates new data for use in testing or training by either creating a
new collection or appending data to an existing collection:

function insertData(dbName, colName, num) {

 var col = db.getSiblingDB(dbName).getCollection(colName);

 for (i = 0; i < num; i++) {
 col.insert({x:i});
 }

 print(col.count());

}

The insertData() function takes three parameters: a database, a new
or existing collection, and the number of documents to create.
The function creates documents with an x field that is set to an
incremented integer, as in the following example documents:

{ "_id" : ObjectId("51a4da9b292904caffcff6eb"), "x" : 0 }
{ "_id" : ObjectId("51a4da9b292904caffcff6ec"), "x" : 1 }
{ "_id" : ObjectId("51a4da9b292904caffcff6ed"), "x" : 2 }

Store the function in your .mongorc.js file.
The mongo shell loads the function for you every time you
start a session.

Example

Specify database name, collection name, and the number of
documents to insert as arguments to insertData().

insertData("test", "testData", 400)

This operation inserts 400 documents into the testData collection
in the test database. If the collection and database do not
exist, MongoDB creates them implicitly before inserting documents.

MongoDB CRUD Operations

MongoDB provides rich semantics for reading and manipulating data.
CRUD stands for create, read, update, and delete. These
terms are the foundation for all interactions with the database.

	MongoDB CRUD Introduction

	An introduction to the MongoDB data model as well as queries and data manipulations.

	MongoDB CRUD Concepts

	The core documentation of query and data manipulation.

	MongoDB CRUD Tutorials

	Examples of basic query and data modification operations.

	MongoDB CRUD Reference

	Reference material for the query and data manipulation interfaces.

	MongoDB CRUD Introduction

	MongoDB CRUD Concepts
	Read Operations
	Cursors

	Query Optimization

	Query Plans

	Distributed Queries

	Write Operations
	Write Concern

	Distributed Write Operations

	Write Operation Performance

	Bulk Inserts in MongoDB

	Record Padding

	MongoDB CRUD Tutorials
	Insert Documents

	Query Documents

	Limit Fields to Return from a Query

	Iterate a Cursor in the mongo Shell

	Analyze Query Performance

	Modify Documents

	Remove Documents

	Perform Two Phase Commits

	Create Tailable Cursor

	Isolate Sequence of Operations

	Create an Auto-Incrementing Sequence Field

	Limit Number of Elements in an Array after an Update

	MongoDB CRUD Reference
	Write Concern Reference

	SQL to MongoDB Mapping Chart

	The bios Example Collection

	MongoDB Drivers and Client Libraries

MongoDB CRUD Tutorials

The following tutorials provide instructions for querying and modifying
data. For a higher-level overview of these operations, see
MongoDB CRUD Operations.

	Insert Documents

	Insert new documents into a collection.

	Query Documents

	Find documents in a collection using search criteria.

	Limit Fields to Return from a Query

	Limit which fields are returned by a query.

	Iterate a Cursor in the mongo Shell

	Access documents returned by a find
query by iterating the cursor, either manually or using the iterator
index.

	Analyze Query Performance

	Analyze the efficiency of queries and determine how a query uses
available indexes.

	Modify Documents

	Modify documents in a collection

	Remove Documents

	Remove documents from a collection.

	Perform Two Phase Commits

	Use two-phase commits when writing data to multiple documents.

	Create Tailable Cursor

	Create tailable cursors for use in capped collections with high
numbers of write operations for which an index would be too
expensive.

	Isolate Sequence of Operations

	Use the <isolation> isolated operator to isolate a
single write operation that affects multiple documents, preventing
other operations from interrupting the sequence of write operations.

	Create an Auto-Incrementing Sequence Field

	Describes how to create an incrementing sequence number for the
_id field using a Counters Collection or an Optimistic Loop.

	Limit Number of Elements in an Array after an Update

	Use $push with various modifiers to sort and
maintain an array of fixed size after update

	Insert Documents

	Query Documents

	Limit Fields to Return from a Query

	Iterate a Cursor in the mongo Shell

	Analyze Query Performance

	Modify Documents

	Remove Documents

	Perform Two Phase Commits

	Create Tailable Cursor

	Isolate Sequence of Operations

	Create an Auto-Incrementing Sequence Field

	Limit Number of Elements in an Array after an Update

Insert Documents

In MongoDB, the db.collection.insert() method adds new
documents into a collection. In addition, both the
db.collection.update() method and the
db.collection.save() method can also add new documents
through an operation called an upsert. An upsert is an operation
that performs either an update of an existing document or an insert of
a new document if the document to modify does not exist.

This tutorial provides examples of insert operations using each of the
three methods in the mongo shell.

Insert a Document with insert() Method

The following statement inserts a document with three fields into the
collection inventory:

db.inventory.insert({ _id: 10, type: "misc", item: "card", qty: 15 })

In the example, the document has a user-specified _id field value
of 10. The value must be unique within the inventory collection.

For more examples, see insert().

Insert a Document with update() Method

Call the update() method with the upsert
flag to create a new document if no document matches the update’s
query criteria. [1]

The following example creates a new document if no document in the
inventory collection contains { type: "books", item : "journal"
}:

db.inventory.update(
 { type: "book", item : "journal" },
 { $set : { qty: 10 } },
 { upsert : true }
)

MongoDB adds the _id field and assigns as its value a unique
ObjectId. The new document includes the item and type fields
from the <query> criteria and the qty field from the
<update> parameter.

{ "_id" : ObjectId("51e8636953dbe31d5f34a38a"), "item" : "journal", "qty" : 10, "type" : "book" }

For more examples, see update().

	[1]	Prior to version 2.2, in the mongo shell, you would specify
the upsert and the multi options in the
update() method as positional boolean options.
See update() for details.

Insert a Document with save() Method

To insert a document with the save() method,
pass the method a document that does not contain the _id field or a
document that contains an _id field that does not exist in the
collection.

The following example creates a new document in the inventory
collection:

db.inventory.save({ type: "book", item: "notebook", qty: 40 })

MongoDB adds the _id field and assigns as its value a unique
ObjectId.

{ "_id" : ObjectId("51e866e48737f72b32ae4fbc"), "type" : "book", "item" : "notebook", "qty" : 40 }

For more examples, see save().

Query Documents

In MongoDB, the db.collection.find() method retrieves
documents from a collection. [1] The
db.collection.find() method returns a cursor to the retrieved documents.

This tutorial provides examples of read operations using the
db.collection.find() method in the mongo shell. In
these examples, the retrieved documents contain all their fields. To
restrict the fields to return in the retrieved documents, see
Limit Fields to Return from a Query.

	[1]	The db.collection.findOne() method also performs a read
operation to return a single document. Internally, the
db.collection.findOne() method is the
db.collection.find() method with a limit of 1.

Select All Documents in a Collection

An empty query document ({}) selects all documents in the
collection:

db.inventory.find({})

Not specifying a query document to the find()
is equivalent to specifying an empty query document. Therefore the
following operation is equivalent to the previous operation:

db.inventory.find()

Specify Equality Condition

To specify equality condition, use the query document { <field>:
<value> } to select all documents that contain the <field> with
the specified <value>.

The following example retrieves from the inventory collection all
documents where the type field has the value snacks:

db.inventory.find({ type: "snacks" })

Specify Conditions Using Query Operators

A query document can use the query operators
to specify conditions in a MongoDB query.

The following example selects all documents in the inventory
collection where the value of the type field is either 'food'
or 'snacks':

db.inventory.find({ type: { $in: ['food', 'snacks'] } })

Although you can express this query using the $or operator,
use the $in operator rather than the $or
operator when performing equality checks on the same field.

Refer to the Operators document for the complete list
of query operators.

Specify AND Conditions

A compound query can specify conditions for more than one field in the
collection’s documents. Implicitly, a logical AND conjunction
connects the clauses of a compound query so that the query selects the
documents in the collection that match all the conditions.

In the following example, the query document specifies an equality
match on the field food and a less than ($lt)
comparison match on the field price:

db.inventory.find({ type: 'food', price: { $lt: 9.95 } })

This query selects all documents where the type field has the value
'food' and the value of the price field is less than
9.95. See comparison operators
for other comparison operators.

Specify OR Conditions

Using the $or operator, you can specify a compound query
that joins each clause with a logical OR conjunction so that the
query selects the documents in the collection that match at least one
condition.

In the following example, the query document selects all documents in
the collection where the field qty has a value greater than
($gt) 100 or the value of the price field is
less than ($lt) 9.95:

db.inventory.find(
 { $or: [
 { qty: { $gt: 100 } },
 { price: { $lt: 9.95 } }
]
 }
)

Specify AND as well as OR Conditions

With additional clauses, you can specify precise conditions for
matching documents.

In the following example, the compound query document selects all
documents in the collection where the value of the type field is
'food' and either the qty has a value greater than
($gt) 100 or the value of the price field is less
than ($lt) 9.95:

db.inventory.find({ type: 'food', $or: [{ qty: { $gt: 100 } },
 { price: { $lt: 9.95 } }]
 })

Subdocuments

When the field holds an embedded document (i.e. subdocument), you can
either specify the entire subdocument as the value of a field, or
“reach into” the subdocument using dot notation, to specify
values for individual fields in the subdocument:

Exact Match on Subdocument

To specify an equality match on the whole subdocument, use the query
document { <field>: <value> } where <value> is the subdocument
to match. Equality matches on a subdocument require that the
subdocument field match exactly the specified <value>, including
the field order.

In the following example, the query matches all documents where
the value of the field producer is a subdocument that contains
only the field company with the value 'ABC123' and the field
address with the value '123 Street', in the exact order:

db.inventory.find(
 {
 producer: {
 company: 'ABC123',
 address: '123 Street'
 }
 }
)

Equality Match on Fields within Subdocument

Equality matches for specific fields within subdocuments select the
documents in the collection when the field in the subdocument contains
a field that matches the specified value.

In the following example, the query uses the dot notation to
match all documents where the value of the field producer is a
subdocument that contains a field company with the value
'ABC123' and may contain other fields:

db.inventory.find({ 'producer.company': 'ABC123' })

Arrays

When the field holds an array, you can query for an exact array match
or for specific values in the array. If the array holds sub-documents,
you can query for specific fields within the sub-documents using
dot notation:

Exact Match on an Array

To specify equality match on an array, use the query document {
<field>: <value> } where <value> is the array to match. Equality
matches on the array require that the array field match exactly the
specified <value>, including the element order.

In the following example, the query matches all documents where the
value of the field tags is an array that holds exactly three
elements, 'fruit', 'food', and 'citrus', in this order:

db.inventory.find({ tags: ['fruit', 'food', 'citrus'] })

Match an Array Element

Equality matches can specify a single element in the array to match.
These specifications match if the array contains at least one element
with the specified value.

In the following example, the query matches all documents where the
value of the field tags is an array that contains 'fruit' as
one of its elements:

db.inventory.find({ tags: 'fruit' })

Match a Specific Element of an Array

Equality matches can specify equality matches for an element at a
particular index or position of the array.

In the following example, the query uses the dot notation to
match all documents where the value of the tags field is an array
whose first element equals 'fruit':

db.inventory.find({ 'tags.0' : 'fruit' })

Array of Subdocuments

Match a Field in the Subdocument Using the Array Index

If you know the array index of the subdocument, you can specify the
document using the subdocument’s position.

The following example selects all documents where the memos
contains an array whose first element (i.e. index is 0) is a
subdocument with the field by with the value 'shipping':

db.inventory.find({ 'memos.0.by': 'shipping' })

Match a Field Without Specifying Array Index

If you do not know the index position of the subdocument, concatenate
the name of the field that contains the array, with a dot (.) and
the name of the field in the subdocument.

The following example selects all documents where the memos field
contains an array that contains at least one subdocument with the field
by with the value 'shipping':

db.inventory.find({ 'memos.by': 'shipping' })

Match Multiple Fields

To match by multiple fields in the subdocument, you can use either dot
notation or the $elemMatch operator:

The following example uses dot notation to query for documents where
the value of the memos field is an array that has at least one
subdocument that contains the field memo equal to 'on time' and
the field by equal to 'shipping':

db.inventory.find(
 {
 'memos.memo': 'on time',
 'memos.by': 'shipping'
 }
)

The following example uses $elemMatch to query for
documents where the value of the memos field is an array that has
at least one subdocument that contains the field memo equal to
'on time' and the field by equal to 'shipping':

db.inventory.find({
 memos: {
 $elemMatch: {
 memo : 'on time',
 by: 'shipping'
 }
 }
 }
)

Limit Fields to Return from a Query

The projection specification limits the fields to return for
all matching documents. The projection takes the form of a
document with a list of fields for inclusion or exclusion from
the result set. You can either specify the fields to include (e.g. {
field: 1 }) or specify the fields to exclude (e.g. { field: 0 }).

Important

The _id field is, by default, included in the result
set. To exclude the _id field from the result set, you need to
specify in the projection document the exclusion of the _id
field (i.e. { _id: 0 }).

You cannot combine inclusion and exclusion semantics in a single
projection with the exception of the _id field.

This tutorial offers various query examples that limit the fields to
return for all matching documents. The examples in this tutorial use a
collection inventory and use the db.collection.find()
method in the mongo shell. The
db.collection.find() method returns a cursor to the retrieved documents. For examples on query
selection criteria, see Query Documents.

Return All Fields in Matching Documents

If you specify no projection, the find() method returns all fields of all documents that
match the query.

db.inventory.find({ type: 'food' })

This operation will return all documents in the inventory
collection where the value of the type field is 'food'. The
returned documents contain all its fields.

Return the Specified Fields and the _id Field Only

A projection can explicitly include several fields. In the following
operation, find() method returns all
documents that match the query. In the result set, only the item
and qty fields and, by default, the _id field return in the
matching documents.

db.inventory.find({ type: 'food' }, { item: 1, qty: 1 })

Return Specified Fields Only

You can remove the _id field from the results by specifying its
exclusion in the projection, as in the following example:

db.inventory.find({ type: 'food' }, { item: 1, qty: 1, _id:0 })

This operation returns all documents that match the query. In the
result set, only the item and qty fields return in the
matching documents.

Return All But the Excluded Field

To exclude a single field or group of fields you can use a projection
in the following form:

db.inventory.find({ type: 'food' }, { type:0 })

This operation returns all documents where the value of the type
field is food. In the result set, the type field does not
return in the matching documents.

With the exception of the _id field you cannot combine inclusion
and exclusion statements in projection documents.

Projection for Array Fields

The $elemMatch and $slice projection
operators are the only way to project portions of an array.

Tip

MongoDB does not support projections of portions of arrays
except when using the $elemMatch and $slice
projection operators.

Iterate a Cursor in the mongo Shell

The db.collection.find() method returns a cursor. To access
the documents, you need to iterate the cursor. However, in the
mongo shell, if the returned cursor is not assigned to a
variable using the var keyword, then the cursor is automatically
iterated up to 20 times to print up to the first 20 documents in the
results. The following describes ways to manually iterate the cursor to
access the documents or to use the iterator index.

Manually Iterate the Cursor

In the mongo shell, when you assign the cursor returned from
the find() method to a variable using
the var keyword, the cursor does not automatically iterate.

You can call the cursor variable in the shell to iterate up to 20 times
[1] and print the matching documents, as in the
following example:

var myCursor = db.inventory.find({ type: 'food' });

myCursor

You can also use the cursor method next() to
access the documents, as in the following example:

var myCursor = db.inventory.find({ type: 'food' });
var myDocument = myCursor.hasNext() ? myCursor.next() : null;

if (myDocument) {
 var myItem = myDocument.item;
 print(tojson(myItem));
}

As an alternative print operation, consider the printjson() helper
method to replace print(tojson()):

if (myDocument) {
 var myItem = myDocument.item;
 printjson(myItem);
}

You can use the cursor method forEach() to
iterate the cursor and access the documents, as in the following
example:

var myCursor = db.inventory.find({ type: 'food' });

myCursor.forEach(printjson);

See JavaScript cursor methods and your
driver documentation for more
information on cursor methods.

	[1]	You can use the DBQuery.shellBatchSize to
change the number of iteration from the default value 20. See
Executing Queries for more information.

Iterator Index

In the mongo shell, you can use the
toArray() method to iterate the cursor and return
the documents in an array, as in the following:

var myCursor = db.inventory.find({ type: 'food' });
var documentArray = myCursor.toArray();
var myDocument = documentArray[3];

The toArray() method loads into RAM all
documents returned by the cursor; the toArray()
method exhausts the cursor.

Additionally, some drivers provide
access to the documents by using an index on the cursor (i.e.
cursor[index]). This is a shortcut for first calling the
toArray() method and then using an index
on the resulting array.

Consider the following example:

var myCursor = db.inventory.find({ type: 'food' });
var myDocument = myCursor[3];

The myCursor[3] is equivalent to the following example:

myCursor.toArray() [3];

Analyze Query Performance

The explain() cursor method allows you to inspect the
operation of the query system. This method is useful for analyzing the
efficiency of queries, and for determining how the query uses the
index. The explain() method tests the query
operation, and not the timing of query performance. Because
explain() attempts multiple query plans, it does not
reflect an accurate timing of query performance.

Evaluate the Performance of a Query

To use the explain() method, call the method on a
cursor returned by find().

Example

Evaluate a query on the type field on the collection
inventory that has an index on the type field.

db.inventory.find({ type: 'food' }).explain()

Consider the results:

{
 "cursor" : "BtreeCursor type_1",
 "isMultiKey" : false,
 "n" : 5,
 "nscannedObjects" : 5,
 "nscanned" : 5,
 "nscannedObjectsAllPlans" : 5,
 "nscannedAllPlans" : 5,
 "scanAndOrder" : false,
 "indexOnly" : false,
 "nYields" : 0,
 "nChunkSkips" : 0,
 "millis" : 0,
 "indexBounds" : { "type" : [
 ["food",
 "food"]
] },
 "server" : "mongodbo0.example.net:27017" }

The BtreeCursor value of the cursor field
indicates that the query used an index.

This query returned 5 documents, as indicated by the
n field.

To return these 5 documents, the query scanned 5 documents from the
index, as indicated by the nscanned field, and then
read 5 full documents from the collection, as indicated by the
nscannedObjects field.

Without the index, the query would have scanned the whole collection
to return the 5 documents.

See Explain Results method for full details on the output.

Compare Performance of Indexes

To manually compare the performance of a query using more than one
index, you can use the hint() and
explain() methods in conjunction.

Example

Evaluate a query using different indexes:

db.inventory.find({ type: 'food' }).hint({ type: 1 }).explain()
db.inventory.find({ type: 'food' }).hint({ type: 1, name: 1 }).explain()

These return the statistics regarding the execution of the query
using the respective index.

Note

If you run explain() without including
hint(), the query optimizer reevaluates
the query and runs against multiple indexes before returning the
query statistics.

For more detail on the explain output, see Explain Results.

Modify Documents

In MongoDB, both db.collection.update() and
db.collection.save() modify existing documents in a
collection. db.collection.update() provides additional
control over the modification. For example, you can modify existing
data or modify a group of documents that match a query with
db.collection.update(). Alternately,
db.collection.save() replaces an existing document with the
same _id field.

This document provides examples of the update operations using each of
the two methods in the mongo shell.

Modify Multiple Documents with update() Method

By default, the update() method updates a
single document that matches its selection criteria. Call the method
with the multi option set to true to update multiple documents.
[1]

The following example finds all documents with type equal to
"book" and modifies their qty field by -1. The example uses
$inc, which is one of the update operators available.

db.inventory.update(
 { type : "book" },
 { $inc : { qty : -1 } },
 { multi: true }
)

For more examples, see update().

	[1]	This shows the syntax for MongoDB 2.2 and later.
For syntax for versions prior to 2.2, see update().

Modify a Document with save() Method

The save() method can replace an existing
document. To replace a document with the
save() method, pass the method a document with
an _id field that matches an existing document.

The following example completely replaces the document with the _id
equal to 10 in the inventory collection:

db.inventory.save(
 {
 _id: 10,
 type: "misc",
 item: "placard"
 }
)

For further examples, see save().

Remove Documents

In MongoDB, the db.collection.remove() method removes
documents from a collection. You can remove all documents, specify
which documents to remove, and limit the operation to a single document.

This tutorial provides examples of remove operations using the
db.collection.remove() method in the mongo shell.

Remove All Documents

If you do not specify a query, remove()
removes all documents from a collection, but does not remove the
indexes. [1]

The following example removes all documents from the inventory
collection:

db.inventory.remove()

	[1]	To remove all documents from a collection, it may be more
efficient to use the drop() method
to drop the entire collection, including the indexes, and then
recreate the collection and rebuild the indexes.

Remove Documents that Matches a Condition

To remove the documents that match a deletion criteria, call the
remove() method with the <query>
parameter.

The following example removes all documents that have type equal to
food from the inventory collection:

db.inventory.remove({ type : "food" })

Note

For large deletion operations, it may be more efficient to copy the
documents that you want to keep to a new collection and then use
drop() on the original collection.

Remove a Single Document that Matches a Condition

To remove a single document, call the remove()
method with the justOne parameter set to true or 1.

The following example removes one document that have type equal to
food from the inventory collection:

db.inventory.remove({ type : "food" }, 1)

Perform Two Phase Commits

Synopsis

This document provides a pattern for doing multi-document updates or
“transactions” using a two-phase commit approach for writing data to
multiple documents. Additionally, you can extend this process to
provide a rollback like
functionality.

Background

Operations on a single document are always atomic with MongoDB
databases; however, operations that involve multiple documents, which
are often referred to as “transactions,” are not atomic. Since
documents can be fairly complex and contain multiple “nested”
documents, single-document atomicity provides necessary support for
many practical use cases.

Thus, without precautions, success or failure of the database
operation cannot be “all or nothing,” and without support for
multi-document transactions it’s possible for an operation to succeed
for some operations and fail with others. When executing a transaction
composed of several sequential operations the following issues arise:

	Atomicity: if one operation fails, the previous operation within the
transaction must “rollback” to the previous state (i.e. the
“nothing,” in “all or nothing.”)

	Isolation: operations that run concurrently with the transaction
operation set must “see” a consistent view of the data throughout
the transaction process.

	Consistency: if a major failure (i.e. network, hardware) interrupts
the transaction, the database must be able to recover a consistent
state.

Despite the power of single-document atomic operations, there are
cases that require multi-document transactions. For these situations,
you can use a two-phase commit, to provide support for these kinds of
multi-document updates.

Because documents can represent both pending data and states, you can
use a two-phase commit to ensure that data is consistent, and that in
the case of an error, the state that preceded the transaction is
recoverable.

Note

Because only single-document operations are atomic with MongoDB,
two-phase commits can only offer transaction-like semantics. It’s
possible for applications to return intermediate data at
intermediate points during the two-phase commit or rollback.

Pattern

Overview

The most common example of transaction is to transfer funds from
account A to B in a reliable way, and this pattern uses this operation
as an example. In a relational database system, this operation would
encapsulate subtracting funds from the source (A) account and
adding them to the destination (B) within a single atomic
transaction. For MongoDB, you can use a two-phase commit in these
situations to achieve a compatible response.

All of the examples in this document use the mongo shell to
interact with the database, and assume that you have two collections:
First, a collection named accounts that will store data about
accounts with one account per document, and a collection named
transactions which will store the transactions themselves.

Begin by creating two accounts named A and B, with the
following command:

db.accounts.save({name: "A", balance: 1000, pendingTransactions: []})
db.accounts.save({name: "B", balance: 1000, pendingTransactions: []})

To verify that these operations succeeded, use find():

db.accounts.find()

mongo will return two documents that
resemble the following:

{ "_id" : ObjectId("4d7bc66cb8a04f512696151f"), "name" : "A", "balance" : 1000, "pendingTransactions" : [] }
{ "_id" : ObjectId("4d7bc67bb8a04f5126961520"), "name" : "B", "balance" : 1000, "pendingTransactions" : [] }

Transaction Description

Set Transaction State to Initial

Create the transaction collection by inserting the following
document. The transaction document holds the source and
destination, which refer to the name fields of the
accounts collection, as well as the value field that
represents the amount of data change to the balance
field. Finally, the state field reflects the current state of the
transaction.

db.transactions.save({source: "A", destination: "B", value: 100, state: "initial"})

To verify that these operations succeeded, use find():

db.transactions.find()

This will return a document similar to the following:

{ "_id" : ObjectId("4d7bc7a8b8a04f5126961522"), "source" : "A", "destination" : "B", "value" : 100, "state" : "initial" }

Switch Transaction State to Pending

Before modifying either records in the accounts collection, set
the transaction state to pending from initial.

Set the local variable t in your shell session, to the transaction
document using findOne():

t = db.transactions.findOne({state: "initial"})

After assigning this variable t, the shell will return the value
of t, you will see the following output:

{
 "_id" : ObjectId("4d7bc7a8b8a04f5126961522"),
 "source" : "A",
 "destination" : "B",
 "value" : 100,
 "state" : "initial"
}

Use update() to change the value of
state to pending:

db.transactions.update({_id: t._id}, {$set: {state: "pending"}})
db.transactions.find()

The find() operation will return the
contents of the transactions collection, which should resemble the
following:

{ "_id" : ObjectId("4d7bc7a8b8a04f5126961522"), "source" : "A", "destination" : "B", "value" : 100, "state" : "pending" }

Apply Transaction to Both Accounts

Continue by applying the transaction to both accounts. The
update() query will prevent you from
applying the transaction if the transaction is not already
pending. Use the following update()
operation:

db.accounts.update({name: t.source, pendingTransactions: {$ne: t._id}}, {$inc: {balance: -t.value}, $push: {pendingTransactions: t._id}})
db.accounts.update({name: t.destination, pendingTransactions: {$ne: t._id}}, {$inc: {balance: t.value}, $push: {pendingTransactions: t._id}})
db.accounts.find()

The find() operation will return the
contents of the accounts collection, which should now resemble the
following:

{ "_id" : ObjectId("4d7bc97fb8a04f5126961523"), "balance" : 900, "name" : "A", "pendingTransactions" : [ObjectId("4d7bc7a8b8a04f5126961522")] }
{ "_id" : ObjectId("4d7bc984b8a04f5126961524"), "balance" : 1100, "name" : "B", "pendingTransactions" : [ObjectId("4d7bc7a8b8a04f5126961522")] }

Set Transaction State to Committed

Use the following update() operation
to set the transaction’s state to committed:

db.transactions.update({_id: t._id}, {$set: {state: "committed"}})
db.transactions.find()

The find() operation will return the
contents of the transactions collection, which should now resemble
the following:

{ "_id" : ObjectId("4d7bc7a8b8a04f5126961522"), "destination" : "B", "source" : "A", "state" : "committed", "value" : 100 }

Remove Pending Transaction

Use the following update() operation
to set remove the pending transaction from the documents in the accounts collection:

db.accounts.update({name: t.source}, {$pull: {pendingTransactions: t._id}})
db.accounts.update({name: t.destination}, {$pull: {pendingTransactions: t._id}})
db.accounts.find()

The find() operation will return the
contents of the accounts collection, which should now resemble
the following:

{ "_id" : ObjectId("4d7bc97fb8a04f5126961523"), "balance" : 900, "name" : "A", "pendingTransactions" : [] }
{ "_id" : ObjectId("4d7bc984b8a04f5126961524"), "balance" : 1100, "name" : "B", "pendingTransactions" : [] }

Set Transaction State to Done

Complete the transaction by setting the state of the transaction
document to done:

db.transactions.update({_id: t._id}, {$set: {state: "done"}})
db.transactions.find()

The find() operation will return the
contents of the transactions collection, which should now resemble
the following:

{ "_id" : ObjectId("4d7bc7a8b8a04f5126961522"), "destination" : "B", "source" : "A", "state" : "done", "value" : 100 }

Recovering from Failure Scenarios

The most important part of the transaction procedure is not, the
prototypical example above, but rather the possibility for recovering
from the various failure scenarios when transactions do not complete
as intended. This section will provide an overview of possible
failures and provide methods to recover from these kinds of events.

There are two classes of failures:

	all failures that occur after the first step (i.e. setting
the transaction set to initial) but
before the third step (i.e. applying the transaction to both
accounts.)

To recover, applications should get a list of transactions in the
pending state and resume from the second step
(i.e. switching the transaction state to pending.)

	all failures that occur after the third step (i.e. applying
the transaction to both accounts) but
before the fifth step (i.e. setting the transaction state to
done.)

To recover, application should get a list of transactions in the
committed state and resume from the fourth step
(i.e. remove the pending transaction.)

Thus, the application will always be able to resume the transaction
and eventually arrive at a consistent state. Run the following
recovery operations every time the application starts to catch any
unfinished transactions. You may also wish run the recovery operation
at regular intervals to ensure that your data remains consistent.

The time required to reach a consistent state depends, on how long the
application needs to recover each transaction.

Rollback

In some cases you may need to “rollback” or undo a transaction when
the application needs to “cancel” the transaction, or because it can
never recover as in cases where one of the accounts doesn’t exist, or
stops existing during the transaction.

There are two possible rollback operations:

	After you apply the transaction
(i.e. the third step), you have fully committed the transaction and
you should not roll back the transaction. Instead, create a new
transaction and switch the values in the source and destination
fields.

	After you create the transaction
(i.e. the first step), but before you apply the transaction (i.e the third step), use the following
process:

Set Transaction State to Canceling

Begin by setting the transaction’s state to canceling using the
following update() operation:

db.transactions.update({_id: t._id}, {$set: {state: "canceling"}})

Undo the Transaction

Use the following sequence of operations to undo the transaction
operation from both accounts:

db.accounts.update({name: t.source, pendingTransactions: t._id}, {$inc: {balance: t.value}, $pull: {pendingTransactions: t._id}})
db.accounts.update({name: t.destination, pendingTransactions: t._id}, {$inc: {balance: -t.value}, $pull: {pendingTransactions: t._id}})
db.accounts.find()

The find() operation will return the
contents of the accounts collection, which should resemble the
following:

{ "_id" : ObjectId("4d7bc97fb8a04f5126961523"), "balance" : 1000, "name" : "A", "pendingTransactions" : [] }
{ "_id" : ObjectId("4d7bc984b8a04f5126961524"), "balance" : 1000, "name" : "B", "pendingTransactions" : [] }

Set Transaction State to Canceled

Finally, use the following update() operation to set the transaction’s state to
canceled:

Step 3: set the transaction’s state to “canceled”:

db.transactions.update({_id: t._id}, {$set: {state: "canceled"}})

Multiple Applications

Transactions exist, in part, so that several applications can create
and run operations concurrently without causing data inconsistency or
conflicts. As a result, it is crucial that only one 1 application can
handle a given transaction at any point in time.

Consider the following example, with a single transaction
(i.e. T1) and two applications (i.e. A1 and A2). If both
applications begin processing the transaction which is still in the
initial state (i.e. step 1), then:

	A1 can apply the entire whole transaction before A2 starts.

	A2 will then apply T1 for the second time, because the
transaction does not appear as pending in the accounts
documents.

To handle multiple applications, create a marker in the transaction
document itself to identify the application that is handling the
transaction. Use findAndModify()
method to modify the transaction:

t = db.transactions.findAndModify({query: {state: "initial", application: {$exists: 0}},
 update: {$set: {state: "pending", application: "A1"}},
 new: true})

When you modify and reassign the local shell variable t, the
mongo shell will return the t object, which should
resemble the following:

{
 "_id" : ObjectId("4d7be8af2c10315c0847fc85"),
 "application" : "A1",
 "destination" : "B",
 "source" : "A",
 "state" : "pending",
 "value" : 150
}

Amend the transaction operations to ensure that only applications
that match the identifier in the value of the application field
before applying the transaction.

If the application A1 fails during transaction execution, you can
use the recovery procedures, but
applications should ensure that they “owns” the transaction before
applying the transaction. For example to resume pending jobs, use a
query that resembles the following:

db.transactions.find({application: "A1", state: "pending"})

This will (or may) return a document from the transactions
document that resembles the following:

{ "_id" : ObjectId("4d7be8af2c10315c0847fc85"), "application" : "A1", "destination" : "B", "source" : "A", "state" : "pending", "value" : 150 }

Using Two-Phase Commits in Production Applications

The example transaction above is intentionally simple. For example, it
assumes that:

	it is always possible roll back operations an account.

	account balances can hold negative values.

Production implementations would likely be more complex. Typically
accounts need to information about current balance, pending credits,
pending debits. Then:

	when your application switches the transaction state to
pending (i.e. step 2) it would also make
sure that the accounts has sufficient funds for the
transaction. During this update operation, the application would
also modify the values of the credits and debits as well as adding
the transaction as pending.

	when your application removes the pending transaction (i.e. step 4) the application would apply
the transaction on balance, modify the credits and debits as well as
removing the transaction from the pending field., all in one update.

Because all of the changes in the above two operations occur within a
single update() operation, these
changes are all atomic.

Additionally, for most important transactions, ensure that:

	the database interface (i.e. client library or driver) has a
reasonable write concern configured to ensure that
operations return a response on the success or failure of a write
operation.

	your mongod instance has journaling
enabled to ensure that your data is always in a recoverable state,
in the event of an unclean mongod shutdown.

Create Tailable Cursor

Overview

By default, MongoDB will automatically close a cursor when the client
has exhausted all results in the cursor. However, for capped
collections you may use a Tailable
Cursor that remains open after the client exhausts the results in the
initial cursor. Tailable cursors are conceptually equivalent to the
tail Unix command with the -f option (i.e. with “follow”
mode.) After clients insert new additional documents into a capped
collection, the tailable cursor will continue to retrieve
documents.

Use tailable cursors on capped collections with high numbers of write
operations for which an index would be too expensive. For instance,
MongoDB replication uses tailable cursors to
tail the primary’s oplog.

Note

If your query is on an indexed field, do not use tailable cursors,
but instead, use a regular cursor. Keep track of the last value of
the indexed field returned by the query. To retrieve the newly
added documents, query the collection again using the last value of
the indexed field in the query criteria, as in the following
example:

db.<collection>.find({ indexedField: { $gt: <lastvalue> } })

Consider the following behaviors related to tailable cursors:

	Tailable cursors do not use indexes and return documents in
natural order.

	Because tailable cursors do not use indexes, the initial scan for the
query may be expensive; but, after initially exhausting the cursor,
subsequent retrievals of the newly added documents are inexpensive.

	Tailable cursors may become dead, or invalid, if either:

	the query returns no match.

	the cursor returns the document at the “end” of the collection and
then the application deletes those document.

A dead cursor has an id of 0.

See your driver documentation for the
driver-specific method to specify the tailable cursor. For more
information on the details of specifying a tailable cursor, see
MongoDB wire protocol [http://docs.mongodb.org/meta-driver/latest/legacy/mongodb-wire-protocol]
documentation.

C++ Example

The tail function uses a tailable cursor to output the results from
a query to a capped collection:

	The function handles the case of the dead cursor by having the query
be inside a loop.

	To periodically check for new data, the cursor->more() statement
is also inside a loop.

#include "client/dbclient.h"

using namespace mongo;

/*
 * Example of a tailable cursor.
 * The function "tails" the capped collection (ns) and output elements as they are added.
 * The function also handles the possibility of a dead cursor by tracking the field 'insertDate'.
 * New documents are added with increasing values of 'insertDate'.
 */

void tail(DBClientBase& conn, const char *ns) {

 BSONElement lastValue = minKey.firstElement();

 Query query = Query().hint(BSON("$natural" << 1));

 while (1) {
 auto_ptr<DBClientCursor> c =
 conn.query(ns, query, 0, 0, 0,
 QueryOption_CursorTailable | QueryOption_AwaitData);

 while (1) {
 if (!c->more()) {

 if (c->isDead()) {
 break;
 }

 continue;
 }

 BSONObj o = c->next();
 lastValue = o["insertDate"];
 cout << o.toString() << endl;
 }

 query = QUERY("insertDate" << GT << lastValue).hint(BSON("$natural" << 1));
 }
}

The tail function performs the following actions:

	Initialize the lastValue variable, which tracks the last
accessed value. The function will use the lastValue if the
cursor becomes invalid and tail needs to restart the
query. Use hint() to ensure that the query uses
the $natural order.

	In an outer while(1) loop,

	Query the capped collection and return a tailable cursor that
blocks for several seconds waiting for new documents

auto_ptr<DBClientCursor> c =
 conn.query(ns, query, 0, 0, 0,
 QueryOption_CursorTailable | QueryOption_AwaitData);

	Specify the capped collection using ns as an argument
to the function.

	Set the QueryOption_CursorTailable option to create a
tailable cursor.

	Set the QueryOption_AwaitData option so that the returned
cursor blocks for a few seconds to wait for data.

	In an inner while (1) loop, read the documents from the cursor:

	If the cursor has no more documents and is not invalid, loop the
inner while loop to recheck for more documents.

	If the cursor has no more documents and is dead, break the inner
while loop.

	If the cursor has documents:
	output the document,

	update the lastValue value,

	and loop the inner while (1) loop to recheck for more
documents.

	If the logic breaks out of the inner while (1) loop and the
cursor is invalid:

	Use the lastValue value to create a new query condition that
matches documents added after the lastValue. Explicitly
ensure $natural order with the hint() method:

query = QUERY("insertDate" << GT << lastValue).hint(BSON("$natural" << 1));

	Loop through the outer while (1) loop to re-query with the new query
condition and repeat.

See also

Detailed blog post on tailable cursor [http://shtylman.com/post/the-tail-of-mongodb]

Isolate Sequence of Operations

Overview

Write operations are atomic on the level of a single document: no
single write operation can atomically affect more than one document or
more than one collection.

When a single write operation modifies multiple documents, the
operation as a whole is not atomic, and other operations may
interleave. The modification of a single document, or record, is always
atomic, even if the write operation modifies multiple sub-document
within the single record.

No other operations are atomic; however, you can isolate a
single write operation that affects multiple documents using the
isolation operator.

This document describes one method of updating documents only if the
local copy of the document reflects the current state of the document
in the database. In addition the following methods provide a way to
manage isolated sequences of operations:

	the findAndModify()
provides an isolated query and modify operation.

	Perform Two Phase Commits

	Create a unique index, to ensure that a
key doesn’t exist when you insert it.

Update if Current

In this pattern, you will:

	query for a document,

	modify the fields in that document

	and update the fields of a document only if the fields have not
changed in the collection since the query.

Consider the following example in JavaScript which attempts to update
the qty field of a document in the products collection:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	var myCollection = db.products;
var myDocument = myCollection.findOne({ sku: 'abc123' });

if (myDocument) {

 var oldQty = myDocument.qty;

 if (myDocument.qty < 10) {
 myDocument.qty *= 4;
 } else if (myDocument.qty < 20) {
 myDocument.qty *= 3;
 } else {
 myDocument.qty *= 2;
 }

 myCollection.update(
 {
 _id: myDocument._id,
 qty: oldQty
 },
 {
 $set: { qty: myDocument.qty }
 }
)

 var err = db.getLastErrorObj();

 if (err && err.code) {
 print("unexpected error updating document: " + tojson(err));
 } else if (err.n == 0) {
 print("No update: no matching document for { _id: " + myDocument._id + ", qty: " + oldQty + " }")
 }

}

Your application may require some modifications of this pattern, such
as:

	Use the entire document as the query in lines 18 and 19, to
generalize the operation and guarantee that the original document
was not modified, rather than ensuring that as single field was not
changed.

	Add a version variable to the document that applications increment
upon each update operation to the documents. Use this version
variable in the query expression. You must be able to ensure that
all clients that connect to your database obey this constraint.

	Use $set in the update expression to modify only your
fields and prevent overriding other fields.

	Use one of the methods described in Create an Auto-Incrementing Sequence Field.

Create an Auto-Incrementing Sequence Field

Synopsis

MongoDB reserves the _id field in the top level of all documents
as a primary key. _id must be unique, and always has an index with
a unique constraint. However, except for
the unique constraint you can use any value for the _id field in
your collections. This tutorial describes two methods for creating an
incrementing sequence number for the _id field using the
following:

	A Counters Collection

	Optimistic Loop

Warning

Generally in MongoDB, you would not use an auto-increment pattern
for the _id field, or any field, because it does not scale for
databases with large numbers of documents. Typically the default
value ObjectId is more ideal for the _id.

A Counters Collection

Use a separate counters collection to track the last number sequence
used. The _id field contains the sequence name and the seq field
contains the last value of the sequence.

	Insert into the counters collection, the initial value for the userid:

db.counters.insert(
 {
 _id: "userid",
 seq: 0
 }
)

	Create a getNextSequence function that accepts a name of
the sequence. The function uses the
findAndModify() method to atomically
increment the seq value and return this new value:

function getNextSequence(name) {
 var ret = db.counters.findAndModify(
 {
 query: { _id: name },
 update: { $inc: { seq: 1 } },
 new: true
 }
);

 return ret.seq;
}

	Use this getNextSequence() function during
insert().

db.users.insert(
 {
 _id: getNextSequence("userid"),
 name: "Sarah C."
 }
)

db.users.insert(
 {
 _id: getNextSequence("userid"),
 name: "Bob D."
 }
)

You can verify the results with find():

db.users.find()

The _id fields contain incrementing sequence values:

{
 _id : 1,
 name : "Sarah C."
}
{
 _id : 2,
 name : "Bob D."
}

Note

When findAndModify() includes the upsert:
true option and the query field(s) is not uniquely indexed, the
method could insert a document multiple times in certain
circumstances. For instance, if multiple clients each invoke the
method with the same query condition and these methods complete the
find phase before any of methods perform the modify phase, these
methods could insert the same document.

In the counters collection example, the query field is the
_id field, which always has a unique index. Consider that the
findAndModify() includes the upsert:
true option, as in the following modified example:

function getNextSequence(name) {
 var ret = db.counters.findAndModify(
 {
 query: { _id: name },
 update: { $inc: { seq: 1 } },
 new: true,
 upsert: true
 }
);

 return ret.seq;
}

If multiple clients were to invoke the getNextSequence() method
with the same name parameter, then the methods would observe one
of the following behaviors:

	Exactly one findAndModify() would
successfully insert a new document.

	Zero or more findAndModify() methods
would update the newly inserted document.

	Zero or more findAndModify() methods
would fail when they attempted to insert a duplicate.

If the method fails due to a unique index constraint violation,
retry the method. Absent a delete of the document, the retry
should not fail.

Optimistic Loop

In this pattern, an Optimistic Loop calculates the incremented
_id value and attempts to insert a document with the calculated
_id value. If the insert is successful, the loop ends. Otherwise,
the loop will iterate through possible _id values until the insert
is successful.

	Create a function named insertDocument that performs the
“insert if not present” loop. The function wraps the
insert() method and takes a
doc and a targetCollection arguments.

function insertDocument(doc, targetCollection) {

 while (1) {

 var cursor = targetCollection.find({}, { _id: 1 }).sort({ _id: -1 }).limit(1);

 var seq = cursor.hasNext() ? cursor.next()._id + 1 : 1;

 doc._id = seq;

 targetCollection.insert(doc);

 var err = db.getLastErrorObj();

 if(err && err.code) {
 if(err.code == 11000 /* dup key */)
 continue;
 else
 print("unexpected error inserting data: " + tojson(err));
 }

 break;
 }
}

The while (1) loop performs the following actions:

	Queries the targetCollection for the document with the
maximum _id value.

	Determines the next sequence value for _id by:
	adding 1 to the returned _id value if the returned
cursor points to a document.

	otherwise: it sets the next sequence value to 1 if the
returned cursor points to no document.

	For the doc to insert, set its _id field to the
calculated sequence value seq.

	Insert the doc into the targetCollection.

	If the insert operation errors with duplicate key, repeat the
loop. Otherwise, if the insert operation encounters some
other error or if the operation succeeds, break out of the loop.

	Use the insertDocument() function to perform an insert:

var myCollection = db.users2;

insertDocument(
 {
 name: "Grace H."
 },
 myCollection
);

insertDocument(
 {
 name: "Ted R."
 },
 myCollection
)

You can verify the results with find():

db.users2.find()

The _id fields contain incrementing sequence values:

{
 _id: 1,
 name: "Grace H."
}
{
 _id : 2,
 "name" : "Ted R."
}

The while loop may iterate many times in collections with larger
insert volumes.

Limit Number of Elements in an Array after an Update

New in version 2.4.

Synopsis

Consider an application where users may submit many scores (e.g. for a
test), but the application only needs to track the top three test
scores.

This pattern uses the $push operator with the
$each, $sort, and $slice
modifiers to sort and maintain an array of fixed size.

Important

The array elements must be documents in order to use the
$sort modifier.

Pattern

Consider the following document in the collection students:

{
 _id: 1,
 scores: [
 { attempt: 1, score: 10 },
 { attempt: 2 , score:8 }
]
}

The following update uses the $push operator with:

	the $each modifier to append to the array 2 new elements,

	the $sort modifier to order the elements by ascending
(1) score, and

	the $slice modifier to keep the last 3 elements of
the ordered array.

db.students.update(
 { _id: 1 },
 { $push: { scores: { $each : [
 { attempt: 3, score: 7 },
 { attempt: 4, score: 4 }
],
 $sort: { score: 1 },
 $slice: -3
 }
 }
 }
)

Note

When using the $sort modifier on the array element,
access the field in the subdocument element directly instead of
using the dot notation on the array field.

After the operation, the document contains the only the top 3 scores in
the scores array:

{
 "_id" : 1,
 "scores" : [
 { "attempt" : 3, "score" : 7 },
 { "attempt" : 2, "score" : 8 },
 { "attempt" : 1, "score" : 10 }
]
}

See also

	$push operator,

	$each modifier,

	$sort modifier, and

	$slice modifier.

MongoDB CRUD Reference

Query Cursor Methods

	Name
	Description

	cursor.count()
	Returns a count of the documents in a cursor.

	cursor.explain()
	Reports on the query execution plan, including index use, for a cursor.

	cursor.hint()
	Forces MongoDB to use a specific index for a query.

	cursor.limit()
	Constrains the size of a cursor’s result set.

	cursor.next()
	Returns the next document in a cursor.

	cursor.skip()
	Returns a cursor that begins returning results only after passing or skipping a number of documents.

	cursor.sort()
	Returns results ordered according to a sort specification.

	cursor.toArray()
	Returns an array that contains all documents returned by the cursor.

Query and Data Manipulation Collection Methods

	Name
	Description

	db.collection.count()
	Wraps count to return a count of the number of documents in a collection or matching a query.

	db.collection.distinct()
	Returns an array of documents that have distinct values for the specified field.

	db.collection.find()
	Performs a query on a collection and returns a cursor object.

	db.collection.findOne()
	Performs a query and returns a single document.

	db.collection.insert()
	Creates a new document in a collection.

	db.collection.remove()
	Deletes documents from a collection.

	db.collection.save()
	Provides a wrapper around an insert() and update() to insert new documents.

	db.collection.update()
	Modifies a document in a collection.

MongoDB CRUD Reference Documentation

	Write Concern Reference

	Configuration options associated with the guarantee MongoDB provides
when reporting on the success of a write operation.

	SQL to MongoDB Mapping Chart

	An overview of common database operations showing both the MongoDB
operations and SQL statements.

	The bios Example Collection

	Sample data for experimenting with MongoDB.
insert(), update()
and find() pages use the data for some of
their examples.

	MongoDB Drivers and Client Libraries

	Applications access MongoDB using client libraries, or drivers, that
provide idiomatic interfaces to MongoDB for many programming
languages and development environments.

	Write Concern Reference

	SQL to MongoDB Mapping Chart

	The bios Example Collection

	MongoDB Drivers and Client Libraries

Write Concern Reference

Overview

Write concern describes the guarantee that MongoDB provides
when reporting on the success of a write operation. The strength of the
write concerns determine the level of guarantee. When inserts, updates
and deletes have a weak write concern, write operations return
quickly. In some failure cases, write operations issued with weak write
concerns may not persist. With stronger write concerns, clients wait
after sending a write operation for MongoDB to confirm the write
operations.

MongoDB provides different levels of write concern to better address
the specific needs of applications. Clients may adjust write concern to
ensure that the most important operations persist successfully to an
entire MongoDB deployment. For other less critical operations, clients
can adjust the write concern to ensure faster performance rather than
ensure persistence to the entire deployment.

See also

Write Concern for an introduction to write
concern in MongoDB.

Available Write Concern

To provide write concern, drivers issue
the getLastError command after a write operation and
receive a document with information about the last operation. This
document’s err field contains either:

	null, which indicates the write operations have completed
successfully, or

	a description of the last error encountered.

The definition of a “successful write” depends on the arguments
specified to getLastError, or in replica sets, the
configuration of
getLastErrorDefaults.
When deciding the level of write
concern for your application, see the introduction to
Write Concern.

The getLastError command has the following options to
configure write concern requirements:

	j or “journal” option

This option confirms that the mongod instance has written
the data to the on-disk journal and ensures data is not lost if the
mongod instance shuts down unexpectedly. Set to true to
enable, as shown in the following example:

db.runCommand({ getLastError: 1, j: "true" })

If you set journal to true, and the mongod does
not have journaling enabled, as with nojournal, then
getLastError will provide basic receipt acknowledgment,
and will include a jnote field in its return document.

	w option

This option provides the ability to disable write concern entirely
as well as specifies the write concern operations for
replica sets. See Write Concern
Considerations for an introduction to the
fundamental concepts of write concern. By default, the w option
is set to 1, which provides basic receipt acknowledgment on a
single mongod instance or on the primary in a
replica set.

The w option takes the following values:

	-1:

Disables all acknowledgment of write operations, and suppresses
all errors, including network and socket errors.

	0:

Disables basic acknowledgment of write operations, but returns
information about socket exceptions and networking errors to the
application.

Note

If you disable basic write operation acknowledgment but require
journal commit acknowledgment, the journal commit prevails, and
the driver will require that mongod will
acknowledge the write operation.

	1:

Provides acknowledgment of write operations on a standalone
mongod or the primary in a replica set.

	A number greater than 1:

Guarantees that write operations have propagated successfully to
the specified number of replica set members including the primary.
If you set w to a number that is greater than the number of set
members that hold data, MongoDB waits for the non-existent members
to become available, which means MongoDB blocks indefinitely.

	majority:

Confirms that write operations have propagated to the majority of
configured replica set: a majority of the set’s configured members
must acknowledge the write operation before it succeeds. This
ensures that write operation will never be subject to a rollback
in the course of normal operation, and furthermore allows you to
avoid hard coding assumptions about the size of your replica set
into your application.

New in version 2.5.3: In Master/Slave deployments,
getLastError treats w:majority as equivalent to
w:1. In earlier versions of MongoDB, w:majority produces an
error in master/slave deployments.

	A tag set:

By specifying a tag set
you can have fine-grained control over which replica
set members must acknowledge a write operation to satisfy the required
level of write concern.

getLastError also supports a wtimeout setting which
allows clients to specify a timeout for the write concern: if you
don’t specify wtimeout, or if you give it a value of 0, and the mongod cannot fulfill
the write concern the getLastError will block,
potentially forever.

For more information on write concern and replica sets, see
Write Concern for Replica Sets for
more information.

In sharded clusters, mongos instances will pass write
concern on to the shard mongod instances.

SQL to MongoDB Mapping Chart

In addition to the charts that follow, you might want to consider the
Frequently Asked Questions section for a selection of common questions about MongoDB.

Terminology and Concepts

The following table presents the various SQL terminology and concepts
and the corresponding MongoDB terminology and concepts.

	SQL Terms/Concepts
	MongoDB Terms/Concepts

	database
	database

	table
	collection

	row
	document or BSON document

	column
	field

	index
	index

	table joins
	embedded documents and linking

	primary key

Specify any unique column or column combination as primary
key.

	primary key

In MongoDB, the primary key is automatically set to the
_id field.

	aggregation (e.g. group by)
	aggregation pipeline

See the SQL to Aggregation Mapping Chart.

Executables

The following table presents the MySQL/Oracle executables and the
corresponding MongoDB executables.

	
	MySQL/Oracle
	MongoDB

	Database Server
	mysqld/oracle
	mongod

	Database Client
	mysql/sqlplus
	mongo

Examples

The following table presents the various SQL statements and the
corresponding MongoDB statements. The examples in the table assume the
following conditions:

	The SQL examples assume a table named users.

	The MongoDB examples assume a collection named users that contain
documents of the following prototype:

{
 _id: ObjectID("509a8fb2f3f4948bd2f983a0"),
 user_id: "abc123",
 age: 55,
 status: 'A'
}

Create and Alter

The following table presents the various SQL statements related to
table-level actions and the corresponding MongoDB statements.

	SQL Schema Statements
	MongoDB Schema Statements
	Reference

	CREATE TABLE users (
 id MEDIUMINT NOT NULL
 AUTO_INCREMENT,
 user_id Varchar(30),
 age Number,
 status char(1),
 PRIMARY KEY (id)
)

	Implicitly created on first insert() operation. The primary key _id
is automatically added if _id field is not specified.

db.users.insert({
 user_id: "abc123",
 age: 55,
 status: "A"
 })

However, you can also explicitly create a collection:

db.createCollection("users")

	See
insert() and
db.createCollection()
for more information.

	ALTER TABLE users
ADD join_date DATETIME

	Collections do not describe or enforce the structure of its
documents; i.e. there is no structural alteration at the
collection level.

However, at the document level, update() operations can add fields to existing
documents using the $set operator.

db.users.update(
 { },
 { $set: { join_date: new Date() } },
 { multi: true }
)

	See the Data Modeling Concepts, update(), and $set for more
information on changing the structure of documents in a
collection.

	ALTER TABLE users
DROP COLUMN join_date

	Collections do not describe or enforce the structure of its
documents; i.e. there is no structural alteration at the collection
level.

However, at the document level, update() operations can remove fields from
documents using the $unset operator.

db.users.update(
 { },
 { $unset: { join_date: "" } },
 { multi: true }
)

	See Data Modeling Concepts, update(), and
$unset for more information on changing the structure of
documents in a collection.

	CREATE INDEX idx_user_id_asc
ON users(user_id)

	db.users.ensureIndex({ user_id: 1 })

	See ensureIndex()
and indexes for more information.

	CREATE INDEX
 idx_user_id_asc_age_desc
ON users(user_id, age DESC)

	db.users.ensureIndex({ user_id: 1, age: -1 })

	See ensureIndex()
and indexes for more information.

	DROP TABLE users

	db.users.drop()

	See drop() for
more information.

Insert

The following table presents the various SQL statements related to
inserting records into tables and the corresponding MongoDB statements.

	SQL INSERT Statements
	MongoDB insert() Statements
	Reference

	INSERT INTO users(user_id,
 age,
 status)
VALUES ("bcd001",
 45,
 "A")

	db.users.insert({
 user_id: "bcd001",
 age: 45,
 status: "A"
})

	See insert() for more information.

Select

The following table presents the various SQL statements related to
reading records from tables and the corresponding MongoDB statements.

	SQL SELECT Statements
	MongoDB find() Statements
	Reference

	SELECT *
FROM users

	db.users.find()

	See find()
for more information.

	SELECT id, user_id, status
FROM users

	db.users.find(
 { },
 { user_id: 1, status: 1 }
)

	See find()
for more information.

	SELECT user_id, status
FROM users

	db.users.find(
 { },
 { user_id: 1, status: 1, _id: 0 }
)

	See find()
for more information.

	SELECT *
FROM users
WHERE status = "A"

	db.users.find(
 { status: "A" }
)

	See find()
for more information.

	SELECT user_id, status
FROM users
WHERE status = "A"

	db.users.find(
 { status: "A" },
 { user_id: 1, status: 1, _id: 0 }
)

	See find()
for more information.

	SELECT *
FROM users
WHERE status != "A"

	db.users.find(
 { status: { $ne: "A" } }
)

	See find()
and $ne for more information.

	SELECT *
FROM users
WHERE status = "A"
AND age = 50

	db.users.find(
 { status: "A",
 age: 50 }
)

	See find()
and $and for more information.

	SELECT *
FROM users
WHERE status = "A"
OR age = 50

	db.users.find(
 { $or: [{ status: "A" } ,
 { age: 50 }] }
)

	See find()
and $or for more information.

	SELECT *
FROM users
WHERE age > 25

	db.users.find(
 { age: { $gt: 25 } }
)

	See find()
and $gt for more information.

	SELECT *
FROM users
WHERE age < 25

	db.users.find(
 { age: { $lt: 25 } }
)

	See find()
and $lt for more information.

	SELECT *
FROM users
WHERE age > 25
AND age <= 50

	db.users.find(
 { age: { $gt: 25, $lte: 50 } }
)

	See find(),
$gt, and $lte for
more information.

	SELECT *
FROM users
WHERE user_id like "%bc%"

	db.users.find(
 { user_id: /bc/ }
)

	See find()
and $regex for more information.

	SELECT *
FROM users
WHERE user_id like "bc%"

	db.users.find(
 { user_id: /^bc/ }
)

	See find()
and $regex for more information.

	SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id ASC

	db.users.find({ status: "A" }).sort({ user_id: 1 })

	See find()
and sort()
for more information.

	SELECT *
FROM users
WHERE status = "A"
ORDER BY user_id DESC

	db.users.find({ status: "A" }).sort({ user_id: -1 })

	See find()
and sort()
for more information.

	SELECT COUNT(*)
FROM users

	db.users.count()

or

db.users.find().count()

	See find()
and count() for
more information.

	SELECT COUNT(user_id)
FROM users

	db.users.count({ user_id: { $exists: true } })

or

db.users.find({ user_id: { $exists: true } }).count()

	See find(),
count(), and
$exists for more information.

	SELECT COUNT(*)
FROM users
WHERE age > 30

	db.users.count({ age: { $gt: 30 } })

or

db.users.find({ age: { $gt: 30 } }).count()

	See find(),
count(), and
$gt for more information.

	SELECT DISTINCT(status)
FROM users

	db.users.distinct("status")

	See find()
and distinct()
for more information.

	SELECT *
FROM users
LIMIT 1

	db.users.findOne()

or

db.users.find().limit(1)

	See find(),
findOne(),
and limit()
for more information.

	SELECT *
FROM users
LIMIT 5
SKIP 10

	db.users.find().limit(5).skip(10)

	See find(),
limit(), and
skip() for
more information.

	EXPLAIN SELECT *
FROM users
WHERE status = "A"

	db.users.find({ status: "A" }).explain()

	See find()
and explain()
for more information.

Update Records

The following table presents the various SQL statements related to
updating existing records in tables and the corresponding MongoDB
statements.

	SQL Update Statements
	MongoDB update() Statements
	Reference

	UPDATE users
SET status = "C"
WHERE age > 25

	db.users.update(
 { age: { $gt: 25 } },
 { $set: { status: "C" } },
 { multi: true }
)

	See update(),
$gt, and $set for more
information.

	UPDATE users
SET age = age + 3
WHERE status = "A"

	db.users.update(
 { status: "A" } ,
 { $inc: { age: 3 } },
 { multi: true }
)

	See update(),
$inc, and $set for more
information.

Delete Records

The following table presents the various SQL statements related to
deleting records from tables and the corresponding MongoDB statements.

	SQL Delete Statements
	MongoDB remove() Statements
	Reference

	DELETE FROM users
WHERE status = "D"

	db.users.remove({ status: "D" })

	See remove()
for more information.

	DELETE FROM users

	db.users.remove()

	See remove()
for more information.

The bios Example Collection

The bios collection provides example data for experimenting with
MongoDB. Many of this guide’s examples on insert, update and
read operations create or query data
from the bios collection.

The following documents comprise the bios collection. In the
examples, the data might be different, as the examples themselves make
changes to the data.

{
 "_id" : 1,
 "name" : {
 "first" : "John",
 "last" : "Backus"
 },
 "birth" : ISODate("1924-12-03T05:00:00Z"),
 "death" : ISODate("2007-03-17T04:00:00Z"),
 "contribs" : [
 "Fortran",
 "ALGOL",
 "Backus-Naur Form",
 "FP"
],
 "awards" : [
 {
 "award" : "W.W. McDowell Award",
 "year" : 1967,
 "by" : "IEEE Computer Society"
 },
 {
 "award" : "National Medal of Science",
 "year" : 1975,
 "by" : "National Science Foundation"
 },
 {
 "award" : "Turing Award",
 "year" : 1977,
 "by" : "ACM"
 },
 {
 "award" : "Draper Prize",
 "year" : 1993,
 "by" : "National Academy of Engineering"
 }
]
}

{
 "_id" : ObjectId("51df07b094c6acd67e492f41"),
 "name" : {
 "first" : "John",
 "last" : "McCarthy"
 },
 "birth" : ISODate("1927-09-04T04:00:00Z"),
 "death" : ISODate("2011-12-24T05:00:00Z"),
 "contribs" : [
 "Lisp",
 "Artificial Intelligence",
 "ALGOL"
],
 "awards" : [
 {
 "award" : "Turing Award",
 "year" : 1971,
 "by" : "ACM"
 },
 {
 "award" : "Kyoto Prize",
 "year" : 1988,
 "by" : "Inamori Foundation"
 },
 {
 "award" : "National Medal of Science",
 "year" : 1990,
 "by" : "National Science Foundation"
 }
]
}

{
 "_id" : 3,
 "name" : {
 "first" : "Grace",
 "last" : "Hopper"
 },
 "title" : "Rear Admiral",
 "birth" : ISODate("1906-12-09T05:00:00Z"),
 "death" : ISODate("1992-01-01T05:00:00Z"),
 "contribs" : [
 "UNIVAC",
 "compiler",
 "FLOW-MATIC",
 "COBOL"
],
 "awards" : [
 {
 "award" : "Computer Sciences Man of the Year",
 "year" : 1969,
 "by" : "Data Processing Management Association"
 },
 {
 "award" : "Distinguished Fellow",
 "year" : 1973,
 "by" : " British Computer Society"
 },
 {
 "award" : "W. W. McDowell Award",
 "year" : 1976,
 "by" : "IEEE Computer Society"
 },
 {
 "award" : "National Medal of Technology",
 "year" : 1991,
 "by" : "United States"
 }
]
}

{
 "_id" : 4,
 "name" : {
 "first" : "Kristen",
 "last" : "Nygaard"
 },
 "birth" : ISODate("1926-08-27T04:00:00Z"),
 "death" : ISODate("2002-08-10T04:00:00Z"),
 "contribs" : [
 "OOP",
 "Simula"
],
 "awards" : [
 {
 "award" : "Rosing Prize",
 "year" : 1999,
 "by" : "Norwegian Data Association"
 },
 {
 "award" : "Turing Award",
 "year" : 2001,
 "by" : "ACM"
 },
 {
 "award" : "IEEE John von Neumann Medal",
 "year" : 2001,
 "by" : "IEEE"
 }
]
}

{
 "_id" : 5,
 "name" : {
 "first" : "Ole-Johan",
 "last" : "Dahl"
 },
 "birth" : ISODate("1931-10-12T04:00:00Z"),
 "death" : ISODate("2002-06-29T04:00:00Z"),
 "contribs" : [
 "OOP",
 "Simula"
],
 "awards" : [
 {
 "award" : "Rosing Prize",
 "year" : 1999,
 "by" : "Norwegian Data Association"
 },
 {
 "award" : "Turing Award",
 "year" : 2001,
 "by" : "ACM"
 },
 {
 "award" : "IEEE John von Neumann Medal",
 "year" : 2001,
 "by" : "IEEE"
 }
]
}

{
 "_id" : 6,
 "name" : {
 "first" : "Guido",
 "last" : "van Rossum"
 },
 "birth" : ISODate("1956-01-31T05:00:00Z"),
 "contribs" : [
 "Python"
],
 "awards" : [
 {
 "award" : "Award for the Advancement of Free Software",
 "year" : 2001,
 "by" : "Free Software Foundation"
 },
 {
 "award" : "NLUUG Award",
 "year" : 2003,
 "by" : "NLUUG"
 }
]
}

{
 "_id" : ObjectId("51e062189c6ae665454e301d"),
 "name" : {
 "first" : "Dennis",
 "last" : "Ritchie"
 },
 "birth" : ISODate("1941-09-09T04:00:00Z"),
 "death" : ISODate("2011-10-12T04:00:00Z"),
 "contribs" : [
 "UNIX",
 "C"
],
 "awards" : [
 {
 "award" : "Turing Award",
 "year" : 1983,
 "by" : "ACM"
 },
 {
 "award" : "National Medal of Technology",
 "year" : 1998,
 "by" : "United States"
 },
 {
 "award" : "Japan Prize",
 "year" : 2011,
 "by" : "The Japan Prize Foundation"
 }
]
}

{
 "_id" : 8,
 "name" : {
 "first" : "Yukihiro",
 "aka" : "Matz",
 "last" : "Matsumoto"
 },
 "birth" : ISODate("1965-04-14T04:00:00Z"),
 "contribs" : [
 "Ruby"
],
 "awards" : [
 {
 "award" : "Award for the Advancement of Free Software",
 "year" : "2011",
 "by" : "Free Software Foundation"
 }
]
}

{
 "_id" : 9,
 "name" : {
 "first" : "James",
 "last" : "Gosling"
 },
 "birth" : ISODate("1955-05-19T04:00:00Z"),
 "contribs" : [
 "Java"
],
 "awards" : [
 {
 "award" : "The Economist Innovation Award",
 "year" : 2002,
 "by" : "The Economist"
 },
 {
 "award" : "Officer of the Order of Canada",
 "year" : 2007,
 "by" : "Canada"
 }
]
}

{
 "_id" : 10,
 "name" : {
 "first" : "Martin",
 "last" : "Odersky"
 },
 "contribs" : [
 "Scala"
],
}

MongoDB Drivers and Client Libraries

An application communicates with MongoDB by way of a client library,
called a driver [http://docs.mongodb.org/ecosystem/drivers], that handles all interaction with the
database in a language appropriate to the application.

Drivers

See the following pages for more information about the MongoDB
drivers [http://docs.mongodb.org/ecosystem/drivers]:

	JavaScript (Language Center [http://docs.mongodb.org/ecosystem/drivers/javascript], docs [http://api.mongodb.org/js/current])

	Python (Language Center [http://docs.mongodb.org/ecosystem/drivers/python], docs [http://api.mongodb.org/python/current])

	Ruby (Language Center [http://docs.mongodb.org/ecosystem/drivers/ruby], docs [http://api.mongodb.org/ruby/current])

	PHP (Language Center [http://docs.mongodb.org/ecosystem/drivers/php], docs [http://php.net/mongo/])

	Perl (Language Center [http://docs.mongodb.org/ecosystem/drivers/perl], docs [http://api.mongodb.org/perl/current/])

	Java (Language Center [http://docs.mongodb.org/ecosystem/drivers/java], docs [http://api.mongodb.org/java/current])

	Scala (Language Center [http://docs.mongodb.org/ecosystem/drivers/scala], docs [http://api.mongodb.org/scala/casbah/current/])

	C# (Language Center [http://docs.mongodb.org/ecosystem/drivers/csharp], docs [http://api.mongodb.org/csharp/current/])

	C (Language Center [http://docs.mongodb.org/ecosystem/drivers/c], docs [http://api.mongodb.org/c/current/])

	C++ (Language Center [http://docs.mongodb.org/ecosystem/drivers/cpp], docs [http://api.mongodb.org/cplusplus/current/])

	Haskell (Language Center [http://hackage.haskell.org/package/mongoDB], docs [http://api.mongodb.org/haskell/mongodb])

	Erlang (Language Center [http://docs.mongodb.org/ecosystem/drivers/erlang], docs [http://api.mongodb.org/erlang/mongodb])

Driver Version Numbers

Driver version numbers use semantic versioning [http://semver.org/]
or “major.minor.patch” versioning system. The first number is the
major version, the second the minor version, and the third indicates a
patch.

Example

Driver version numbers.

If your driver has a version number of 2.9.1, 2 is the major
version, 9 is minor, and 1 is the patch.

The numbering scheme for drivers differs from the scheme for the
MongoDB server. For more information on server versioning, see
MongoDB Version Numbers.

Data Models

Data in MongoDB has a flexible schema. Collections do not enforce document structure. This
flexibility gives you data-modeling choices to match your application
and its performance requirements.

Read the Data Modeling Introduction document for a high
level introduction to data modeling, and proceed to the documents in
the Data Modeling Concepts section for additional documentation of
the data model design process. The Data Model Examples and Patterns
documents provide examples of different data models. In addition, the
MongoDB Use Case Studies [http://docs.mongodb.org/ecosystem/use-cases] provide overviews of
application design and include example data models with MongoDB.

	Data Modeling Introduction

	An introduction to data modeling in MongoDB.

	Data Modeling Concepts

	The core documentation detailing the decisions you must make
when determining a data model, and discussing considerations
that should be taken into account.

	Data Model Examples and Patterns

	Examples of possible data models that you can use to structure your
MongoDB documents.

	Data Model Reference

	Reference material for data modeling for developers of MongoDB
applications.

	Data Modeling Introduction

	Data Modeling Concepts
	Data Model Design

	Operational Factors and Data Models

	GridFS

	Data Model Examples and Patterns
	Model Relationships Between Documents
	Model One-to-One Relationships with Embedded Documents

	Model One-to-Many Relationships with Embedded Documents

	Model One-to-Many Relationships with Document References

	Model Tree Structures
	Model Tree Structures with Parent References

	Model Tree Structures with Child References

	Model Tree Structures with an Array of Ancestors

	Model Tree Structures with Materialized Paths

	Model Tree Structures with Nested Sets

	Model Specific Application Contexts
	Model Data for Atomic Operations

	Model Data to Support Keyword Search

	Data Model Reference
	Documents

	Database References

	GridFS Reference

	ObjectId

	BSON Types

Data Model Examples and Patterns

The following documents provide overviews of various data modeling
patterns and common schema design considerations:

	Model Relationships Between Documents

	Examples for modeling relationships between documents.

	Model One-to-One Relationships with Embedded Documents

	Presents a data model that uses embedded documents to describe one-to-one relationships
between connected data.

	Model One-to-Many Relationships with Embedded Documents

	Presents a data model that uses embedded documents to describe one-to-many relationships
between connected data.

	Model One-to-Many Relationships with Document References

	Presents a data model that uses references to describe one-to-many relationships
between documents.

	Model Tree Structures

	Examples for modeling tree structures.

	Model Tree Structures with Parent References

	Presents a data model that organizes documents in a tree-like
structure by storing references to
“parent” nodes in “child” nodes.

	Model Tree Structures with Child References

	Presents a data model that organizes documents in a tree-like
structure by storing references to
“child” nodes in “parent” nodes.

See Model Tree Structures for additional
examples of data models for tree structures.

	Model Specific Application Contexts

	Examples for models for specific application contexts.

	Model Data for Atomic Operations

	Illustrates how embedding fields related to an atomic update within
the same document ensures that the fields are in sync

	Model Data to Support Keyword Search

	Describes one method for supporting keyword search by storing
keywords in an array in the same document as the text field.
Combined with a multi-key index, this pattern can support
application’s keyword search operations

	Model Relationships Between Documents
	Model One-to-One Relationships with Embedded Documents

	Model One-to-Many Relationships with Embedded Documents

	Model One-to-Many Relationships with Document References

	Model Tree Structures
	Model Tree Structures with Parent References

	Model Tree Structures with Child References

	Model Tree Structures with an Array of Ancestors

	Model Tree Structures with Materialized Paths

	Model Tree Structures with Nested Sets

	Model Specific Application Contexts
	Model Data for Atomic Operations

	Model Data to Support Keyword Search

Model Relationships Between Documents

	Model One-to-One Relationships with Embedded Documents

	Presents a data model that uses embedded documents to describe one-to-one relationships
between connected data.

	Model One-to-Many Relationships with Embedded Documents

	Presents a data model that uses embedded documents to describe one-to-many relationships
between connected data.

	Model One-to-Many Relationships with Document References

	Presents a data model that uses references to describe one-to-many relationships
between documents.

	Model One-to-One Relationships with Embedded Documents

	Model One-to-Many Relationships with Embedded Documents

	Model One-to-Many Relationships with Document References

Model One-to-One Relationships with Embedded Documents

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions
that affect how you model data can affect application performance and
database capacity. See Data Modeling Concepts for a full high
level overview of data modeling in MongoDB.

This document describes a data model that uses embedded documents to describe relationships between
connected data.

Pattern

Consider the following example that maps patron and address
relationships. The example illustrates the advantage of embedding over
referencing if you need to view one data entity in context of the
other. In this one-to-one relationship between patron and
address data, the address belongs to the patron.

In the normalized data model, the address document contains a
reference to the patron document.

{
 _id: "joe",
 name: "Joe Bookreader"
}

{
 patron_id: "joe",
 street: "123 Fake Street",
 city: "Faketon",
 state: "MA",
 zip: 12345
}

If the address data is frequently retrieved with the name
information, then with referencing, your application needs to issue
multiple queries to resolve the reference. The better data model would
be to embed the address data in the patron data, as in the
following document:

{
 _id: "joe",
 name: "Joe Bookreader",
 address: {
 street: "123 Fake Street",
 city: "Faketon",
 state: "MA",
 zip: 12345
 }
}

With the embedded data model, your application can retrieve the
complete patron information with one query.

Model One-to-Many Relationships with Embedded Documents

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions
that affect how you model data can affect application performance and
database capacity. See Data Modeling Concepts for a full high
level overview of data modeling in MongoDB.

This document describes a data model that uses embedded documents to describe relationships between
connected data.

Pattern

Consider the following example that maps patron and multiple address
relationships. The example illustrates the advantage of embedding over
referencing if you need to view many data entities in context of
another. In this one-to-many relationship between patron and
address data, the patron has multiple address entities.

In the normalized data model, the address documents contain a
reference to the patron document.

{
 _id: "joe",
 name: "Joe Bookreader"
}

{
 patron_id: "joe",
 street: "123 Fake Street",
 city: "Faketon",
 state: "MA",
 zip: 12345
}

{
 patron_id: "joe",
 street: "1 Some Other Street",
 city: "Boston",
 state: "MA",
 zip: 12345
}

If your application frequently retrieves the address data with the
name information, then your application needs to issue multiple
queries to resolve the references. A more optimal schema would be to
embed the address data entities in the patron data, as in the
following document:

{
 _id: "joe",
 name: "Joe Bookreader",
 addresses: [
 {
 street: "123 Fake Street",
 city: "Faketon",
 state: "MA",
 zip: 12345
 },
 {
 street: "1 Some Other Street",
 city: "Boston",
 state: "MA",
 zip: 12345
 }
]
 }

With the embedded data model, your application can retrieve the
complete patron information with one query.

Model One-to-Many Relationships with Document References

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions
that affect how you model data can affect application performance and
database capacity. See Data Modeling Concepts for a full high
level overview of data modeling in MongoDB.

This document describes a data model that uses references between documents to describe
relationships between connected data.

Pattern

Consider the following example that maps publisher and book
relationships. The example illustrates the advantage of referencing
over embedding to avoid repetition of the publisher information.

Embedding the publisher document inside the book document would lead to
repetition of the publisher data, as the following documents show:

{
 title: "MongoDB: The Definitive Guide",
 author: ["Kristina Chodorow", "Mike Dirolf"],
 published_date: ISODate("2010-09-24"),
 pages: 216,
 language: "English",
 publisher: {
 name: "O'Reilly Media",
 founded: 1980,
 location: "CA"
 }
}

{
 title: "50 Tips and Tricks for MongoDB Developer",
 author: "Kristina Chodorow",
 published_date: ISODate("2011-05-06"),
 pages: 68,
 language: "English",
 publisher: {
 name: "O'Reilly Media",
 founded: 1980,
 location: "CA"
 }
}

To avoid repetition of the publisher data, use references and keep
the publisher information in a separate collection from the book
collection.

When using references, the growth of the relationships determine where
to store the reference. If the number of books per publisher is small
with limited growth, storing the book reference inside the publisher
document may sometimes be useful. Otherwise, if the number of books per
publisher is unbounded, this data model would lead to mutable, growing
arrays, as in the following example:

{
 name: "O'Reilly Media",
 founded: 1980,
 location: "CA",
 books: [12346789, 234567890, ...]
}

{
 _id: 123456789,
 title: "MongoDB: The Definitive Guide",
 author: ["Kristina Chodorow", "Mike Dirolf"],
 published_date: ISODate("2010-09-24"),
 pages: 216,
 language: "English"
}

{
 _id: 234567890,
 title: "50 Tips and Tricks for MongoDB Developer",
 author: "Kristina Chodorow",
 published_date: ISODate("2011-05-06"),
 pages: 68,
 language: "English"
}

To avoid mutable, growing arrays, store the publisher reference inside
the book document:

{
 _id: "oreilly",
 name: "O'Reilly Media",
 founded: 1980,
 location: "CA"
}

{
 _id: 123456789,
 title: "MongoDB: The Definitive Guide",
 author: ["Kristina Chodorow", "Mike Dirolf"],
 published_date: ISODate("2010-09-24"),
 pages: 216,
 language: "English",
 publisher_id: "oreilly"
}

{
 _id: 234567890,
 title: "50 Tips and Tricks for MongoDB Developer",
 author: "Kristina Chodorow",
 published_date: ISODate("2011-05-06"),
 pages: 68,
 language: "English",
 publisher_id: "oreilly"
}

Model Tree Structures

MongoDB allows various ways to use tree data structures to model large
hierarchical or nested data relationships.

[image: Tree data model for a sample hierarchy of categories.]Tree data model for a sample hierarchy of categories.

	Model Tree Structures with Parent References

	Presents a data model that organizes documents in a tree-like
structure by storing references to
“parent” nodes in “child” nodes.

	Model Tree Structures with Child References

	Presents a data model that organizes documents in a tree-like
structure by storing references to
“child” nodes in “parent” nodes.

	Model Tree Structures with an Array of Ancestors

	Presents a data model that organizes documents in a tree-like
structure by storing references to
“parent” nodes and an array that stores all ancestors.

	Model Tree Structures with Materialized Paths

	Presents a data model that organizes documents in a tree-like
structure by storing full relationship paths between documents. In
addition to the tree node, each document stores the _id
of the nodes ancestors or path as a string.

	Model Tree Structures with Nested Sets

	Presents a data model that organizes documents in a tree-like
structure using the Nested Sets pattern. This optimizes
discovering subtrees at the expense of tree mutability.

	Model Tree Structures with Parent References

	Model Tree Structures with Child References

	Model Tree Structures with an Array of Ancestors

	Model Tree Structures with Materialized Paths

	Model Tree Structures with Nested Sets

Model Tree Structures with Parent References

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions
that affect how you model data can affect application performance and
database capacity. See Data Modeling Concepts for a full high
level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like
structure in MongoDB documents by storing
references to “parent” nodes in
children nodes.

Pattern

The Parent References pattern stores each tree node in a document; in
addition to the tree node, the document stores the id of the node’s
parent.

Consider the following hierarchy of categories:

[image: Tree data model for a sample hierarchy of categories.]Tree data model for a sample hierarchy of categories.

The following example models the tree using Parent References,
storing the reference to the parent category in the field parent:

db.categories.insert({ _id: "MongoDB", parent: "Databases" })
db.categories.insert({ _id: "Postgres", parent: "Databases" })
db.categories.insert({ _id: "Databases", parent: "Programming" })
db.categories.insert({ _id: "Languages", parent: "Programming" })
db.categories.insert({ _id: "Programming", parent: "Books" })
db.categories.insert({ _id: "Books", parent: null })

	The query to retrieve the parent of a node is fast and
straightforward:

db.categories.findOne({ _id: "MongoDB" }).parent

	You can create an index on the field parent to enable fast search
by the parent node:

db.categories.ensureIndex({ parent: 1 })

	You can query by the parent field to find its immediate children
nodes:

db.categories.find({ parent: "Databases" })

The Parent Links pattern provides a simple solution to tree storage
but requires multiple queries to retrieve subtrees.

Model Tree Structures with Child References

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions
that affect how you model data can affect application performance and
database capacity. See Data Modeling Concepts for a full high
level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like structure
in MongoDB documents by storing references in the parent-nodes to children nodes.

Pattern

The Child References pattern stores each tree node in a document; in
addition to the tree node, document stores in an array the id(s) of the
node’s children.

Consider the following hierarchy of categories:

[image: Tree data model for a sample hierarchy of categories.]Tree data model for a sample hierarchy of categories.

The following example models the tree using Child References, storing
the reference to the node’s children in the field children:

db.categories.insert({ _id: "MongoDB", children: [] })
db.categories.insert({ _id: "Postgres", children: [] })
db.categories.insert({ _id: "Databases", children: ["MongoDB", "Postgres"] })
db.categories.insert({ _id: "Languages", children: [] })
db.categories.insert({ _id: "Programming", children: ["Databases", "Languages"] })
db.categories.insert({ _id: "Books", children: ["Programming"] })

	The query to retrieve the immediate children of a node is fast and
straightforward:

db.categories.findOne({ _id: "Databases" }).children

	You can create an index on the field children to enable fast
search by the child nodes:

db.categories.ensureIndex({ children: 1 })

	You can query for a node in the children field to find its parent
node as well as its siblings:

db.categories.find({ children: "MongoDB" })

The Child References pattern provides a suitable solution to tree storage
as long as no operations on subtrees are necessary. This pattern may
also provide a suitable solution for storing graphs where a node may
have multiple parents.

Model Tree Structures with an Array of Ancestors

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions
that affect how you model data can affect application performance and
database capacity. See Data Modeling Concepts for a full high
level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like
structure in MongoDB documents using references to parent nodes and an array that stores
all ancestors.

Pattern

The Array of Ancestors pattern stores each tree node in a document;
in addition to the tree node, document stores in an array the id(s) of
the node’s ancestors or path.

Consider the following hierarchy of categories:

[image: Tree data model for a sample hierarchy of categories.]Tree data model for a sample hierarchy of categories.

The following example models the tree using Array of Ancestors. In
addition to the ancestors field, these documents also store the
reference to the immediate parent category in the parent field:

db.categories.insert({ _id: "MongoDB", ancestors: ["Books", "Programming", "Databases"], parent: "Databases" })
db.categories.insert({ _id: "Postgres", ancestors: ["Books", "Programming", "Databases"], parent: "Databases" })
db.categories.insert({ _id: "Databases", ancestors: ["Books", "Programming"], parent: "Programming" })
db.categories.insert({ _id: "Languages", ancestors: ["Books", "Programming"], parent: "Programming" })
db.categories.insert({ _id: "Programming", ancestors: ["Books"], parent: "Books" })
db.categories.insert({ _id: "Books", ancestors: [], parent: null })

	The query to retrieve the ancestors or path of a node is fast and
straightforward:

db.categories.findOne({ _id: "MongoDB" }).ancestors

	You can create an index on the field ancestors to enable fast
search by the ancestors nodes:

db.categories.ensureIndex({ ancestors: 1 })

	You can query by the field ancestors to find all its descendants:

db.categories.find({ ancestors: "Programming" })

The Array of Ancestors pattern provides a fast and efficient solution
to find the descendants and the ancestors of a node by creating an
index on the elements of the ancestors field. This makes Array of
Ancestors a good choice for working with subtrees.

The Array of Ancestors pattern is slightly slower than the
Materialized Paths pattern but
is more straightforward to use.

Model Tree Structures with Materialized Paths

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions
that affect how you model data can affect application performance and
database capacity. See Data Modeling Concepts for a full high
level overview of data modeling in MongoDB.

This document describes a data model that describes a tree-like
structure in MongoDB documents by storing full relationship paths
between documents.

Pattern

The Materialized Paths pattern stores each tree node in a document;
in addition to the tree node, document stores as a string the id(s) of
the node’s ancestors or path. Although the Materialized Paths pattern
requires additional steps of working with strings and regular
expressions, the pattern also provides more flexibility in working with
the path, such as finding nodes by partial paths.

Consider the following hierarchy of categories:

[image: Tree data model for a sample hierarchy of categories.]Tree data model for a sample hierarchy of categories.

The following example models the tree using Materialized Paths,
storing the path in the field path; the path string uses the comma
, as a delimiter:

db.categories.insert({ _id: "Books", path: null })
db.categories.insert({ _id: "Programming", path: ",Books," })
db.categories.insert({ _id: "Databases", path: ",Books,Programming," })
db.categories.insert({ _id: "Languages", path: ",Books,Programming," })
db.categories.insert({ _id: "MongoDB", path: ",Books,Programming,Databases," })
db.categories.insert({ _id: "Postgres", path: ",Books,Programming,Databases," })

	You can query to retrieve the whole tree, sorting by the field
path:

db.categories.find().sort({ path: 1 })

	You can use regular expressions on the path field to find the
descendants of Programming:

db.categories.find({ path: /,Programming,/ })

	You can also retrieve the descendants of Books where the
Books is also at the topmost level of the hierarchy:

db.categories.find({ path: /^,Books,/ })

	To create an index on the field path use the following
invocation:

db.categories.ensureIndex({ path: 1 })

This index may improve performance depending on the query:

	For queries of the Books sub-tree (e.g. /^,Books,/) an
index on the path field improves the query performance
significantly.

	For queries of the Programming sub-tree
(e.g. /,Programming,/), or similar queries of sub-tress, where
the node might be in the middle of the indexed string, the query
must inspect the entire index.

For these queries an index may provide some performance
improvement if the index is significantly smaller than the
entire collection.

Model Tree Structures with Nested Sets

Overview

Data in MongoDB has a flexible schema. Collections do not enforce document structure. Decisions
that affect how you model data can affect application performance and
database capacity. See Data Modeling Concepts for a full high
level overview of data modeling in MongoDB.

This document describes a data model that describes a tree like
structure that optimizes discovering subtrees at the expense of tree
mutability.

Pattern

The Nested Sets pattern identifies each node in the tree as stops in
a round-trip traversal of the tree. The application visits each node
in the tree twice; first during the initial trip, and second during
the return trip. The Nested Sets pattern stores each tree node in a
document; in addition to the tree node, document stores the id of
node’s parent, the node’s initial stop in the left field, and its
return stop in the right field.

Consider the following hierarchy of categories:

[image: Example of a hierarchical data. The numbers identify the stops at nodes during a roundtrip traversal of a tree.]Example of a hierarchical data. The numbers identify the stops at nodes during a roundtrip traversal of a tree.

The following example models the tree using Nested Sets:

db.categories.insert({ _id: "Books", parent: 0, left: 1, right: 12 })
db.categories.insert({ _id: "Programming", parent: "Books", left: 2, right: 11 })
db.categories.insert({ _id: "Languages", parent: "Programming", left: 3, right: 4 })
db.categories.insert({ _id: "Databases", parent: "Programming", left: 5, right: 10 })
db.categories.insert({ _id: "MongoDB", parent: "Databases", left: 6, right: 7 })
db.categories.insert({ _id: "Postgres", parent: "Databases", left: 8, right: 9 })

You can query to retrieve the descendants of a node:

var databaseCategory = db.categories.findOne({ _id: "Databases" });
db.categories.find({ left: { $gt: databaseCategory.left }, right: { $lt: databaseCategory.right } });

The Nested Sets pattern provides a fast and efficient solution for
finding subtrees but is inefficient for modifying the tree structure.
As such, this pattern is best for static trees that do not change.

Model Specific Application Contexts

	Model Data for Atomic Operations

	Illustrates how embedding fields related to an atomic update within
the same document ensures that the fields are in sync

	Model Data to Support Keyword Search

	Describes one method for supporting keyword search by storing
keywords in an array in the same document as the text field.
Combined with a multi-key index, this pattern can support
application’s keyword search operations

	Model Data for Atomic Operations

	Model Data to Support Keyword Search

Model Data for Atomic Operations

Pattern

Consider the following example that keeps a library book and its
checkout information. The example illustrates how embedding fields
related to an atomic update within the same document ensures that the
fields are in sync.

Consider the following book document that stores the number of
available copies for checkout and the current checkout information:

book = {
 _id: 123456789,
 title: "MongoDB: The Definitive Guide",
 author: ["Kristina Chodorow", "Mike Dirolf"],
 published_date: ISODate("2010-09-24"),
 pages: 216,
 language: "English",
 publisher_id: "oreilly",
 available: 3,
 checkout: [{ by: "joe", date: ISODate("2012-10-15") }]
 }

You can use the db.collection.findAndModify() method to
atomically determine if a book is available for checkout and update
with the new checkout information. Embedding the available field
and the checkout field within the same document ensures that the
updates to these fields are in sync:

db.books.findAndModify ({
 query: {
 _id: 123456789,
 available: { $gt: 0 }
 },
 update: {
 $inc: { available: -1 },
 $push: { checkout: { by: "abc", date: new Date() } }
 }
})

Model Data to Support Keyword Search

Note

Keyword search is not the same as text search or full text
search, and does not provide stemming or other text-processing
features. See the Limitations of Keyword Indexes section for more
information.

In 2.4, MongoDB provides a text search feature. See
Text Indexes for more information.

If your application needs to perform queries on the content of a field
that holds text you can perform exact matches on the text or use
$regex to use regular expression pattern matches. However,
for many operations on text, these methods do not satisfy application
requirements.

This pattern describes one method for supporting keyword search using
MongoDB to support application search functionality, that uses
keywords stored in an array in the same document as the text
field. Combined with a multi-key index,
this pattern can support application’s keyword search operations.

Pattern

To add structures to your document to support keyword-based queries,
create an array field in your documents and add the keywords as
strings in the array. You can then create a multi-key index on the array and create queries that select
values from the array.

Example

Given a collection of library volumes that you want to provide
topic-based search. For each volume, you add the array topics,
and you add as many keywords as needed for a given volume.

For the Moby-Dick volume you might have the following document:

{ title : "Moby-Dick" ,
 author : "Herman Melville" ,
 published : 1851 ,
 ISBN : 0451526996 ,
 topics : ["whaling" , "allegory" , "revenge" , "American" ,
 "novel" , "nautical" , "voyage" , "Cape Cod"]
}

You then create a multi-key index on the topics array:

db.volumes.ensureIndex({ topics: 1 })

The multi-key index creates separate index entries for each keyword in
the topics array. For example the index contains one entry for
whaling and another for allegory.

You then query based on the keywords. For example:

db.volumes.findOne({ topics : "voyage" }, { title: 1 })

Note

An array with a large number of elements, such as one with
several hundreds or thousands of keywords will incur greater
indexing costs on insertion.

Limitations of Keyword Indexes

MongoDB can support keyword searches using specific data models and
multi-key indexes; however, these keyword
indexes are not sufficient or comparable to full-text products in the
following respects:

	Stemming. Keyword queries in MongoDB can not parse keywords for
root or related words.

	Synonyms. Keyword-based search features must provide support for
synonym or related queries in the application layer.

	Ranking. The keyword look ups described in this document do not
provide a way to weight results.

	Asynchronous Indexing. MongoDB builds indexes synchronously, which
means that the indexes used for keyword indexes are always current
and can operate in real-time. However, asynchronous bulk indexes
may be more efficient for some kinds of content and workloads.

Data Model Reference

	Documents

	MongoDB stores all data in documents, which are JSON-style data
structures composed of field-and-value pairs.

	Database References

	Discusses manual references and DBRefs, which MongoDB can use to
represent relationships between documents.

	GridFS Reference

	Convention for storing large files in a MongoDB Database.

	ObjectId

	A 12-byte BSON type that MongoDB uses as the default
value for its documents’ _id field if the _id field is not
specified.

	BSON Types

	Outlines the unique BSON types used by MongoDB. See
BSONspec.org [http://bsonspec.org/] for the complete BSON
specification.

	Documents

	Database References

	GridFS Reference

	ObjectId

	BSON Types

Database References

MongoDB does not support joins. In MongoDB some data is
denormalized, or stored with related data in documents to remove the need for joins. However, in some cases it
makes sense to store related information in separate documents,
typically in different collections or databases.

MongoDB applications use one of two methods for relating documents:

	Manual references where you save the
_id field of one document in another document as a reference.
Then your application can run a second query to return the embedded
data. These references are simple and sufficient for most use
cases.

	DBRefs are references from one document to another
using the value of the first document’s _id field collection,
and optional database name. To resolve DBRefs, your application
must perform additional queries to return the referenced
documents. Many drivers have helper
methods that form the query for the DBRef automatically. The
drivers [1] do not automatically resolve DBRefs
into documents.

Use a DBRef when you need to embed documents from multiple
collections in documents from one collection. DBRefs also provide a
common format and type to represent these relationships among
documents. The DBRef format provides common semantics for representing
links between documents if your database must interact with
multiple frameworks and tools.

Unless you have a compelling reason for using a DBRef, use manual
references.

	[1]	Some community supported drivers may have
alternate behavior and may resolve a DBRef into a document
automatically.

Manual References

Background

Manual references refers to the practice of including one
document’s _id field in another document. The
application can then issue a second query to resolve the referenced
fields as needed.

Process

Consider the following operation to insert two documents, using the
_id field of the first document as a reference in the second
document:

original_id = ObjectId()

db.places.insert({
 "_id": original_id,
 "name": "Broadway Center",
 "url": "bc.example.net"
})

db.people.insert({
 "name": "Erin",
 "places_id": original_id,
 "url": "bc.example.net/Erin"
})

Then, when a query returns the document from the people collection
you can, if needed, make a second query for the document referenced by
the places_id field in the places collection.

Use

For nearly every case where you want to store a relationship between
two documents, use manual references. The
references are simple to create and your application can resolve
references as needed.

The only limitation of manual linking is that these references do not
convey the database and collection name. If you have documents in a
single collection that relate to documents in more than one
collection, you may need to consider using DBRefs.

DBRefs

Background

DBRefs are a convention for representing a document, rather
than a specific reference type. They include the name of the
collection, and in some cases the database, in addition to the
value from the _id field.

Format

DBRefs have the following fields:

	
$ref

	The $ref field holds the name of the collection where the
referenced document resides.

	
$id

	The $id field contains the value of the _id field in the
referenced document.

	
$db

	Optional.

Contains the name of the database where the referenced document
resides.

Only some drivers support $db references.

Example

DBRef document would resemble the following:

{ "$ref" : <value>, "$id" : <value>, "$db" : <value> }

Consider a document from a collection that stored a DBRef in a
creator field:

{
 "_id" : ObjectId("5126bbf64aed4daf9e2ab771"),
 // .. application fields
 "creator" : {
 "$ref" : "creators",
 "$id" : ObjectId("5126bc054aed4daf9e2ab772"),
 "$db" : "users"
 }
}

The DBRef in this example, points to a document in the creators
collection of the users database that has
ObjectId("5126bc054aed4daf9e2ab772") in its _id field.

Note

The order of fields in the DBRef matters, and you must use the above
sequence when using a DBRef.

Support

	C++

	The C++ driver contains no support for DBRefs. You can transverse
references manually.

	C#

	The C# driver provides access to DBRef objects with the
MongoDBRef Class [http://api.mongodb.org/csharp/current/html/46c356d3-ed06-a6f8-42fa-e0909ab64ce2.htm]
and supplies the FetchDBRef Method [http://api.mongodb.org/csharp/current/html/1b0b8f48-ba98-1367-0a7d-6e01c8df436f.htm]
for accessing these objects.

	Java

	The DBRef [http://api.mongodb.org/java/current/com/mongodb/DBRef.html] class
provides supports for DBRefs from Java.

	JavaScript

	The mongo shell’s JavaScript
interface provides a DBRef.

	Perl

	The Perl driver contains no support for DBRefs. You can transverse
references manually or use the MongoDBx::AutoDeref [http://search.cpan.org/dist/MongoDBx-AutoDeref/] CPAN module.

	PHP

	The PHP driver does support DBRefs, including the optional $db reference, through
The MongoDBRef class [http://www.php.net/manual/en/class.mongodbref.php/].

	Python

	The Python driver provides the DBRef class [http://api.mongodb.org/python/current/api/bson/dbref.html],
and the dereference method [http://api.mongodb.org//python/current/api/pymongo/database.html#pymongo.database.Database.dereference]
for interacting with DBRefs.

	Ruby

	The Ruby Driver supports DBRefs using the DBRef class [http://api.mongodb.org//ruby/current/BSON/DBRef.html]
and the deference method [http://api.mongodb.org//ruby/current/Mongo/DB.html#dereference].

Use

In most cases you should use the manual reference method for connecting two or more related
documents. However, if you need to reference documents from multiple
collections, consider a DBRef.

GridFS Reference

GridFS stores files in two collections:

	chunks stores the binary chunks. For details, see
The chunks Collection.

	files stores the file’s metadata. For details, see
The files Collection.

GridFS places the collections in a common bucket by prefixing each
with the bucket name. By default, GridFS uses two collections with
names prefixed by fs bucket:

	fs.files

	fs.chunks

You can choose a different bucket name than fs, and create
multiple buckets in a single database.

See also

GridFS for more information about GridFS.

The chunks Collection

Each document in the chunks collection represents a distinct chunk
of a file as represented in the GridFS store. The following is a
prototype document from the chunks collection.:

{
 "_id" : <ObjectId>,
 "files_id" : <ObjectID>,
 "n" : <num>,
 "data" : <binary>
}

A document from the chunks collection contains the following fields:

	
chunks._id

	The unique ObjectID of the chunk.

	
chunks.files_id

	The _id of the “parent” document, as specified in the files
collection.

	
chunks.n

	The sequence number of the chunk. GridFS numbers all chunks,
starting with 0.

	
chunks.data

	The chunk’s payload as a BSON binary type.

The chunks collection uses a compound index on
files_id and n, as described in GridFS Index.

The files Collection

Each document in the files collection represents a file in the
GridFS store. Consider the following prototype of a document in
the files collection:

{
 "_id" : <ObjectID>,
 "length" : <num>,
 "chunkSize" : <num>
 "uploadDate" : <timestamp>
 "md5" : <hash>

 "filename" : <string>,
 "contentType" : <string>,
 "aliases" : <string array>,
 "metadata" : <dataObject>,
}

Documents in the files collection contain some or all of the
following fields. Applications may create additional arbitrary fields:

	
files._id

	The unique ID for this document. The _id is of the data type you
chose for the original document. The default type for MongoDB
documents is BSON ObjectID.

	
files.length

	The size of the document in bytes.

	
files.chunkSize

	The size of each chunk. GridFS divides the document into chunks of
the size specified here. The default size is 256 kilobytes.

	
files.uploadDate

	The date the document was first stored by GridFS. This value has the
Date type.

	
files.md5

	An MD5 hash returned from the filemd5 API. This value has the String
type.

	
files.filename

	Optional. A human-readable name for the document.

	
files.contentType

	Optional. A valid MIME type for the document.

	
files.aliases

	Optional. An array of alias strings.

	
files.metadata

	Optional. Any additional information you want to store.

ObjectId

Overview

ObjectId is a 12-byte BSON type,
constructed using:

	a 4-byte value representing the seconds since the Unix epoch,

	a 3-byte machine identifier,

	a 2-byte process id, and

	a 3-byte counter, starting with a random value.

In MongoDB, documents stored in a collection require a unique
_id field that acts as a primary key. Because
ObjectIds are small, most likely unique, and fast to generate, MongoDB
uses ObjectIds as the default value for the _id field if the
_id field is not specified. MongoDB clients should add an _id
field with a unique ObjectId. However, if a client does not add an
_id field, mongod will add an _id field that holds
an ObjectId.

Using ObjectIds for the _id field provides the following
additional benefits:

	in the mongo shell, you can access the creation time of
the ObjectId, using the getTimestamp() method.

	sorting on an _id field that stores ObjectId values is
roughly equivalent to sorting by creation time.

Important

The relationship between the order of ObjectId
values and generation time is not strict within a single
second. If multiple systems, or multiple processes or threads on
a single system generate values, within a single second;
ObjectId values do not represent a strict insertion order.
Clock skew between clients can also result in non-strict ordering
even for values, because client drivers generate ObjectId
values, not the mongod process.

Also consider the Documents section for related
information on MongoDB’s document orientation.

ObjectId()

The mongo shell provides the ObjectId() wrapper class to
generate a new ObjectId, and to provide the following helper attribute
and methods:

	str

The hexadecimal string value of the ObjectId() object.

	getTimestamp()

Returns the timestamp portion of the ObjectId() object as a Date.

	toString()

Returns the string representation of the ObjectId() object. The
returned string literal has the format “ObjectId(...)”.

Changed in version 2.2: In previous versions toString() returns the
value of the ObjectId as a hexadecimal string.

	valueOf()

Returns the value of the ObjectId() object as a hexadecimal string.
The returned string is the str attribute.

Changed in version 2.2: In previous versions valueOf() returns the
ObjectId() object.

Examples

Consider the following uses ObjectId() class in the
mongo shell:

Generate a new ObjectId

To generate a new ObjectId, use the ObjectId() constructor with
no argument:

x = ObjectId()

In this example, the value of x would be:

ObjectId("507f1f77bcf86cd799439011")

To generate a new ObjectId using the ObjectId() constructor with
a unique hexadecimal string:

y = ObjectId("507f191e810c19729de860ea")

In this example, the value of y would be:

ObjectId("507f191e810c19729de860ea")

	To return the timestamp of an ObjectId() object, use the
getTimestamp() method as follows:

Convert an ObjectId into a Timestamp

To return the timestamp of an ObjectId() object, use the
getTimestamp() method as follows:

ObjectId("507f191e810c19729de860ea").getTimestamp()

This operation will return the following Date object:

ISODate("2012-10-17T20:46:22Z")

Convert ObjectIds into Strings

Access the str attribute of an ObjectId() object, as follows:

ObjectId("507f191e810c19729de860ea").str

This operation will return the following hexadecimal string:

507f191e810c19729de860ea

To return the value of an ObjectId() object as a hexadecimal
string, use the valueOf() method as
follows:

ObjectId("507f191e810c19729de860ea").valueOf()

This operation returns the following output:

507f191e810c19729de860ea

To return the string representation of an ObjectId() object, use
the toString() method as follows:

ObjectId("507f191e810c19729de860ea").toString()

This operation will return the following output:

ObjectId("507f191e810c19729de860ea")

BSON Types

	ObjectId

	String

	Timestamps

	Date

BSON is a binary serialization format used to store documents
and make remote procedure calls in MongoDB. The BSON specification is
located at bsonspec.org [http://bsonspec.org/].

BSON supports the following data types as values in documents. Each data
type has a corresponding number that can be used with the
$type operator to query documents by BSON type.

	Type
	Number

	Double
	1

	String
	2

	Object
	3

	Array
	4

	Binary data
	5

	Object id
	7

	Boolean
	8

	Date
	9

	Null
	10

	Regular Expression
	11

	JavaScript
	13

	Symbol
	14

	JavaScript (with scope)
	15

	32-bit integer
	16

	Timestamp
	17

	64-bit integer
	18

	Min key
	255

	Max key
	127

When comparing values of different BSON types, MongoDB uses
the following comparison order, from lowest to highest:

	MinKey (internal type)

	Null

	Numbers (ints, longs, doubles)

	Symbol, String

	Object

	Array

	BinData

	ObjectID

	Boolean

	Date, Timestamp

	Regular Expression

	MaxKey (internal type)

Note

MongoDB treats some types as equivalent for comparison purposes.
For instance, numeric types undergo conversion before comparison.

To determine a field’s type, see Check Types in the mongo Shell.

If you convert BSON to JSON, see
Data Type Fidelity for more information.

The next sections describe special considerations for particular BSON
types.

ObjectId

ObjectIds are: small, likely unique, fast to generate, and ordered.
These values consists of 12-bytes, where the first four bytes are a
timestamp that reflect the ObjectId’s creation. Refer to the
ObjectId documentation for more
information.

String

BSON strings are UTF-8. In general, drivers for each programming
language convert from the language’s string format to UTF-8 when
serializing and deserializing BSON. This makes it possible to store
most international characters in BSON strings with ease.
[1] In addition, MongoDB
$regex queries support UTF-8 in the regex string.

	[1]	Given strings using UTF-8
character sets, using sort() on strings
will be reasonably correct. However, because internally
sort() uses the C++ strcmp api, the
sort order may handle some characters incorrectly.

Timestamps

BSON has a special timestamp type for internal MongoDB use and is
not associated with the regular Date
type. Timestamp values are a 64 bit value where:

	the first 32 bits are a time_t value (seconds since the Unix epoch)

	the second 32 bits are an incrementing ordinal for operations
within a given second.

Within a single mongod instance, timestamp values are
always unique.

In replication, the oplog has a ts field. The values in
this field reflect the operation time, which uses a BSON timestamp
value.

Note

The BSON Timestamp type is for internal MongoDB use. For most
cases, in application development, you will want to use the BSON
date type. See Date for more
information.

If you create a BSON Timestamp using the empty constructor (e.g. new
Timestamp()), MongoDB will only generate a timestamp if you use
the constructor in the first field of the document. [2]
Otherwise, MongoDB will generate an empty timestamp value
(i.e. Timestamp(0, 0).)

Changed in version 2.1: mongo shell displays the Timestamp value with the wrapper:

Timestamp(<time_t>, <ordinal>)

Prior to version 2.1, the mongo shell display the
Timestamp value as a document:

{ t : <time_t>, i : <ordinal> }

	[2]	If the first field in the document is _id, then
you can generate a timestamp in the second field
of a document.

In the following example, MongoDB will generate a Timestamp
value, even though the Timestamp() constructor is not in
the first field in the document:

db.bios.insert({ _id: 9, last_updated: new Timestamp() })

Date

BSON Date is a 64-bit integer that represents the number of
milliseconds since the Unix epoch (Jan 1, 1970). The official BSON
specification [http://bsonspec.org/#/specification] refers to the
BSON Date type as the UTC datetime.

Changed in version 2.0: BSON Date type is signed. [3] Negative values
represent dates before 1970.

Example

Construct a Date using the new Date() constructor in the
mongo shell:

var mydate1 = new Date()

Example

Construct a Date using the ISODate() constructor in the
mongo shell:

var mydate2 = ISODate()

Example

Return the Date value as string:

mydate1.toString()

Example

Return the month portion of the Date value; months are zero-indexed,
so that January is month 0:

mydate1.getMonth()

	[3]	Prior to version 2.0, Date values were
incorrectly interpreted as unsigned integers, which affected
sorts, range queries, and indexes on Date fields. Because
indexes are not recreated when upgrading, please re-index if you
created an index on Date values with an earlier version, and
dates before 1970 are relevant to your application.

Administration

The administration documentation addresses the ongoing operation and
maintenance of MongoDB instances and deployments. This documentation
includes both high level overviews of these concerns as well as
tutorials that cover specific procedures and processes for operating
MongoDB.

	Administration Concepts

	Core conceptual documentation of operational practices for managing
MongoDB deployments and systems.

	Backup Strategies for MongoDB Systems

	Describes approaches and considerations for backing up a MongoDB
database.

	Data Center Awareness

	Presents the MongoDB features that allow application developers and
database administrators to configure their deployments to be more
data center aware or allow operational and location-based
separation.

	Monitoring for MongoDB

	An overview of monitoring tools, diagnostic strategies, and approaches to
monitoring replica sets and sharded clusters.

	Administration Tutorials

	Tutorials that describe common administrative procedures and
practices for operations for MongoDB instances and deployments.

	Configuration, Maintenance, and Analysis

	Describes routine management operations, including configuration and
performance analysis.

	Backup and Recovery

	Outlines procedures for data backup and restoration with
mongod instances and deployments.

	Administration Reference

	Reference and documentation of internal mechanics of administrative
features, systems and functions and operations.

See also

The MongoDB Manual contains administrative documentation
and tutorials though out several sections. See
Replica Set Tutorials and
Sharded Cluster Tutorials for additional tutorials and
information.

	Administration Concepts
	Operational Strategies
	Backup Strategies for MongoDB Systems

	Monitoring for MongoDB

	Run-time Database Configuration

	Import and Export MongoDB Data

	Production Notes

	Data Management
	Data Center Awareness
	Operational Segregation in MongoDB Deployments

	Capped Collections

	Expire Data from Collections by Setting TTL

	Optimization Strategies for MongoDB
	Evaluate Performance of Current Operations

	Use Capped Collections for Fast Writes and Reads

	Optimize Query Performance

	Design Notes

	Administration Tutorials
	Configuration, Maintenance, and Analysis
	Use Database Commands

	Manage mongod Processes

	Analyze Performance of Database Operations

	Monitor MongoDB with SNMP

	Rotate Log Files

	Manage Journaling

	Store a JavaScript Function on the Server

	Upgrade to the Latest Revision of MongoDB

	MongoDB Tutorials

	Backup and Recovery
	Backup and Restore with MongoDB Tools

	Backup and Restore with Filesystem Snapshots

	Restore a Replica Set from MongoDB Backups

	Backup and Restore Sharded Clusters
	Backup a Small Sharded Cluster with mongodump

	Backup a Sharded Cluster with Filesystem Snapshots

	Backup a Sharded Cluster with Database Dumps

	Schedule Backup Window for Sharded Clusters

	Restore a Single Shard

	Restore a Sharded Cluster

	Copy Databases Between Instances

	Recover Data after an Unexpected Shutdown

	MongoDB Scripting
	Server-side JavaScript

	Data Types in the mongo Shell

	Write Scripts for the mongo Shell

	Getting Started with the mongo Shell

	Access the mongo Shell Help Information

	mongo Shell Quick Reference

	Administration Reference
	UNIX ulimit Settings

	System Collections

	MongoDB Extended JSON

	Database Profiler Output

	Journaling Mechanics

	Exit Codes and Statuses

Operational Strategies

These documents address higher level strategies for common
administrative tasks and requirements with respect to MongoDB
deployments.

	Backup Strategies for MongoDB Systems

	Describes approaches and considerations for backing up a MongoDB
database.

	Monitoring for MongoDB

	An overview of monitoring tools, diagnostic strategies, and approaches to
monitoring replica sets and sharded clusters.

	Run-time Database Configuration

	Outlines common MongoDB configurations and examples of best-practice
configurations for common use cases.

	Import and Export MongoDB Data

	Provides an overview of mongoimport and mongoexport, the
tools MongoDB includes for importing and exporting data.

	Production Notes

	A collection of notes that describe best practices and
considerations for the operations of MongoDB instances and
deployments.

	Backup Strategies for MongoDB Systems

	Monitoring for MongoDB

	Run-time Database Configuration

	Import and Export MongoDB Data

	Production Notes

Monitoring for MongoDB

Monitoring is a critical component of all database administration. A
firm grasp of MongoDB’s reporting will allow you to assess the state
of your database and maintain your deployment without crisis.
Additionally, a sense of MongoDB’s normal operational parameters will
allow you to diagnose before they escalate to failures.

This document presents an overview of the available monitoring utilities
and the reporting statistics
available in MongoDB. It also introduces diagnostic strategies
and suggestions for monitoring replica sets and
sharded clusters.

Note

MongoDB Management Service (MMS) [https://mms.mongodb.com/?pk_campaign=mongodb-org&pk_kwd=monitoring]
is a hosted monitoring service which collects and aggregates data
to provide insight into the performance and operation of MongoDB
deployments. See the MMS documentation [http://mms.mongodb.com/help/] for more information.

Monitoring Strategies

There are three methods for collecting data about the state of a
running MongoDB instance:

	First, there is a set of utilities distributed with MongoDB that
provides real-time reporting of database activities.

	Second, database commands return
statistics regarding the current database state with greater
fidelity.

	Third, MMS Monitoring Service [https://mms.mongodb.com/?pk_campaign=mongodb-org&pk_kwd=monitoring]
collects data from running MongoDB deployments and provides
visualization and alerts based on that data. MMS is a free service
provided by MongoDB.

Each strategy can help answer different questions and is useful in
different contexts. These methods are complementary.

MongoDB Reporting Tools

This section provides an overview of the reporting methods distributed
with MongoDB. It also offers examples of the kinds of questions that
each method is best suited to help you address.

Utilities

The MongoDB distribution includes a number of utilities that quickly
return statistics about instances’ performance and activity. Typically,
these are most useful for diagnosing issues and assessing normal
operation.

mongostat

mongostat captures and returns the counts of database
operations by type (e.g. insert, query, update, delete, etc.). These
counts report on the load distribution on the server.

Use mongostat to understand the distribution of operation types
and to inform capacity planning. See the mongostat manual for details.

mongotop

mongotop tracks and reports the current read and write
activity of a MongoDB instance, and reports these statistics on a per
collection basis.

Use mongotop to check if your database activity and use
match your expectations. See the mongotop manual for details.

REST Interface

MongoDB provides a simple REST interface that can be useful for configuring
monitoring and alert scripts, and for other administrative tasks.

To enable, configure mongod to use REST, either by
starting mongod with the --rest option,
or by setting the rest setting to true in a
configuration file.

For more information on using the REST Interface see, the
Simple REST Interface [http://docs.mongodb.org/ecosystem/tools/http-interfaces]
documentation.

HTTP Console

MongoDB provides a web interface that exposes diagnostic
and monitoring information in a simple web page. The web interface is
accessible at localhost:<port>, where the
<port> number is 1000 more than the mongod port .

For example, if a locally running mongod is using the
default port 27017, access the HTTP console at
http://localhost:28017.

Commands

MongoDB includes a number of commands that report on the state of the
database.

These data may provide a finer level of granularity than the utilities
discussed above. Consider using their output in scripts and programs to
develop custom alerts, or to modify the behavior of your application in
response to the activity of your instance. The db.currentOp
method is another useful tool for identifying the database instance’s
in-progress operations.

serverStatus

The serverStatus command, or db.serverStatus()
from the shell, returns a general overview of the status of the
database, detailing disk usage, memory use, connection, journaling,
and index access. The command returns quickly and does not impact
MongoDB performance.

serverStatus outputs an account of the state of a MongoDB
instance. This command is rarely run directly. In most cases, the data
is more meaningful when aggregated, as one would see with monitoring
tools including MMS [http://mms.mongodb.com] .
Nevertheless, all administrators should be familiar with the data
provided by serverStatus.

dbStats

The dbStats command, or db.stats() from the shell,
returns a document that addresses storage use and data volumes. The
dbStats reflect the amount of
storage used, the quantity of data contained in the database, and
object, collection, and index counters.

Use this data to monitor the state and storage capacity
of a specific database. This output also allows you to compare
use between databases and to determine the average
document size in a database.

collStats

The collStats provides
statistics that resemble dbStats on the collection level,
including a count of the objects in the collection, the size of
the collection, the amount of disk space used by the collection, and
information about its indexes.

replSetGetStatus

The replSetGetStatus command (rs.status() from
the shell) returns an overview of your replica set’s status. The replSetGetStatus document details the
state and configuration of the replica set and statistics about its members.

Use this data to ensure that replication is properly configured,
and to check the connections between the current host and the other members
of the replica set.

Third Party Tools

A number of third party monitoring tools have support for MongoDB,
either directly, or through their own plugins.

Self Hosted Monitoring Tools

These are monitoring tools that you must install, configure and maintain
on your own servers. Most are open source.

	Tool
	Plugin
	Description

	Ganglia [http://sourceforge.net/apps/trac/ganglia/wiki]
	mongodb-ganglia [https://github.com/quiiver/mongodb-ganglia]
	Python script to report operations per second, memory usage,
btree statistics, master/slave status and current connections.

	Ganglia
	gmond_python_modules [https://github.com/ganglia/gmond_python_modules]
	Parses output from the serverStatus and
replSetGetStatus commands.

	Motop [https://github.com/tart/motop]
	None
	Realtime monitoring tool for MongoDB servers. Shows
current operations ordered by durations every second.

	mtop [https://github.com/beaufour/mtop]
	None
	A top like tool.

	Munin [http://munin-monitoring.org/]
	mongo-munin [https://github.com/erh/mongo-munin]
	Retrieves server statistics.

	Munin
	mongomon [https://github.com/pcdummy/mongomon]
	Retrieves collection statistics (sizes, index sizes, and each
(configured) collection count for one DB).

	Munin
	munin-plugins Ubuntu PPA [https://launchpad.net/~chris-lea/+archive/munin-plugins]
	Some additional munin plugins not in the main distribution.

	Nagios [http://www.nagios.org/]
	nagios-plugin-mongodb [https://github.com/mzupan/nagios-plugin-mongodb]
	A simple Nagios check script, written in Python.

	Zabbix [http://www.zabbix.com/]
	mikoomi-mongodb [https://code.google.com/p/mikoomi/wiki/03]
	Monitors availability, resource utilization, health,
performance and other important metrics.

Also consider dex [https://github.com/mongolab/dex], an index and
query analyzing tool for MongoDB that compares MongoDB log files and
indexes to make indexing recommendations.

As part of MongoDB Enterprise [http://www.mongodb.com/products/mongodb-enterprise],
you can run MMS On-Prem [http://mms.mongodb.com],
which offers the features of MMS in a package that runs within your
infrastructure.

Hosted (SaaS) Monitoring Tools

These are monitoring tools provided as a hosted service, usually through
a paid subscription.

	Name
	Notes

	MongoDB Management Service [https://mms.mongodb.com/?pk_campaign=mongodb-org&pk_kwd=monitoring]
	MMS is a cloud-based suite of services for managing MongoDB
deployments. MMS provides monitoring and backup functionality.

	Scout [http://scoutapp.com]
	Several plugins, including MongoDB Monitoring [https://scoutapp.com/plugin_urls/391-mongodb-monitoring],
MongoDB Slow Queries [http://scoutapp.com/plugin_urls/291-mongodb-slow-queries],
and MongoDB Replica Set Monitoring [http://scoutapp.com/plugin_urls/2251-mongodb-replica-set-monitoring].

	Server Density [http://www.serverdensity.com]
	Dashboard for MongoDB [http://www.serverdensity.com/mongodb-monitoring/], MongoDB
specific alerts, replication failover timeline and iPhone, iPad
and Android mobile apps.

Process Logging

During normal operation, mongod and mongos
instances report a live account of all server activity and operations
to either
standard output or a log file. The following runtime settings
control these options.

	quiet. Limits the amount of information written to the
log or output.

	verbose. Increases the amount of information written to
the log or output.

You can also specify this as v (as in -v). For higher levels of verbosity,
set multiple v, as in vvvv = True. You can
also change the verbosity of a running mongod or
mongos instance with the setParameter
command.

	logpath. Enables logging to a file, rather than the standard
output. You must specify the full path to the log file when adjusting
this setting.

	logappend. Adds information to a log
file instead of overwriting the file.

Note

You can specify these configuration operations as the command line
arguments to mongod or mongos

For example:

mongod -v --logpath /var/log/mongodb/server1.log --logappend

Starts a mongod instance in verbose mode,
appending data to the log file at
/var/log/mongodb/server1.log/.

The following database commands also
affect logging:

	getLog. Displays recent messages from the
mongod process log.

	logRotate. Rotates the log files for mongod
processes only. See Rotate Log Files.

Diagnosing Performance Issues

Degraded performance in MongoDB
is typically a function of the relationship between the
quantity of data stored in the database, the amount of system RAM, the
number of connections to the database, and the amount of time the
database spends in a locked state.

In some cases performance issues may be transient and related to
traffic load, data access patterns, or the availability of hardware on
the host system for virtualized environments. Some users also
experience performance limitations as a result of inadequate or
inappropriate indexing strategies, or as a consequence of poor schema
design patterns. In other situations, performance issues may indicate
that the database may be operating at capacity and that it is time to
add additional capacity to the database.

The following are some causes of degraded performance in MongoDB.

Locks

MongoDB uses a locking system to ensure consistency. However, if
certain operations are long-running, or a queue forms, performance
will slow as requests and operations wait for the lock. Lock-related
slowdowns can be intermittent. To see if the lock has been affecting
your performance, look to the data in the
globalLock section of the serverStatus output. If
globalLock.currentQueue.total is consistently high,
then there is a chance that a large number of requests are waiting for
a lock. This indicates a possible concurrency issue that may be affecting
performance.

If globalLock.totalTime is
high relative to uptime, the database has
existed in a lock state for a significant amount of time. If
globalLock.ratio is also high,
MongoDB has likely been processing a large number of long running
queries. Long queries are often the result of a number of factors:
ineffective use of indexes, non-optimal schema design, poor query
structure, system architecture issues, or insufficient RAM resulting
in page faults and disk
reads.

Memory Usage

MongoDB uses memory mapped files to store data. Given a data
set of sufficient size, the MongoDB process will allocate all
available memory on the system for its use.
While this is part of the design, and affords MongoDB superior
performance, the memory mapped files make it difficult to determine if
the amount of RAM is sufficient for the data set.

The memory usage statuses metrics of the
serverStatus output can provide insight into MongoDB’s
memory use. Check the resident memory use
(i.e. mem.resident): if this
exceeds the amount of system memory and there is a significant amount
of data on disk that isn’t in RAM, you may have exceeded the capacity
of your system.

You should also check the amount of mapped memory (i.e. mem.mapped.) If this value is greater than the amount
of system memory, some operations will require disk access page
faults to read data from virtual memory and negatively
affect performance.

Page Faults

A page fault occurs when MongoDB requires data
not located in physical memory, and must read from virtual memory. To
check for page faults, see the extra_info.page_faults value in the
serverStatus output. This data is only available on
Linux systems.

A single page fault completes quickly and is not problematic. However, in
aggregate, large volumes of page faults typically indicate that MongoDB
is reading too much data from disk. In many situations, MongoDB’s
read locks will “yield” after a page fault to allow other processes to
read and avoid blocking while waiting for the next page to read into
memory. This approach improves concurrency, and also improves overall
throughput in high volume systems.

Increasing the amount of RAM accessible to MongoDB may
help reduce the number of page faults. If this is not possible, you
may want to consider deploying a sharded cluster and/or
adding shards to your deployment to
distribute load among mongod instances.

Number of Connections

In some cases, the number of connections between the application layer
(i.e. clients) and the database can overwhelm the ability of the
server to handle requests. This can produce performance
irregularities. The following fields in the serverStatus document can provide insight:

	globalLock.activeClients contains a counter of the
total number of clients with active operations in progress or
queued.

	connections is a container for the following
two fields:
	current the total number of
current clients that connect to the database instance.

	available the total number of
unused collections available for new clients.

Note

Unless constrained by system-wide limits MongoDB has a hard connection
limit of 20,000 connections. You can modify system limits
using the ulimit command, or by editing your system’s
/etc/sysctl file.

If requests are high because there are numerous concurrent application
requests, the database may have trouble keeping up with demand. If
this is the case, then you will need to increase the capacity of your
deployment. For read-heavy applications increase the size of your
replica set and distribute read operations to
secondary members. For write heavy applications, deploy
sharding and add one or more shards to a
sharded cluster to distribute load among mongod
instances.

Spikes in the number of connections can also be the result of
application or driver errors. All of the officially supported MongoDB
drivers implement connection pooling, which allows clients to use and
reuse connections more efficiently. Extremely high numbers of
connections, particularly without corresponding workload is often
indicative of a driver or other configuration error.

Database Profiling

MongoDB’s “Profiler” is a database profiling system that can help identify
inefficient queries and operations.

The following profiling levels are available:

	Level
	Setting

	0
	Off. No profiling

	1
	On. Only includes “slow” operations

	2
	On. Includes all operations

Enable the profiler by setting the
profile value using the following command in the
mongo shell:

db.setProfilingLevel(1)

The slowms setting defines what constitutes a “slow”
operation. To set the threshold above which the profiler considers
operations “slow” (and thus, included in the level 1 profiling
data), you can configure slowms at runtime as an argument to
the db.setProfilingLevel() operation.

See

The documentation of db.setProfilingLevel() for more
information about this command.

By default, mongod records all “slow” queries to its
log, as defined by slowms. Unlike log data, the data in
system.profile does not persist between mongod
restarts.

Note

Because the database profiler can negatively impact
performance, only enable profiling for strategic intervals and as
minimally as possible on production systems.

You may enable profiling on a per-mongod basis. This
setting will not propagate across a replica set or
sharded cluster.

You can view the output of the profiler in the system.profile
collection of your database by issuing the show profile command in
the mongo shell, or with the following operation:

db.system.profile.find({ millis : { $gt : 100 } })

This returns all operations that lasted longer than 100 milliseconds.
Ensure that the value specified here (100, in this example) is above the
slowms threshold.

See also

Optimization Strategies for MongoDB addresses strategies
that may improve the performance of your database queries and
operations.

Replication and Monitoring

Beyond the basic monitoring requirements for any MongoDB instance, for
replica sets, administrators must monitor replication
lag. “Replication lag” refers to the amount of time that it takes to
copy (i.e. replicate) a write operation on the primary to a
secondary. Some small delay period may be acceptable, but two
significant problems emerge as replication lag grows:

	First, operations that occurred during the period of lag are not
replicated to one or more secondaries. If you’re using replication
to ensure data persistence, exceptionally long delays may impact the
integrity of your data set.

	Second, if the replication lag exceeds the length of the operation
log (oplog) then MongoDB will have to perform an initial
sync on the secondary, copying all data from the primary and
rebuilding all indexes. This is uncommon under normal circumstances,
but if you configure the oplog to be smaller than the default,
the issue can arise.

Note

The size of the oplog is only configurable during the first
run using the --oplogSize argument to
the mongod command, or preferably, the oplogSize
in the MongoDB configuration file. If you do not specify this on the
command line before running with the --replSet
option, mongod will create a default sized oplog.

By default, the oplog is 5 percent of total available disk space
on 64-bit systems. For more information about changing the oplog
size, see the Change the Size of the Oplog

For causes of replication lag, see Replication Lag.

Replication issues are most often the result of network connectivity
issues between members, or the result of a primary that does not
have the resources to support application and replication traffic. To
check the status of a replica, use the replSetGetStatus or
the following helper in the shell:

rs.status()

The replSetGetStatus document provides a more in-depth
overview view of this output. In general, watch the value of
optimeDate, and pay particular attention
to the time difference between the primary and the
secondary members.

Sharding and Monitoring

In most cases, the components of sharded clusters
benefit from the same monitoring and analysis as all other MongoDB
instances. In addition, clusters require further monitoring to ensure
that data is effectively distributed among nodes and that sharding
operations are functioning appropriately.

See also

See the Sharding Concepts documentation for more
information.

Config Servers

The config database maintains a map identifying which
documents are on which shards. The cluster updates this map as
chunks move between shards. When a configuration
server becomes inaccessible, certain sharding operations become
unavailable, such as moving chunks and starting mongos
instances. However, clusters remain accessible from already-running
mongos instances.

Because inaccessible configuration servers can seriously impact
the availability of a sharded cluster, you should monitor your
configuration servers to ensure that the cluster remains well
balanced and that mongos instances can restart.

MMS Monitoring [http://mms.mongodb.com] monitors config servers and
can create notifications if a config server becomes inaccessible.

Balancing and Chunk Distribution

The most effective sharded cluster deployments evenly balance
chunks among the shards. To facilitate this, MongoDB
has a background balancer process that distributes data to ensure that
chunks are always optimally distributed among the shards.

Issue the db.printShardingStatus() or sh.status()
command to the mongos by way of the mongo
shell. This returns an overview of the entire cluster including the
database name, and a list of the chunks.

Stale Locks

In nearly every case, all locks used by the balancer are automatically
released when they become stale. However, because any long lasting
lock can block future balancing, it’s important to insure that all
locks are legitimate. To check the lock status of the database,
connect to a mongos instance using the mongo
shell. Issue the following command sequence to switch to the
config database and display all outstanding locks on the shard database:

use config
db.locks.find()

For active deployments, the above query can provide insights.
The balancing process, which originates on a randomly selected
mongos, takes a special “balancer” lock that prevents other
balancing activity from transpiring. Use the following command, also
to the config database, to check the status of the “balancer”
lock.

db.locks.find({ _id : "balancer" })

If this lock exists, make sure that the balancer process is actively
using this lock.

Run-time Database Configuration

The command line and configuration
file interfaces provide MongoDB
administrators with a large number of options and settings for
controlling the operation of the database system. This document
provides an overview of common configurations and examples of
best-practice configurations for common use cases.

While both interfaces provide access to the same collection of options
and settings, this document primarily uses the configuration file
interface. If you run MongoDB using a control script or installed from
a package for your operating system, you likely already have a
configuration file located at /etc/mongodb.conf. Confirm this by
checking the contents of the /etc/init.d/mongod or
/etc/rc.d/mongod script to insure that the control scripts start the mongod with the appropriate
configuration file (see below.)

To start a MongoDB instance using this configuration issue a command in
the following form:

mongod --config /etc/mongodb.conf
mongod -f /etc/mongodb.conf

Modify the values in the /etc/mongodb.conf file on your system to
control the configuration of your database instance.

Configure the Database

Consider the following basic configuration:

fork = true
bind_ip = 127.0.0.1
port = 27017
quiet = true
dbpath = /srv/mongodb
logpath = /var/log/mongodb/mongod.log
logappend = true
journal = true

For most standalone servers, this is a sufficient base
configuration. It makes several assumptions, but consider the
following explanation:

	fork is true, which enables a
daemon mode for mongod, which detaches (i.e. “forks”)
the MongoDB from the current session and allows you to run the
database as a conventional server.

	bind_ip is 127.0.0.1, which forces the
server to only listen for requests on the localhost IP. Only bind to
secure interfaces that the application-level systems can access with
access control provided by system network filtering
(i.e. “firewall”).

Note

New in version 2.5.3: mongod installed from official .deb and .rpm packages
have the bind_ip configuration set to 127.0.0.1 by
default.

	port is 27017, which is the default
MongoDB port for database instances. MongoDB can bind to any
port. You can also filter access based on port using network
filtering tools.

Note

UNIX-like systems require superuser privileges to attach processes
to ports lower than 1024.

	quiet is true. This disables all but
the most critical entries in output/log file. In normal operation
this is the preferable operation to avoid log noise. In diagnostic
or testing situations, set this value to false. Use
setParameter to modify this setting during
run time.

	dbpath is /srv/mongodb, which
specifies where MongoDB will store its data files. /srv/mongodb
and /var/lib/mongodb are popular locations. The user account
that mongod runs under will need read and write access to this
directory.

	logpath is /var/log/mongodb/mongod.log
which is where mongod will write its output. If you do not set
this value, mongod writes all output to standard output
(e.g. stdout.)

	logappend is true, which ensures that
mongod does not overwrite an existing log file
following the server start operation.

	journal is true, which enables journaling.
Journaling ensures single instance write-durability. 64-bit builds
of mongod enable journaling by default. Thus, this
setting may be redundant.

Given the default configuration, some of these values may be
redundant. However, in many situations explicitly stating the
configuration increases overall system intelligibility.

Security Considerations

The following collection of configuration options are useful for
limiting access to a mongod instance. Consider the
following:

bind_ip = 127.0.0.1,10.8.0.10,192.168.4.24
nounixsocket = true
auth = true

Consider the following explanation for these configuration decisions:

	“bind_ip” has three values: 127.0.0.1, the localhost
interface; 10.8.0.10, a private IP address typically used for
local networks and VPN interfaces; and 192.168.4.24, a private
network interface typically used for local networks.

Because production MongoDB instances need to be accessible from
multiple database servers, it is important to bind MongoDB to
multiple interfaces that are accessible from your application
servers. At the same time it’s important to limit these interfaces
to interfaces controlled and protected at the network layer.

	“nounixsocket” to true disables the
UNIX Socket, which is otherwise enabled by default. This limits
access on the local system. This is desirable when running MongoDB
on systems with shared access, but in most situations has minimal impact.

	“auth” is true enables the authentication
system within MongoDB. If enabled you will need to log in by
connecting over the localhost interface for the first time to
create user credentials.

See also

Security Concepts

Replication and Sharding Configuration

Replication Configuration

Replica set configuration is straightforward, and only
requires that the replSet have a value that is consistent
among all members of the set. Consider the following:

replSet = set0

Use descriptive names for sets. Once configured use the
mongo shell to add hosts to the replica set.

See also

Replica set reconfiguration.

To enable authentication for the replica set, add the
following option:

keyFile = /srv/mongodb/keyfile

New in version 1.8: for replica sets, and 1.9.1 for sharded replica sets.

Setting keyFile enables authentication and specifies a key
file for the replica set member use to when authenticating to each
other. The content of the key file is arbitrary, but must be the same
on all members of the replica set and mongos
instances that connect to the set. The keyfile must be less than one
kilobyte in size and may only contain characters in the base64 set and
the file must not have group or “world” permissions on UNIX systems.

See also

The Replica set Reconfiguration section for information regarding
the process for changing replica set during operation.

Additionally, consider the Replica Set Security section for information on configuring
authentication with replica sets.

Finally, see the Replication document for more information
on replication in MongoDB and replica set configuration in general.

Sharding Configuration

Sharding requires a number of mongod instances with
different configurations. The config servers store the cluster’s
metadata, while the cluster distributes data among one or more shard
servers.

Note

Config servers are not replica
sets.

To set up one or three “config server” instances as normal mongod instances, and then add the following
configuration option:

configsvr = true

bind_ip = 10.8.0.12
port = 27001

This creates a config server running on the private IP address
10.8.0.12 on port 27001. Make sure that there are no port
conflicts, and that your config server is accessible from all of your
mongos and mongod instances.

To set up shards, configure two or more mongod instance
using your base configuration, adding the
shardsvr setting:

shardsvr = true

Finally, to establish the cluster, configure at least one
mongos process with the following settings:

configdb = 10.8.0.12:27001
chunkSize = 64

You can specify multiple configdb instances by specifying
hostnames and ports in the form of a comma separated list. In general,
avoid modifying the chunkSize from the default value of 64,
[1] and should ensure this setting is consistent among all
mongos instances.

	[1]	Chunk size is 64 megabytes by default, which
provides the ideal balance between the most even distribution of
data, for which smaller chunk sizes are best, and minimizing chunk
migration, for which larger chunk sizes are optimal.

See also

The Sharding section of the manual for more
information on sharding and cluster configuration.

Run Multiple Database Instances on the Same System

In many cases running multiple instances of mongod on a
single system is not recommended. On some types of deployments
[2] and for testing purposes you may need to run more than
one mongod on a single system.

In these cases, use a base configuration for each
instance, but consider the following configuration values:

dbpath = /srv/mongodb/db0/
pidfilepath = /srv/mongodb/db0.pid

The dbpath value controls the location of the
mongod instance’s data directory. Ensure that each database
has a distinct and well labeled data directory. The
pidfilepath controls where mongod process
places it’s process id file. As this tracks the specific
mongod file, it is crucial that file be unique and well
labeled to make it easy to start and stop these processes.

Create additional control scripts and/or
adjust your existing MongoDB configuration and control script as
needed to control these processes.

	[2]	Single-tenant systems with SSD or other high
performance disks may provide acceptable performance levels for
multiple mongod instances. Additionally, you may find that
multiple databases with small working sets may function acceptably
on a single system.

Diagnostic Configurations

The following configuration options control various mongod
behaviors for diagnostic purposes. The following settings have default
values that tuned for general production purposes:

slowms = 50
profile = 3
verbose = true
diaglog = 3
objcheck = true
cpu = true

Use the base configuration and add these options
if you are experiencing some unknown issue or performance problem as
needed:

	slowms configures the threshold for the database
profiler to consider a query “slow.” The default value is 100
milliseconds. Set a lower value if the database profiler does not
return useful results. See Optimization Strategies for MongoDB
for more information on optimizing operations in MongoDB.

	profile sets the database profiler
level. The profiler is not active by default because of the possible
impact on the profiler itself on performance. Unless this setting
has a value, queries are not profiled.

	verbose enables a verbose logging mode that
modifies mongod output and increases logging to include a
greater number of events. Only use this option if you are
experiencing an issue that is not reflected in the normal logging
level. If you require additional verbosity, consider the following
options:

v = true
vv = true
vvv = true
vvvv = true
vvvvv = true

Each additional level v adds additional verbosity to the
logging. The verbose option is equal to v = true.

	diaglog enables diagnostic logging. Level 3 logs all read and write options.

	objcheck forces mongod to validate all
requests from clients upon receipt. Use this option to ensure that
invalid requests are not causing errors, particularly when running a
database with untrusted clients. This option may affect database
performance.

	cpu forces mongod to report the percentage of
the last interval spent in write lock. The interval is
typically 4 seconds, and each output line in the log includes both
the actual interval since the last report and the percentage of
time spent in write lock.

Production Notes

Production Notes

	Packages
	MongoDB

	Operating Systems

	Concurrency

	Write Concern

	Journaling

	Connection Pool

	Hardware Requirements and Limitations

	MongoDB on NUMA Hardware

	Disk and Storage Systems
	Swap

	RAID

	Remote Filesystems

	Separate Components onto Different Storage Devices

	MongoDB on Linux
	Kernel and File Systems

	Recommended Configuration

	Networking

	MongoDB on Virtual Environments
	EC2

	VMWare

	OpenVZ

	Performance Monitoring
	iostat

	bwm-ng

	Backups

This page details system configurations that affect MongoDB,
especially in production.

Note

MongoDB Management Service (MMS) [http://mms.mongodb.com] is a hosted monitoring service
which collects and aggregates diagnostic data to provide insight into
the performance and operation of MongoDB deployments. See the
MMS Website [http://mms.mongodb.com/] and the
MMS documentation [http://mms.mongodb.com/help/] for more
information.

Packages

MongoDB

Be sure you have the latest stable release.
All releases are available on the Downloads [http://www.mongodb.org/downloads] page. This is a good place to
verify what is current, even if you then choose to install via a
package manager.

Always use 64-bit builds for production. The 32-bit build MongoDB
offers for test and development environments is not suitable for
production deployments as it can store no more than 2GB of data.
See the 32-bit limitations for more information.

32-bit builds exist to support use on development machines.

Operating Systems

MongoDB distributions are currently available for Mac OS X, Linux,
Windows Server 2008 R2 64bit, Windows 7 (32 bit and 64 bit), Windows
Vista, and Solaris platforms.

Note

MongoDB uses the
GNU C Library [http://www.gnu.org/software/libc/]
(glibc) if available on a system.
MongoDB requires version at least glibc-2.12-1.2.el6 to avoid a known bug
with earlier versions. For best results use at least version 2.13.

Concurrency

In earlier versions of MongoDB, all write operations contended for a
single readers-writer lock on the MongoDB instance. As of version 2.2,
each database has a readers-writer lock that allows concurrent reads
access to a database, but gives exclusive access to a single write
operation per database. See the Concurrency
page for more information.

Write Concern

Write concern describes the guarantee that MongoDB provides
when reporting on the success of a write operation. The strength of the
write concerns determine the level of guarantee. When inserts, updates
and deletes have a weak write concern, write operations return
quickly. In some failure cases, write operations issued with weak write
concerns may not persist. With stronger write concerns, clients wait
after sending a write operation for MongoDB to confirm the write
operations.

MongoDB provides different levels of write concern to better address
the specific needs of applications. Clients may adjust write concern to
ensure that the most important operations persist successfully to an
entire MongoDB deployment. For other less critical operations, clients
can adjust the write concern to ensure faster performance rather than
ensure persistence to the entire deployment.

See Write Concern for more information about choosing
an appropriate write concern level for your deployment.

Journaling

MongoDB uses write ahead logging to an on-disk journal to
guarantee that MongoDB is able to quickly recover the write
operations following a crash or
other serious failure.

In order to ensure that mongod will be able to recover and
remain in a consistent state following a crash, you should leave
journaling enabled. See Journaling for more
information.

Connection Pool

To avoid overloading the connection resources of a single
mongod or mongos instance, ensure that clients
maintain reasonable connection pool sizes.

The connPoolStats database
command returns information regarding the number of open connections
to the current database for mongos instances and
mongod instances in sharded clusters.

Hardware Requirements and Limitations

MongoDB is designed specifically with commodity hardware in mind and
has few hardware requirements or limitations. MongoDB’s core components
run on little-endian hardware, primarily x86/x86_64 processors. Client
libraries (i.e. drivers) can run on big or little endian systems.

The hardware for the most effective MongoDB deployments have the
following properties:

	As with all software, more RAM and a faster CPU clock speed are
important for performance.

	In general, databases are not CPU bound. As such, increasing the
number of cores can help, but does not provide significant marginal
return.

	MongoDB has good results and a good price-performance ratio with SATA
SSD (Solid State Disk).

	Use SSD if available and economical. Spinning disks can be performant, but
SSDs’ capacity for random I/O operations works well with the update
model of mongod.

	Commodity (SATA) spinning drives are often a good option, as the
increase to random I/O for more expensive drives is not that
dramatic (only on the order of 2x). Using SSDs or increasing RAM may
be more effective in increasing I/O throughput.

	Remote file storage can create performance problems in MongoDB. See
Remote Filesystems for more information about storage and MongoDB.

MongoDB on NUMA Hardware

Important

The discussion of NUMA in this section only applies to
Linux, and therefore does not affect deployments where mongod
instances run other UNIX-like systems or on Windows.

Running MongoDB on a system with Non-Uniform Access Memory (NUMA) can
cause a number of operational problems, including slow performance for
periods of time or high system process usage.

When running MongoDB on NUMA hardware, you should disable NUMA for
MongoDB and instead set an interleave memory policy.

Note

MongoDB version 2.0 and greater checks these settings on start up
when deployed on a Linux-based system, and prints a warning if the
system is NUMA-based.

To disable NUMA for MongoDB and set an interleave memory policy, use
the numactl command and start mongod in the following
manner:

numactl --interleave=all /usr/bin/local/mongod

Then, disable zone reclaim in the proc settings using the following
command:

echo 0 > /proc/sys/vm/zone_reclaim_mode

To fully disable NUMA, you must perform both operations. For more
information, see the Documentation for /proc/sys/vm/* [http://www.kernel.org/doc/Documentation/sysctl/vm.txt].

See the The MySQL “swap insanity” problem and the effects of NUMA [http://jcole.us/blog/archives/2010/09/28/mysql-swap-insanity-and-the-numa-architecture/] post, which describes the effects of NUMA on
databases. This blog post addresses the impact of NUMA for MySQL,
but the issues for MongoDB are similar. The post introduces NUMA and
its goals, and illustrates how these goals are not compatible with
production databases.

Disk and Storage Systems

Swap

Assign swap space for your systems. Allocating swap space can avoid issues
with memory contention and can prevent the OOM Killer on Linux systems
from killing mongod.

The method mongod uses to map memory files to memory ensures
that the operating system will never store MongoDB data in swap space.

RAID

Most MongoDB deployments should use disks backed by RAID-10.

RAID-5 and RAID-6 do not typically provide sufficient performance to
support a MongoDB deployment.

Avoid RAID-0 with MongoDB deployments. While RAID-0 provides good write
performance, it also provides limited availability and can lead to
reduced performance on read operations, particularly when using
Amazon’s EBS volumes.

Remote Filesystems

The Network File System protocol (NFS) is not recommended for use with
MongoDB as some versions perform poorly.

Performance problems arise when both
the data files and the journal files are hosted on NFS. You may
experience better performance if you place the journal on local or
iscsi volumes. If you must use NFS, add the following NFS options
to your /etc/fstab file: bg, nolock, and noatime.

Separate Components onto Different Storage Devices

For improved performance, consider separating your database’s data,
journal, and logs onto different storage devices, based on your application’s
access and write pattern.

Note

This will affect your ability to create snapshot-style backups of
your data, since the files will be on different devices and volumes.

MongoDB on Linux

Important

The following discussion only applies to
Linux, and therefore does not affect deployments where mongod
instances run other UNIX-like systems or on Windows.

Kernel and File Systems

When running MongoDB in production on Linux, it is recommended that you use
Linux kernel version 2.6.36 or later.

MongoDB preallocates its database files before using them and
often creates large files. As such, you should
use the Ext4 and XFS file systems:

	In general, if you use the Ext4 file system, use at least version 2.6.23 of the
Linux Kernel.

	In general, if you use the XFS file system, use at least version 2.6.25 of the
Linux Kernel.

	Some Linux distributions require different versions of the kernel to
support using ext4 and/or xfs:

	Linux Distribution
	Filesystem
	Kernel Version

	CentOS 5.5
	ext4, xfs
	2.6.18-194.el5

	CentOS 5.6
	ext4, xfs
	2.6.18-238.el5

	CentOS 5.8
	ext4, xfs
	2.6.18-308.8.2.el5

	CentOS 6.1
	ext4, xfs
	2.6.32-131.0.15.el6.x86_64

	RHEL 5.6
	ext4
	2.6.18-238

	RHEL 6.0
	xfs
	2.6.32-71

	Ubuntu 10.04.4 LTS
	ext4, xfs
	2.6.32-38-server

	Amazon Linux AMI release 2012.03
	ext4
	3.2.12-3.2.4.amzn1.x86_64

Important

MongoDB requires a filesystem that supports fsync()
on directories. For example, HGFS and Virtual Box’s shared
folders do not support this operation.

Recommended Configuration

	Turn off atime for the storage volume containing the database
files.

	Set the file descriptor limit, -n, and the user process limit
(ulimit), -u, above 20,000,
according to the suggestions in the UNIX ulimit Settings. A low
ulimit will affect MongoDB when under heavy use and can produce
errors and lead to failed connections to MongoDB
processes and loss of service.

	Do not use hugepages virtual memory pages as MongoDB performs
better with normal virtual memory pages.

	Disable NUMA in your BIOS. If that is not possible see MongoDB on NUMA Hardware.

	Ensure that readahead settings for the block devices that store the
database files are appropriate. For random access use patterns, set low
readahead values. A readahead of 32 (16kb) often works well.

	Use the Network Time Protocol (NTP) to synchronize time among
your hosts. This is especially important in sharded clusters.

Networking

Always run MongoDB in a trusted environment, with network rules that
prevent access from all unknown machines, systems, and networks. As
with any sensitive system dependent on network access, your MongoDB
deployment should only be accessible to specific systems that require
access, such as application servers, monitoring services, and other MongoDB
components.

Note

By default, auth is not enabled and mongod
assumes a trusted environment. You can enable security/auth mode if you need it.

See documents in the Security section for additional
information, specifically:

	Configuration Options

	Firewalls

	Configure Linux iptables Firewall for MongoDB

	Configure Windows netsh Firewall for MongoDB

For Windows users, consider the Windows Server Technet Article on TCP
Configuration [http://technet.microsoft.com/en-us/library/dd349797.aspx]
when deploying MongoDB on Windows.

MongoDB on Virtual Environments

The section describes considerations when running MongoDB in some of the
more common virtual environments.

EC2

MongoDB is compatible with EC2 and requires no configuration changes
specific to the environment.

You may alternately choose to obtain a set of
Amazon Machine Images (AMI) that bundle together MongoDB and Amazon’s
Provisioned IOPS storage volumes. Provisioned IOPS can greatly increase
MongoDB’s performance and ease of use. For more information, see
this blog post [http://www.mongodb.com/blog/post/provisioned-iops-aws-marketplace-significantly-boosts-mongodb-performance-ease-use].

VMWare

MongoDB is compatible with VMWare. As some users have
run into issues with VMWare’s memory overcommit feature,
disabling the feature is recommended.

It is possible to clone a virtual machine running MongoDB.
You might use this function to
spin up a new virtual host to add as a member of a replica
set. If you clone a VM with journaling enabled, the clone snapshot will
be consistent. If not using journaling, first stop mongod,
then clone the VM, and finally, restart mongod.

OpenVZ

Some users have had issues when running MongoDB on some older version
of OpenVZ due to its handling of virtual memory, as with VMWare.

This issue seems to have been resolved in the more recent versions of
OpenVZ.

Performance Monitoring

iostat

On Linux, use the iostat command to check if disk I/O is a bottleneck
for your database. Specify a number of seconds when running iostat to
avoid displaying stats covering the time since server boot.

For example, the following command will display extended statistics and
the time for each displayed report, with traffic in MB/s, at one second
intervals:

iostat -xmt 1

Key fields from iostat:

	%util: this is the most useful field for a quick check, it
indicates what percent of the time the device/drive is in use.

	avgrq-sz: average request size. Smaller number for this value
reflect more random IO operations.

bwm-ng

bwm-ng [http://www.gropp.org/?id=projects&sub=bwm-ng] is a
command-line tool for monitoring network use. If you suspect a
network-based bottleneck, you may use bwm-ng to begin your
diagnostic process.

Backups

To make backups of your MongoDB database, please refer to
Backup Strategies for MongoDB Systems.

Data Management

These document introduce data management practices and strategies for
MongoDB deployments, including strategies for managing multi-data
center deployments, managing larger file stores, and data lifecycle
tools.

	Data Center Awareness

	Presents the MongoDB features that allow application developers and
database administrators to configure their deployments to be more
data center aware or allow operational and location-based
separation.

	Capped Collections

	Capped collections provide a special type of size-constrained
collections that preserve insertion order and can support high
volume inserts.

	Expire Data from Collections by Setting TTL

	TTL collections make it possible to automatically remove data from a
collection based on the value of a timestamp and are useful for
managing data like machine generated event data that are only useful
for a limited period of time.

	Data Center Awareness
	Operational Segregation in MongoDB Deployments

	Capped Collections

	Expire Data from Collections by Setting TTL

Data Center Awareness

MongoDB provides a number of features that allow application
developers and database administrators to customize the behavior of a
sharded cluster or replica set deployment so that
MongoDB may be more “data center aware,” or allow operational
and location-based separation.

MongoDB also supports segregation based
on functional parameters, to ensure that certain mongod
instances are only used for reporting workloads or that certain
high-frequency portions of a sharded collection only exist on specific
shards.

The following documents, found either in this section or other sections
of this manual, provide information on customizing a deployment for
operation- and location-based separation:

	Operational Segregation in MongoDB Deployments

	MongoDB lets you specify that certain application operations use
certain mongod instances.

	Tag Aware Sharding

	Tags associate specific ranges of shard key values with specific shards for
use in managing deployment patterns.

	Manage Shard Tags

	Use tags to associate specific ranges of shard key values with specific
shards.

	Operational Segregation in MongoDB Deployments

Further Reading

	The Write Concern and Read Preference
documents, which address capabilities related to data center
awareness.

	Deploy a Geographically Redundant Replica Set.

Expire Data from Collections by Setting TTL

	Enable TTL for a Collection
	Expire after a Certain Number of Seconds

	Expire at a Certain Clock Time

	Constraints

New in version 2.2.

This document provides an introduction to MongoDB’s “time to live”
or “TTL” collection feature. TTL collections make it possible
to store data in MongoDB and have the mongod automatically
remove data after a specified number of seconds, or at a specific
clock time.

Data expiration is useful for some classes of information, including
machine generated event data, logs, and session information that only
need to persist for a limited period of time.

A special index type supports the implementation of TTL collections.
TTL relies on a background thread in mongod that reads the
date-typed values in the index and removes expired documents from the collection.

Enable TTL for a Collection

To enable TTL for a collection, use the
ensureIndex() method to create a TTL index,
as shown in the examples below. MongoDB begins removing expired
documents as soon as the index finishes building.

Note

When the TTL thread is active, you will see a delete operations in the output of
db.currentOp() or in the data collected by the
database profiler.

Note

When enabling TTL on replica sets, the
TTL background thread runs only on primary members.
Secondary members replicate deletion operations
from the primary.

Warning

The TTL index does not guarantee that expired data will be deleted
immediately. There may be a delay between the time a document expires
and the time that MongoDB removes the document from the database.

The background task that removes expired documents runs every 60
seconds. As a result, documents may remain in a collection after
they expire but before the background task runs or completes.

The duration of the removal operation depends on the workload of
your mongod instance. Therefore, expired data may exist
for some time beyond the 60 second period between runs of the
background task.

With the exception of the background thread, A TTL index supports
queries in the same way normal indexes do. You can use TTL indexes to
expire documents in one of two ways, either:

	remove documents a certain number of seconds after creation. The
index will support queries for the creation time of the
documents. Alternately,

	specify an explicit expiration time. The index will support queries
for the expiration-time of the document.

Expire after a Certain Number of Seconds

Begin by creating a TTL index and specify an expireAfterSeconds
value of 3600. This sets the an expiration time of 1 hour after
the time specified by the value of the indexed field. The following
example, creates an index on the log.events collection’s
status field:

db.log.events.ensureIndex({ "status": 1 }, { expireAfterSeconds: 3600 })

To expire documents a certain number of seconds after creation, give
the date field a value corresponding to the insertion time of the
documents.For example, given the index on the log.events collection
with the expireAfterSeconds value of 0, and a current date of
July 22, 2013: 13:00:00, consider the document in the following
insert() operation:

db.log.events.insert({
 "status": new Date('July 22, 2013: 13:00:00'),
 "logEvent": 2,
 "logMessage": "Success!",
})

The status field must hold values of BSON date type or an array
of BSON date-typed objects.

MongoDB will automatically delete documents from the log.events
collection when at least one of the values of a document’s status
field is a time older than the number of seconds specified in
expireAfterSeconds.

Expire at a Certain Clock Time

Begin by creating a TTL index and specify an expireAfterSeconds
value of 0. The following example, creates an index on the
log.events collection’s status field:

db.log.events.ensureIndex({ "status": 1 }, { expireAfterSeconds: 0 })

To expire documents at a certain clock time, give the date field a
value corresponding to the time a document should expire, For example,
given the index on the log.events collection with the
expireAfterSeconds value of 0, and a current date of July
22, 2013: 13:00:00, consider the document in the following
insert() operation:

db.log.events.insert({
 "status": new Date('July 22, 2013: 14:00:00'),
 "logEvent": 2,
 "logMessage": "Success!",
})

The status field must hold values of BSON date type or an array
of BSON date-typed objects.

MongoDB will automatically delete documents from the log.events
collection when at least one of the values of a document’s status
field is a time older than the number of seconds specified in
expireAfterSeconds.

Constraints

	The _id field does not support TTL indexes.

	You cannot create a TTL index on a field that already has an index.

	A document will not expire if the indexed field does not exist.

	A document will not expire if the indexed field is not a date
BSON type or an array of date BSON types.

	The TTL index may not be compound (may not have multiple fields).

	If the TTL field holds an array, and there are multiple date-typed
data in the index, the document will expire when the lowest (i.e.
earliest) date matches the expiration threshold.

	You cannot create a TTL index on a capped collection, because
MongoDB cannot remove documents from a capped collection.

	You cannot use ensureIndex() to change the
value of expireAfterSeconds. Instead use the
collMod database command in conjunction with the
index collection flag.

Important

All collections with an index using the
expireAfterSeconds option have usePowerOf2Sizes
enabled. Users cannot modify this setting. As a result of enabling
usePowerOf2Sizes, MongoDB must allocate more disk space
relative to data size. This approach helps mitigate the possibility
of storage fragmentation caused by frequent delete operations and
leads to more predictable storage use patterns.

Optimization Strategies for MongoDB

There are many factors that can affect database performance and
responsiveness including index use, query structure, data models and
application design, as well as operational factors such as architecture
and system configuration.

This section describes techniques for optimizing application
performance with MongoDB.

	Evaluate Performance of Current Operations

	MongoDB provides introspection tools that describe the query execution process, to allow users to test queries and build more efficient queries.

	Use Capped Collections for Fast Writes and Reads

	Outlines a use case for Capped Collections to optimize certain data ingestion work flows.

	Optimize Query Performance

	Introduces the use of projections to reduce the amount of data MongoDB must set to clients.

	Design Notes

	A collection of notes related to the architecture, design, and
administration of MongoDB-based applications.

	Evaluate Performance of Current Operations

	Use Capped Collections for Fast Writes and Reads

	Optimize Query Performance

	Design Notes

Evaluate Performance of Current Operations

The following sections describe techniques for evaluating operational
performance.

Use the Database Profiler to Evaluate Operations Against the Database

MongoDB provides a database profiler that shows performance
characteristics of each operation against the database. Use the profiler
to locate any queries or write operations that are running slow. You can
use this information, for example, to determine what indexes to create.

For more information, see Database Profiling.

Use db.currentOp() to Evaluate mongod Operations

The db.currentOp() method reports on current operations
running on a mongod instance.

Use $explain to Evaluate Query Performance

The explain() method returns statistics
on a query, and reports the index MongoDB selected to fulfill the
query, as well as information about the internal operation of the
query.

Example

To use explain() on a query
for documents matching the expression { a: 1 }, in the
collection named records, use an operation that resembles the
following in the mongo shell:

db.records.find({ a: 1 }).explain()

Use Capped Collections for Fast Writes and Reads

Use Capped Collections for Fast Writes

Capped Collections are circular, fixed-size collections
that keep documents well-ordered, even without the use of an
index. This means that capped collections can receive very high-speed
writes and sequential reads.

These collections are particularly useful for keeping log files but are
not limited to that purpose. Use capped collections where appropriate.

Use Natural Order for Fast Reads

To return documents in the order they exist on disk, return sorted
operations using the $natural operator. On a capped
collection, this also returns the documents in the order in which they
were written.

Natural
order does not use indexes but can be fast for
operations when you want to select the first or last items on
disk.

See also

sort() and limit().

Optimize Query Performance

Create Indexes to Support Queries

For commonly issued queries, create indexes. If a
query searches multiple fields, create a compound index. Scanning an index is much faster than scanning a
collection. The indexes structures are smaller than the documents
reference, and store references in order.

Example

If you have a posts collection containing blog posts,
and if you regularly issue a query that sorts on the author_name
field, then you can optimize the query by creating an index on the
author_name field:

db.posts.ensureIndex({ author_name : 1 })

Indexes also improve efficiency on queries that routinely sort on a
given field.

Example

If you regularly issue a query that sorts on the
timestamp field, then you can optimize the query by creating an
index on the timestamp field:

Creating this index:

db.posts.ensureIndex({ timestamp : 1 })

Optimizes this query:

db.posts.find().sort({ timestamp : -1 })

Because MongoDB can read indexes in both ascending and descending
order, the direction of a single-key index does not matter.

Indexes support queries, update operations, and some phases of the
aggregation pipeline.

Index keys that are of the BinData type are more efficiently stored
in the index if:

	the binary subtype value is in the range of 0-7 or 128-135, and

	the length of the byte array is: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12,
14, 16, 20, 24, or 32.

Limit the Number of Query Results to Reduce Network Demand

MongoDB cursors return results in groups of multiple
documents. If you know the number of results you want, you can reduce
the demand on network resources by issuing the limit()
method.

This is typically used in conjunction with sort operations. For example,
if you need only 10 results from your query to the posts
collection, you would issue the following command:

db.posts.find().sort({ timestamp : -1 }).limit(10)

For more information on limiting results, see limit()

Use Projections to Return Only Necessary Data

When you need only a subset of fields from documents, you can achieve better
performance by returning only the fields you need:

For example, if in your query to the posts collection, you need only
the timestamp, title, author, and abstract fields, you
would issue the following command:

db.posts.find({}, { timestamp : 1 , title : 1 , author : 1 , abstract : 1}).sort({ timestamp : -1 })

For more information on using projections, see
Limit Fields to Return from a Query.

Use $hint to Select a Particular Index

In most cases the query optimizer selects the optimal index for a
specific operation; however, you can force MongoDB to use a specific
index using the hint() method. Use
hint() to support performance testing, or on
some queries where you must select a field or field included in
several indexes.

Use the Increment Operator to Perform Operations Server-Side

Use MongoDB’s $inc operator to increment or decrement
values in documents. The operator increments the value of the field on
the server side, as an alternative to selecting a document, making
simple modifications in the client and then writing the entire
document to the server. The $inc operator can also help
avoid race conditions, which would result when two application
instances queried for a document, manually incremented a field, and
saved the entire document back at the same time.

Design Notes

This page details features of MongoDB that may be important to bear in
mind when designing your applications.

Schema Considerations

Dynamic Schema

Data in MongoDB has a dynamic schema. Collections do not enforce document structure. This
facilitates iterative development and polymorphism. Nevertheless,
collections often hold documents with highly homogeneous
structures. See Data Modeling Concepts for more information.

Some operational considerations include:

	the exact set of collections to be used;

	the indexes to be used: with the exception of the _id index, all
indexes must be created explicitly;

	shard key declarations: choosing a good shard key is very important
as the shard key cannot be changed once set.

Avoid importing unmodified data
directly from a relational database. In general, you will want to “roll
up” certain data into richer documents that take advantage of MongoDB’s
support for sub-documents and nested arrays.

Case Sensitive Strings

MongoDB strings are case sensitive. So a search for "joe" will not
find "Joe".

Consider:

	storing data in a normalized case format, or

	using regular expressions ending with /i, and/or

	using $toLower or
$toUpper in the
aggregation framework.

Type Sensitive Fields

MongoDB data is stored in the BSON [http://docs.mongodb.org/meta-driver/latest/legacy/bson/]
format, a binary encoded serialization of JSON-like documents. BSON
encodes additional type information. See bsonspec.org [http://bsonspec.org/#/specification] for more information.

Consider the following document which has a field x with the
string value "123":

{ x : "123" }

Then the following query which looks for a number value 123 will
not return that document:

db.mycollection.find({ x : 123 })

General Considerations

By Default, Updates Affect one Document

To update multiple documents that meet your query criteria, set the
update multi option to true or 1.
See: Update Multiple Documents.

Prior to MongoDB 2.2, you would specify the upsert and multi
options in the update method as positional boolean
options. See: the update method reference documentation.

BSON Document Size Limit

The BSON Document Size limit is currently
set at 16MB per document. If you require larger documents, use GridFS.

No Fully Generalized Transactions

MongoDB does not have fully generalized transactions. Creating rich documents
that closely resemble and reflect your application-level objects to
(words).

Replica Set Considerations

Use an Odd Number of Replica Set Members

Replica sets perform consensus elections. To
ensure that elections will proceed successfully, either use an odd
number of members, typically three, or else use an arbiter to ensure an
odd number of votes.

Keep Replica Set Members Up-to-Date

MongoDB replica sets support automatic failover. It is important for
your secondaries to be up-to-date. There are various strategies for
assessing consistency:

	Use monitoring tools to alert you to lag events. See
Monitoring for MongoDB for a detailed discussion of
MongoDB’s monitoring options.

	Specify appropriate write concern.

	If your application requires manual fail over,
you can configure your secondaries
as priority 0.
Priority 0 secondaries require manual action for a failover.
This may be practical for a small replica set, but large deployments
should fail over automatically.

See also

replica set rollbacks.

Sharding Considerations

	Pick your shard keys carefully. You cannot choose a new shard
key for a collection that is already sharded.

	Shard key values are immutable.

	When enabling sharding on an existing collection, MongoDB imposes
a maximum size on those collections to ensure that it is possible to
create chunks. For a detailed explanation of this limit, see:
<sharding-existing-collection-data-size>.

To shard
large amounts of data, create a new empty sharded collection, and
ingest the data from the source collection using an application
level import operation.

	Unique indexes are not enforced across shards except for the shard
key itself. See Enforce Unique Keys for Sharded Collections.

	Consider pre-splitting a
sharded collection before a massive bulk import.

Administration Tutorials

The administration tutorials provide specific step-by-step
instructions for performing common MongoDB setup, maintenance, and
configuration operations.

	Configuration, Maintenance, and Analysis

	Describes routine management operations, including configuration and
performance analysis.

	Manage mongod Processes

	Start, configure, and manage running mongod process.

	Rotate Log Files

	Archive the current log files and start new ones.

	Backup and Recovery

	Outlines procedures for data backup and restoration with
mongod instances and deployments.

	Backup and Restore with Filesystem Snapshots

	An outline of procedures for creating MongoDB data set backups using
system-level file snapshot tool, such as LVM or native
storage appliance tools.

	Backup and Restore Sharded Clusters

	Detailed procedures and considerations for backing up sharded
clusters and single shards.

	Recover Data after an Unexpected Shutdown

	Recover data from MongoDB data files that were not properly closed
or are in an inconsistent state.

	MongoDB Scripting

	An introduction to the scripting capabilities of the
mongo shell and the scripting capabilities embedded in
MongoDB instances.

	MongoDB Tutorials

	A complete list of tutorials in the MongoDB Manual that address
MongoDB operation and use.

	Configuration, Maintenance, and Analysis
	Use Database Commands

	Manage mongod Processes

	Terminate Running Operations

	Analyze Performance of Database Operations

	Monitor MongoDB with SNMP

	Rotate Log Files

	Manage Journaling

	Store a JavaScript Function on the Server

	Upgrade to the Latest Revision of MongoDB

	MongoDB Tutorials

	Backup and Recovery
	Backup and Restore with MongoDB Tools

	Backup and Restore with Filesystem Snapshots

	Restore a Replica Set from MongoDB Backups

	Backup and Restore Sharded Clusters
	Backup a Small Sharded Cluster with mongodump

	Backup a Sharded Cluster with Filesystem Snapshots

	Backup a Sharded Cluster with Database Dumps

	Schedule Backup Window for Sharded Clusters

	Restore a Single Shard

	Restore a Sharded Cluster

	Copy Databases Between Instances

	Recover Data after an Unexpected Shutdown

	MongoDB Scripting
	Server-side JavaScript

	Data Types in the mongo Shell

	Write Scripts for the mongo Shell

	Getting Started with the mongo Shell

	Access the mongo Shell Help Information

	mongo Shell Quick Reference

See also

The MongoDB Manual contains administrative documentation
and tutorials though out several sections. See
Replica Set Tutorials and
Sharded Cluster Tutorials for additional tutorials and
information.

Configuration, Maintenance, and Analysis

The following tutorials describe routine management operations,
including configuration and performance analysis:

	Use Database Commands

	The process for running database commands that provide basic
database operations.

	Manage mongod Processes

	Start, configure, and manage running mongod process.

	Terminate Running Operations

	Stop in progress MongoDB client operations using
db.killOp() and maxTimeMS().

	Analyze Performance of Database Operations

	Collect data that introspects the performance of query and update
operations on a mongod instance.

	Monitor MongoDB with SNMP

	The SNMP extension, available in
MongoDB Enterprise, allows MongoDB to report
data into SNMP traps.

	Rotate Log Files

	Archive the current log files and start new ones.

	Manage Journaling

	Describes the procedures for configuring and managing MongoDB’s
journaling system which allows MongoDB to provide crash resiliency
and durability.

	Store a JavaScript Function on the Server

	Describes how to store JavaScript functions on a MongoDB server.

	Upgrade to the Latest Revision of MongoDB

	Introduces the basic process for upgrading a MongoDB deployment
between different minor release versions.

	MongoDB Tutorials

	A complete list of tutorials in the MongoDB Manual that address
MongoDB operation and use.

	Use Database Commands

	Manage mongod Processes

	Terminate Running Operations

	Analyze Performance of Database Operations

	Monitor MongoDB with SNMP

	Rotate Log Files

	Manage Journaling

	Store a JavaScript Function on the Server

	Upgrade to the Latest Revision of MongoDB

	MongoDB Tutorials

Use Database Commands

The MongoDB command interface provides access to all non CRUD database operations. Fetching server stats, initializing a
replica set, and running a map-reduce job are all accomplished with
commands.

See Database Commands for list of all commands sorted by
function, and Database Commands for a list of all commands
sorted alphabetically.

Database Command Form

You specify a command first by constructing a standard BSON
document whose first key is the name of the command. For example,
specify the isMaster command using the following
BSON document:

{ isMaster: 1 }

Issue Commands

The mongo shell provides a helper method for running
commands called db.runCommand(). The following operation in
mongo runs the above command:

db.runCommand({ isMaster: 1 })

Many drivers provide an equivalent for
the db.runCommand() method. Internally, running commands
with db.runCommand() is equivalent to a special query
against the $cmd collection.

Many common commands have their own shell helpers or wrappers in the
mongo shell and drivers, such as the
db.isMaster() method in the mongo JavaScript
shell.

admin Database Commands

You must run some commands on the admin database. Normally,
these operations resemble the followings:

use admin
db.runCommand({buildInfo: 1})

However, there’s also a command helper that automatically runs the
command in the context of the admin database:

db._adminCommand({buildInfo: 1})

Command Responses

All commands return, at minimum, a document with an ok field
indicating whether the command has succeeded:

{ 'ok': 1 }

Failed commands return the ok field with a value of 0.

Manage mongod Processes

MongoDB runs as a standard program. You can start MongoDB from a command
line by issuing the mongod command and specifying options.
For a list of options, see mongod. MongoDB can also run
as a Windows service. For details, see
MongoDB as a Windows Service. To install MongoDB, see
Install MongoDB.

The following examples assume the directory containing the
mongod process is in your system paths. The
mongod process is the primary database process that runs on
an individual server. mongos provides a coherent MongoDB
interface equivalent to a mongod from the perspective of a
client. The mongo binary provides the administrative
shell.

This document page discusses the mongod process; however,
some portions of this document may be applicable to mongos
instances.

See also

Run-time Database Configuration,
mongod, mongos, and
Configuration File Options.

Start mongod

By default, MongoDB stores data in the /data/db directory. On
Windows, MongoDB stores data in C:\data\db. On all platforms,
MongoDB listens for connections from clients on port 27017.

To start MongoDB using all defaults, issue the following command at
the system shell:

mongod

Specify a Data Directory

If you want mongod to store data files at a path other
than /data/db you can specify a dbpath. The
dbpath must exist before you start mongod. If it
does not exist, create the directory and the permissions so that
mongod can read and write data to this path. For more
information on permissions, see the security operations
documentation.

To specify a dbpath for mongod to use as a data
directory, use the --dbpath option. The
following invocation will start a mongod instance and store
data in the /srv/mongodb path

mongod --dbpath /srv/mongodb/

Specify a TCP Port

Only a single process can listen for connections on a network
interface at a time. If you run multiple mongod processes
on a single machine, or have other processes that must use this port,
you must assign each a different port to listen on for client
connections.

To specify a port to mongod, use the --port option on the command line. The following command
starts mongod listening on port 12345:

mongod --port 12345

Use the default port number when possible, to avoid confusion.

Start mongod as a Daemon

To run a mongod process as a daemon (i.e. fork),
and write its output to a log file, use the --fork and --logpath
options. You must create the log directory; however, mongod
will create the log file if it does not exist.

The following command starts mongod as a daemon and records log
output to /var/log/mongodb.log.

mongod --fork --logpath /var/log/mongodb.log

Additional Configuration Options

For an overview of common configurations and common configuration deployments.
configurations for common use cases, see
Run-time Database Configuration.

Stop mongod

To stop a mongod instance not running as a daemon,
press Control+C. MongoDB stops when all ongoing operations are
complete and does a clean exit, flushing and closing all data files.

To stop a mongod instance running in the background or
foreground, issue the db.shutdownServer() helper in the
mongo shell. Use the following sequence:

	To open the mongo shell for a mongod instance
running on the default port of 27017, issue the following command:

mongo

	To switch to the admin database and shutdown the mongod
instance, issue the following commands:

use admin
db.shutdownServer()

You may only use db.shutdownServer() when connected to the
mongod when authenticated to the admin database or on
systems without authentication connected via the localhost interface.

Alternately, you can shut down the mongod instance
from a driver using the shutdown command. For details, see the
drivers documentation for your driver.

mongod Shutdown and Replica Sets

If the mongod is the primary in a replica
set, the shutdown process for these mongod instances has
the following steps:

	Check how up-to-date the secondaries are.

	If no secondary is within 10 seconds of the primary,
mongod will return a message that it will not shut down.
You can pass the shutdown command a timeoutSecs
argument to wait for a secondary to catch up.

	If there is a secondary within 10 seconds of the primary, the primary
will step down and wait for the secondary to catch up.

	After 60 seconds or once the secondary has caught up, the primary
will shut down.

If there is no up-to-date secondary and you want the primary to shut
down, issue the shutdown command with the force
argument, as in the following mongo shell operation:

db.adminCommand({shutdown : 1, force : true})

To keep checking the secondaries for a specified number of seconds if
none are immediately up-to-date, issue shutdown with the
timeoutSecs argument. MongoDB will keep checking the secondaries for
the specified number of seconds if none are immediately up-to-date. If
any of the secondaries catch up within the allotted time, the primary
will shut down. If no secondaries catch up, it will not shut down.

The following command issues shutdown with timeoutSecs
set to 5:

db.adminCommand({shutdown : 1, timeoutSecs : 5})

Alternately you can use the timeoutSecs argument with the
db.shutdownServer() method:

db.shutdownServer({timeoutSecs : 5})

Sending a UNIX INT or TERM Signal

You can cleanly stop mongod using a SIGINT or SIGTERM
signal on UNIX-like systems. Either ^C for a non-daemon
mongod instance, kill -2 <pid>, or kill -15 <pid> will
cleanly terminate the mongod instance.

Terminating a mongod instance that is not running with
journaling with kill -9 <pid> (i.e. SIGKILL)
will probably cause data corruption.

To recover data in situations where mongod instances have
not terminated cleanly without journaling see
Recover Data after an Unexpected Shutdown.

Terminate Running Operations

Overview

MongoDB provides two facilitates to terminate running operations:
maxTimeMS() and db.killOp(). Use these
operations as needed to control the behavior of operations in a
MongoDB deployment.

Available Procedures

maxTimeMS

New in version 2.5.4.

The maxTimeMS() method sets a time limit for an
operation. When the operation reaches the specified time limit,
MongoDB interrupts the operation at the next interrupt point.

Terminate a Query

From the mongo shell, use the following method to set a
time limit of 30 milliseconds for this query:

db.location.find({ "town": { "$regex": "(Pine Lumber)",
 "$options": 'i' } }).maxTimeMS(30)

Terminate a Command

Consider a potentially long running operation using
distinct to return each distinct``collection`` field that
has a city key:

db.runCommand({ distinct: "collection",
 key: "city" })

You can add the maxTimeMS field to the command document to set a
time limit of 30 milliseconds for the operation:

db.runCommand({ distinct: "collection",
 key: "city",
 maxTimeMS: 45 })

db.getLastError() and db.getLastErrorObj() will return
errors for interrupted options:

{ "n" : 0,
 "connectionId" : 1,
 "err" : "operation exceeded time limit",
 "ok" : 1 }

killOp

The db.killOp() method interrupts a running operation at
the next interrupt point. db.killOp() identifies
the target operation by operation ID.

db.killOp(<opId>)

Related

To return a list of running operations see
db.currentOp().

Analyze Performance of Database Operations

The database profiler collects fine grained data about MongoDB write
operations, cursors, database commands on a running mongod
instance. You can enable profiling on a per-database or per-instance
basis. The profiling level is also
configurable when enabling profiling.

The database profiler writes all the data it collects to the
system.profile collection, which
is a capped collection. See
Database Profiler Output for overview of the data in the
system.profile documents created
by the profiler.

This document outlines a number of key administration options for the
database profiler. For additional related information, consider the
following resources:

	Database Profiler Output

	Profile Command

	db.currentOp()

Profiling Levels

The following profiling levels are available:

	0 - the profiler is off, does not collect any data.

	1 - collects profiling data for slow operations only. By default
slow operations are those slower than 100 milliseconds.

You can modify the threshold for “slow” operations with the
slowms runtime option or the setParameter
command. See the Specify the Threshold for Slow Operations
section for more information.

	2 - collects profiling data for all database operations.

Enable Database Profiling and Set the Profiling Level

You can enable database profiling from the mongo shell or
through a driver using the profile command. This section
will describe how to do so from the mongo shell. See your driver documentation if you want to control the profiler from
within your application.

When you enable profiling, you also set the profiling level. The profiler records data in the
system.profile
collection. MongoDB creates the system.profile collection in a database after you
enable profiling for that database.

To enable profiling and set the profiling level, issue use the
db.setProfilingLevel() helper in the mongo shell,
passing the profiling level as a parameter. For example, to enable profiling
for all database operations, consider the following operation in the
mongo shell:

db.setProfilingLevel(2)

The shell returns a document showing the previous level of profiling.
The "ok" : 1 key-value pair indicates the operation succeeded:

{ "was" : 0, "slowms" : 100, "ok" : 1 }

To verify the new setting, see the
Check Profiling Level section.

Specify the Threshold for Slow Operations

The threshold for slow operations applies to the entire
mongod instance. When you change the threshold, you change it
for all databases on the instance.

Important

Changing the slow operation threshold for the database
profiler also affects the profiling subsystem’s slow operation
threshold for the entire mongod instance. Always set the
threshold to the highest useful value.

By default the slow operation threshold is 100 milliseconds. Databases with a profiling level
of 1 will log operations slower than 100 milliseconds.

To change the threshold, pass two parameters to the
db.setProfilingLevel() helper in the mongo shell. The first parameter sets the
profiling level for the current database, and the second sets the default
slow operation threshold for the entire mongod
instance.

For example, the following command sets the profiling level for the current
database to 0, which disables profiling, and sets the
slow-operation threshold for the mongod instance to 20
milliseconds. Any database on the instance with a profiling level of 1
will use this threshold:

db.setProfilingLevel(0,20)

Check Profiling Level

To view the profiling level, issue
the following from the mongo shell:

db.getProfilingStatus()

The shell returns a document similar to the following:

{ "was" : 0, "slowms" : 100 }

The was field indicates the current level of profiling.

The slowms field indicates how long an operation must exist in
milliseconds for an operation to pass the “slow” threshold. MongoDB
will log operations that take longer than the threshold if the
profiling level is 1. This document returns the profiling level in
the was field. For an explanation of profiling levels, see
Profiling Levels.

To return only the profiling level, use the db.getProfilingLevel()
helper in the mongo as in the following:

db.getProfilingLevel()

Disable Profiling

To disable profiling, use the following helper in the mongo
shell:

db.setProfilingLevel(0)

Enable Profiling for an Entire mongod Instance

For development purposes in testing environments, you can enable
database profiling for an entire mongod instance. The
profiling level applies to all databases provided by the
mongod instance.

To enable profiling for a mongod instance, pass the following
parameters to mongod at startup or within the
configuration file:

mongod --profile=1 --slowms=15

This sets the profiling level to 1, which collects profiling data
for slow operations only, and defines slow operations as those that
last longer than 15 milliseconds.

See also

profile and slowms.

Database Profiling and Sharding

You cannot enable profiling on a mongos instance. To enable
profiling in a shard cluster, you must enable profiling for each
mongod instance in the cluster.

View Profiler Data

The database profiler logs information about database operations in the
system.profile collection.

To view profiling information, query the system.profile collection. To
view example queries, see Profiler Overhead

For an explanation of the output data, see
Database Profiler Output.

Example Profiler Data Queries

This section displays example queries to the system.profile
collection. For an explanation of the query output, see
Database Profiler Output.

To return the most recent 10 log entries in the system.profile
collection, run a query similar to the following:

db.system.profile.find().limit(10).sort({ ts : -1 }).pretty()

To return all operations except command operations ($cmd), run a query
similar to the following:

db.system.profile.find({ op: { $ne : 'command' } }).pretty()

To return operations for a particular collection, run a query similar to
the following. This example returns operations in the mydb database’s
test collection:

db.system.profile.find({ ns : 'mydb.test' }).pretty()

To return operations slower than 5 milliseconds, run a query
similar to the following:

db.system.profile.find({ millis : { $gt : 5 } }).pretty()

To return information from a certain time range, run a query similar to the following:

db.system.profile.find(
 {
 ts : {
 $gt : new ISODate("2012-12-09T03:00:00Z") ,
 $lt : new ISODate("2012-12-09T03:40:00Z")
 }
 }
).pretty()

The following example looks at the time range, suppresses the user field
from the output to make it easier to read, and sorts the results by how
long each operation took to run:

db.system.profile.find(
 {
 ts : {
 $gt : new ISODate("2011-07-12T03:00:00Z") ,
 $lt : new ISODate("2011-07-12T03:40:00Z")
 }
 },
 { user : 0 }
).sort({ millis : -1 })

Show the Five Most Recent Events

On a database that has profiling enabled, the show profile helper
in the mongo shell displays the 5 most recent operations
that took at least 1 millisecond to execute. Issue show profile
from the mongo shell, as follows:

show profile

Profiler Overhead

When enabled, profiling has a minor effect on performance. The
system.profile collection is a
capped collection with a default size of 1 megabyte. A
collection of this size can typically store several thousand profile
documents, but some application may use more or less profiling data per
operation.

To change the size of the system.profile collection, you must:

	Disable profiling.

	Drop the system.profile collection.

	Create a new system.profile collection.

	Re-enable profiling.

For example, to create a new system.profile collections that’s 4000000 bytes, use
the following sequence of operations in the mongo shell:

db.setProfilingLevel(0)

db.system.profile.drop()

db.createCollection("system.profile", { capped: true, size:4000000 })

db.setProfilingLevel(1)

Monitor MongoDB with SNMP

New in version 2.2.

Enterprise Feature

This feature is only available in MongoDB Enterprise.

This document outlines the use and operation of MongoDB’s SNMP
extension, which is only available in MongoDB Enterprise [http://www.mongodb.com/products/mongodb-enterprise].

Prerequisites

Install MongoDB Enterprise

MongoDB Enterprise

Included Files

The Enterprise packages contain the following files:

	MONGO-MIB.txt:

The MIB file that describes the data (i.e. schema) for MongoDB’s
SNMP output

	mongod.conf:

The SNMP configuration file for reading the SNMP output of
MongoDB. The SNMP configures the community names, permissions,
access controls, etc.

Required Packages

To use SNMP, you must install several prerequisites. The names of the
packages vary by distribution and are as follows:

	Ubuntu 11.04 requires libssl0.9.8, snmp-mibs-downloader,
snmp, and snmpd. Issue a command such as the
following to install these packages:

sudo apt-get install libssl0.9.8 snmp snmpd snmp-mibs-downloader

	Red Hat Enterprise Linux 6.x series and Amazon Linux AMI require
libssl, net-snmp, net-snmp-libs, and net-snmp-utils.
Issue a command such as the following to install these packages:

sudo yum install libssl net-snmp net-snmp-libs net-snmp-utils

	SUSE Enterprise Linux requires libopenssl0_9_8, libsnmp15,
slessp1-libsnmp15, and snmp-mibs. Issue a command such as the
following to install these packages:

sudo zypper install libopenssl0_9_8 libsnmp15 slessp1-libsnmp15 snmp-mibs

Configure SNMP

Install MIB Configuration Files

Ensure that the MIB directory /usr/share/snmp/mibs exists. If
not, issue the following command:

sudo mkdir -p /usr/share/snmp/mibs

Use the following command to create a symbolic link:

sudo ln -s <path>MONGO-MIB.txt /usr/share/snmp/mibs/

Replace [/path/to/mongodb/distribution/] with the path to your
MONGO-MIB.txt configuration file.

Copy the mongod.conf file into the /etc/snmp directory
with the following command:

cp mongod.conf /etc/snmp/mongod.conf

Start Up

You can control MongoDB Enterprise using default or custom control
scripts, just as with any other mongod:

Use the following command to view all SNMP options available in your
MongoDB:

mongod --help | grep snmp

The above command should return the following output:

Module snmp options:
 --snmp-subagent run snmp subagent
 --snmp-master run snmp as master

Ensure that the following directories exist:

	/data/db/ (This is the path where MongoDB stores the data files.)

	/var/log/mongodb/ (This is the path where MongoDB writes the log
output.)

If they do not, issue the following command:

mkdir -p /var/log/mongodb/ /data/db/

Start the mongod instance with the following command:

mongod --snmp-master --port 3001 --fork --dbpath /data/db/ --logpath /var/log/mongodb/1.log

Optionally, you can set these options in a configuration file.

To check if mongod is running with SNMP support, issue the
following command:

ps -ef | grep 'mongod --snmp'

The command should return output that includes the following
line. This indicates that the proper mongod instance is running:

systemuser 31415 10260 0 Jul13 pts/16 00:00:00 mongod --snmp-master --port 3001 # [...]

Test SNMP

Check for the snmp agent process listening on port 1161 with the
following command:

sudo lsof -i :1161

which return the following output:

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
mongod 9238 sysadmin 10u IPv4 96469 0t0 UDP localhost:health-polling

Similarly, this command:

netstat -anp | grep 1161

should return the following output:

udp 0 0 127.0.0.1:1161 0.0.0.0:* 9238/<path>/mongod

Run snmpwalk Locally

snmpwalk provides tools for retrieving and parsing the SNMP data
according to the MIB. If you installed all of the required packages
above, your system will have snmpwalk.

Issue the following command to collect data from mongod using
SNMP:

snmpwalk -m MONGO-MIB -v 2c -c mongodb 127.0.0.1:1161 1.3.6.1.4.1.34601

You may also choose to specify the path to the MIB file:

snmpwalk -m /usr/share/snmp/mibs/MONGO-MIB -v 2c -c mongodb 127.0.0.1:1161 1.3.6.1.4.1.34601

Use this command only to ensure that you can retrieve and validate
SNMP data from MongoDB.

Important

Changed in version 2.5.1: The IANA enterprise number for MongoDB changed from 37601 to
34601. You must update your configuration files to use SNMP.

Troubleshooting

Always check the logs for errors if something does not run as expected;
see the log at /var/log/mongodb/1.log. The presence of the following
line indicates that the mongod cannot read the
/etc/snmp/mongod.conf file:

[SNMPAgent] warning: error starting SNMPAgent as master err:1

Rotate Log Files

	Overview

	Log Rotation With MongoDB

	Syslog Log Rotation

Overview

Log rotation using MongoDB’s standard approach archives the current
log file and starts a new one. To do this, the mongod or
mongos instance renames the current log file by appending a
UTC (GMT) timestamp to the filename, in ISODate format. It then
opens a new log file, closes the old log file, and sends all new log
entries to the new log file.

MongoDB’s standard approach to log rotation only rotates logs
in response to the logRotate command, or when the
mongod or mongos process receives a SIGUSR1
signal from the operating system.

Alternately, you may configure mongod to send log data to syslog. In
this case, you can take advantage of alternate logrotation tools.

See also

For information on logging, see the
Process Logging section.

Log Rotation With MongoDB

The following steps create and rotate a log file:

	Start a mongod with verbose logging, with appending
enabled, and with the following log file:

mongod -v --logpath /var/log/mongodb/server1.log --logappend

	In a separate terminal, list the matching files:

ls /var/log/mongodb/server1.log*

For results, you get:

server1.log

	Rotate the log file using one of the following methods.

	From the mongo shell, issue the logRotate
command from the admin database:

use admin
db.runCommand({ logRotate : 1 })

This is the only available method to rotate log files on
Windows systems.

	For Linux systems, rotate logs for a single process by issuing
the following command:

kill -SIGUSR1 <mongod process id>

	List the matching files again:

ls /var/log/mongodb/server1.log*

For results you get something similar to the following. The
timestamps will be different.

server1.log server1.log.2011-11-24T23-30-00

The example results indicate a log rotation performed at exactly
11:30 pm on November 24th, 2011 UTC, which is the local time
offset by the local time zone. The original log file is the one with
the timestamp. The new log is server1.log file.

If you issue a second logRotate command an hour later,
then an additional file would appear when listing matching files,
as in the following example:

server1.log server1.log.2011-11-24T23-30-00 server1.log.2011-11-25T00-30-00

This operation does not modify the
server1.log.2011-11-24T23-30-00 file created earlier, while
server1.log.2011-11-25T00-30-00 is the previous server1.log
file, renamed. server1.log is a new, empty file that receives
all new log output.

Syslog Log Rotation

New in version 2.2.

To configure mongod to send log data to syslog rather than writing log
data to a file, use the following procedure.

	Start a mongod with the syslog option.

	Store and rotate the log output using your system’s default log
rotation mechanism.

Important

You cannot use syslog with logpath.

Manage Journaling

MongoDB uses write ahead logging to an on-disk journal to
guarantee write operation durability
and to provide crash resiliency. Before applying a change to the data
files, MongoDB writes the change operation to the journal. If MongoDB
should terminate or encounter an error before it can write the changes
from the journal to the data files, MongoDB can re-apply the write
operation and maintain a consistent state.

Without a journal, if mongod exits unexpectedly, you must
assume your data is in an inconsistent state, and you must run either
repair
or, preferably, resync
from a clean member of the replica set.

With journaling enabled, if mongod stops unexpectedly,
the program can recover everything written to the journal, and the
data remains in a consistent state. By default, the greatest extent of lost
writes, i.e., those not made to the journal, are those made in the last
100 milliseconds. See journalCommitInterval for more
information on the default.

With journaling, if you want a data set to reside entirely in RAM, you
need enough RAM to hold the data set plus the “write working set.” The
“write working set” is the amount of unique data you expect to see
written between re-mappings of the private view. For information on
views, see Storage Views used in Journaling.

Important

Changed in version 2.0: For 64-bit builds of mongod, journaling is enabled by
default. For other platforms, see journal.

Procedures

Enable Journaling

Changed in version 2.0: For 64-bit builds of mongod, journaling is enabled by default.

To enable journaling, start mongod with the
--journal command line option.

If no journal files exist, when mongod starts, it must
preallocate new journal files. During this operation, the
mongod is not listening for connections until preallocation
completes: for some systems this may take a several minutes. During
this period your applications and the mongo shell are not
available.

Disable Journaling

Warning

Do not disable journaling on production systems. If your
mongod instance stops without shutting down cleanly
unexpectedly for any reason, (e.g. power failure) and you are
not running with journaling, then you must recover from an
unaffected replica set member or backup, as described in
repair.

To disable journaling, start mongod with the
--nojournal command line option.

Get Commit Acknowledgment

You can get commit acknowledgment with the
getLastError command and the j option. For details, see
Write Concern Reference.

Avoid Preallocation Lag

To avoid preallocation lag, you can
preallocate files in the journal directory by copying them from another
instance of mongod.

Preallocated files do not contain data. It is safe to later remove them.
But if you restart mongod with journaling, mongod
will create them again.

Example

The following sequence preallocates journal files for an
instance of mongod running on port 27017 with a database
path of /data/db.

For demonstration purposes, the sequence starts by creating a set of
journal files in the usual way.

	Create a temporary directory into which to create a set of journal
files:

mkdir ~/tmpDbpath

	Create a set of journal files by staring a mongod
instance that uses the temporary directory:

mongod --port 10000 --dbpath ~/tmpDbpath --journal

	When you see the following log output, indicating
mongod has the files, press CONTROL+C to stop the
mongod instance:

web admin interface listening on port 11000

	Preallocate journal files for the new instance of
mongod by moving the journal files from the data directory
of the existing instance to the data directory of the new instance:

mv ~/tmpDbpath/journal /data/db/

	Start the new mongod instance:

mongod --port 27017 --dbpath /data/db --journal

Monitor Journal Status

Use the following commands and methods to monitor journal status:

	serverStatus

The serverStatus command returns database status
information that is useful for assessing performance.

	journalLatencyTest

Use journalLatencyTest to measure how long it takes on
your volume to write to the disk in an append-only fashion. You can
run this command on an idle system to get a baseline sync time for
journaling. You can also run this command on a busy system to see the
sync time on a busy system, which may be higher if the journal
directory is on the same volume as the data files.

The journalLatencyTest command also provides a way to
check if your disk drive is buffering writes in its local cache. If
the number is very low (i.e., less than 2 milliseconds) and the drive
is non-SSD, the drive is probably buffering writes. In that case,
enable cache write-through for the device in your operating system,
unless you have a disk controller card with battery backed RAM.

Change the Group Commit Interval

Changed in version 2.0.

You can set the group commit interval using the
--journalCommitInterval
command line option. The allowed range is 2 to 300 milliseconds.

Lower values increase the durability of the journal at the expense of
disk performance.

Recover Data After Unexpected Shutdown

On a restart after a crash, MongoDB replays all journal files in the
journal directory before the server becomes available. If MongoDB must
replay journal files, mongod notes these events in the log
output.

There is no reason to run repairDatabase in these
situations.

Store a JavaScript Function on the Server

Note

We do not recommend using server-side stored functions if
possible.

There is a special system collection named system.js that can store
JavaScript functions for reuse.

To store a function, you can use the db.collection.save(), as
in the following example:

db.system.js.save(
 {
 _id : "myAddFunction" ,
 value : function (x, y){ return x + y; }
 }
);

	The _id field holds the name of the function and is unique per
database.

	The value field holds the function definition

Once you save a function in the system.js collection, you can use
the function from any JavaScript context (e.g. eval
command or the mongo shell method db.eval(),
$where operator, mapReduce or mongo
shell method db.collection.mapReduce()).

Consider the following example from the mongo shell that
first saves a function named echoFunction to the system.js
collection and calls the function using db.eval()
method:

db.system.js.save(
 { _id: "echoFunction",
 value : function(x) { return x; }
 }
)

db.eval("echoFunction('test')")

See http://github.com/mongodb/mongo/tree/master/jstests/storefunc.js for a full example.

New in version 2.1: In the mongo shell, you can use
db.loadServerScripts() to load all the scripts saved in
the system.js collection for the current database. Once loaded, you
can invoke the functions directly in the shell, as in the following
example:

db.loadServerScripts();

echoFunction(3);

myAddFunction(3, 5);

Upgrade to the Latest Revision of MongoDB

Revisions provide security patches, bug fixes, and new or changed
features that do not contain any backward breaking changes. Always
upgrade to the latest revision in your release series. The third number
in the MongoDB version number indicates
the revision.

Before Upgrading

	Ensure you have an up-to-date backup of your data set. See
Backup Strategies for MongoDB Systems.

	Consult the following documents for any special considerations or
compatibility issues specific to your MongoDB release:
	The release notes, located at Release Notes.

	The documentation for your driver. See MongoDB Drivers and Client Libraries.

	If your installation includes replica sets, plan
the upgrade during a predefined maintenance window.

	Before you upgrade a production environment, use the procedures in
this document to upgrade a staging environment that reproduces your
production environment, to ensure that your production configuration
is compatible with all changes.

Upgrade Procedure

Important

Always backup all of your data before upgrading MongoDB.

Upgrade each mongod and mongos binary
separately, using the procedure described here. When upgrading a binary,
use the procedure Upgrade a MongoDB Instance.

Follow this upgrade procedure:

	For deployments that use authentication, first upgrade all of your
MongoDB drivers. To upgrade, see the
documentation for your driver.

	Upgrade sharded clusters, as described in
Upgrade Sharded Clusters.

	Upgrade any standalone instances. See Upgrade a MongoDB Instance.

	Upgrade any replica sets that are not part of a sharded cluster, as
described in Upgrade Replica Sets.

Upgrade a MongoDB Instance

To upgrade a mongod or mongos instance, use one
of the following approaches:

	Upgrade the instance using the operating system’s package management
tool and the official MongoDB packages. This is the preferred
approach. See Install MongoDB.

	Upgrade the instance by replacing the existing binaries with new
binaries. See Replace the Existing Binaries.

Replace the Existing Binaries

Important

Always backup all of your data before upgrading MongoDB.

This section describes how to upgrade MongoDB by replacing the existing
binaries. The preferred approach to an upgrade is to use the operating
system’s package management tool and the official MongoDB packages, as
described in Install MongoDB.

To upgrade a mongod or mongos instance by
replacing the existing binaries:

	Download the binaries for the latest MongoDB revision from the
MongoDB Download Page [http://downloads.mongodb.org/] and store the binaries in a temporary
location. The binaries download as compressed files that uncompress
to the directory structure used by the MongoDB installation.

	Shutdown the instance.

	Replace the existing MongoDB binaries with the downloaded binaries.

	Restart the instance.

Upgrade Sharded Clusters

To upgrade a sharded cluster:

	Disable the cluster’s balancer, as described in
Disable the Balancer.

	Upgrade each mongos instance by following the instructions
below in Upgrade a MongoDB Instance. You can upgrade the
mongos instances in any order.

	Upgrade each mongod config server individually starting with the last config
server listed in your mongos --configdb string and working
backward. To keep the cluster online, make sure at least one config
server is always running. For each config server upgrade, follow the
instructions below in Upgrade a MongoDB Instance

Example

Given the following config string:

mongos --configdb cfg0.example.net:27019,cfg1.example.net:27019,cfg2.example.net:27019

You would upgrade the config servers in the following order:

	cfg2.example.net

	cfg1.example.net

	cfg0.example.net

	Upgrade each shard.

	If a shard is a replica set, upgrade the shard using the
procedure below titled Upgrade Replica Sets.

	If a shard is a standalone instance, upgrade the shard using the
procedure below titled
Upgrade a MongoDB Instance.

	Re-enable the balancer, as described in Enable the Balancer.

Upgrade Replica Sets

To upgrade a replica set, upgrade each member individually, starting with
the secondaries and finishing with the
primary. Plan the upgrade during a predefined maintenance window.

Upgrade Secondaries

Upgrade each secondary separately as follows:

	Upgrade the secondary’s mongod binary by following the
instructions below in Upgrade a MongoDB Instance.

	After upgrading a secondary, wait for the secondary to recover to
the SECONDARY state before upgrading the next instance. To
check the member’s state, issue rs.status() in the
mongo shell.

The secondary may briefly go into STARTUP2 or RECOVERING.
This is normal. Make sure to wait for the secondary to fully recover
to SECONDARY before you continue the upgrade.

Upgrade the Primary

	Step down the primary to initiate the normal failover procedure. Using one of the following:

	The rs.stepDown() helper in the mongo shell.

	The replSetStepDown database command.

During failover, the set cannot accept writes. Typically this takes
10-20 seconds. Plan the upgrade during a predefined maintenance
window.

Note

Stepping down the primary is preferable to directly
shutting down the primary. Stepping down expedites the
failover procedure.

	Once the primary has stepped down, call the rs.status()
method from the mongo shell until you see that another
member has assumed the PRIMARY state.

	Shut down the original primary and upgrade its instance by
following the instructions below in Upgrade a MongoDB Instance.

MongoDB Tutorials

This page lists the tutorials available
as part of the MongoDB Manual. In addition to these
documents, you can refer to the introductory MongoDB Tutorial. If there is a process or pattern that you
would like to see included here, please open a Jira Case [https://jira.mongodb.org/browse/DOCS].

Getting Started

	Install MongoDB on Linux Systems

	Install MongoDB on Red Hat Enterprise, CentOS, or Fedora

	Install MongoDB on Debian

	Install MongoDB on Ubuntu

	Install MongoDB on OS X

	Install MongoDB on Windows

	Getting Started with MongoDB

	Generate Test Data

Administration

Replica Sets

	Deploy a Replica Set

	Convert a Standalone to a Replica Set

	Add Members to a Replica Set

	Remove Members from Replica Set

	Replace a Replica Set Member

	Adjust Priority for Replica Set Member

	Resync a Member of a Replica Set

	Deploy a Geographically Redundant Replica Set

	Change the Size of the Oplog

	Force a Member to Become Primary

	Change Hostnames in a Replica Set

	Add an Arbiter to Replica Set

	Convert a Secondary to an Arbiter

	Configure a Secondary’s Sync Target

	Configure a Delayed Replica Set Member

	Configure a Hidden Replica Set Member

	Configure Non-Voting Replica Set Member

	Prevent Secondary from Becoming Primary

	Configure Replica Set Tag Sets

	Manage Chained Replication

	Reconfigure a Replica Set with Unavailable Members

	Recover Data after an Unexpected Shutdown

	Troubleshoot Replica Sets

Sharding

	Deploy a Sharded Cluster

	Convert a Replica Set to a Replicated Sharded Cluster

	Add Shards to a Cluster

	Remove Shards from an Existing Sharded Cluster

	Deploy Three Config Servers for Production Deployments

	Migrate Config Servers with the Same Hostname

	Migrate Config Servers with Different Hostnames

	Replace a Config Server

	Migrate a Sharded Cluster to Different Hardware

	Backup Cluster Metadata

	Backup a Small Sharded Cluster with mongodump

	Backup a Sharded Cluster with Filesystem Snapshots

	Backup a Sharded Cluster with Database Dumps

	Restore a Single Shard

	Restore a Sharded Cluster

	Schedule Backup Window for Sharded Clusters

	Manage Shard Tags

Basic Operations

	Use Database Commands

	Recover Data after an Unexpected Shutdown

	Copy Databases Between Instances

	Expire Data from Collections by Setting TTL

	Analyze Performance of Database Operations

	Rotate Log Files

	Build Old Style Indexes

	Manage mongod Processes

	Backup and Restore with MongoDB Tools

	Backup and Restore with Filesystem Snapshots

Security

	Configure Linux iptables Firewall for MongoDB

	Configure Windows netsh Firewall for MongoDB

	Enable Authentication

	Create a User Administrator

	Add a User to a Database

	Define MongoDB Access Roles

	Modify User Privileges

	View Existing Access Roles

	Generate a Key File

	Deploy MongoDB with Kerberos Authentication

	Create a Vulnerability Report

Development Patterns

	Perform Two Phase Commits

	Isolate Sequence of Operations

	Create an Auto-Incrementing Sequence Field

	Enforce Unique Keys for Sharded Collections

	Aggregation Examples

	Model Data to Support Keyword Search

	Limit Number of Elements in an Array after an Update

	Perform Incremental Map-Reduce

	Troubleshoot the Map Function

	Troubleshoot the Reduce Function

	Store a JavaScript Function on the Server

Text Search Patterns

	Enable Text Search

	Create a text Index

	Search String Content for Text

	Specify a Language for Text Index

	Create text Index with Long Name

	Control Search Results with Weights

	Create text Index to Cover Queries

	Limit the Number of Entries Scanned

Data Modeling Patterns

	Model One-to-One Relationships with Embedded Documents

	Model One-to-Many Relationships with Embedded Documents

	Model One-to-Many Relationships with Document References

	Model Data for Atomic Operations

	Model Tree Structures with Parent References

	Model Tree Structures with Child References

	Model Tree Structures with Materialized Paths

	Model Tree Structures with Nested Sets

Backup and Recovery

The following tutorials describe backup and restoration for a
mongod instance:

	Backup and Restore with MongoDB Tools

	The procedure for writing the contents of a database to a BSON
(i.e. binary) dump file for backing up MongoDB databases.

	Backup and Restore with Filesystem Snapshots

	An outline of procedures for creating MongoDB data set backups using
system-level file snapshot tool, such as LVM or native
storage appliance tools.

	Restore a Replica Set from MongoDB Backups

	Describes procedure for restoring a replica set from an archived
backup such as a mongodump or MMS Backup [http://mms.mongodb.com] file.

	Backup and Restore Sharded Clusters

	Detailed procedures and considerations for backing up sharded
clusters and single shards.

	Copy Databases Between Instances

	Copy databases between mongod instances or
within a single mongod instance or deployment.

	Recover Data after an Unexpected Shutdown

	Recover data from MongoDB data files that were not properly closed
or are in an inconsistent state.

	Backup and Restore with MongoDB Tools

	Backup and Restore with Filesystem Snapshots

	Restore a Replica Set from MongoDB Backups

	Backup and Restore Sharded Clusters
	Backup a Small Sharded Cluster with mongodump

	Backup a Sharded Cluster with Filesystem Snapshots

	Backup a Sharded Cluster with Database Dumps

	Schedule Backup Window for Sharded Clusters

	Restore a Single Shard

	Restore a Sharded Cluster

	Copy Databases Between Instances

	Recover Data after an Unexpected Shutdown

Backup and Restore with MongoDB Tools

This document describes the process for writing the entire contents of
your MongoDB instance to a file in a binary format. If disk-level
snapshots are not available, this approach provides the best option for
full system database backups. If your system has disk level snapshot
capabilities, consider the backup methods described in
Backup and Restore with Filesystem Snapshots.

See also

Backup Strategies for MongoDB Systems,
mongodump, and
mongorestore.

Backup a Database with mongodump

Important

mongodump does not dump the content of the
local database.

Basic mongodump Operations

The mongodump utility can back up data by either:

	connecting to a running mongod or
mongos instance, or

	accessing data files without an active instance.

The utility can create a backup for an entire server, database or collection,
or can use a query to backup just part of a collection.

When you run mongodump without any arguments, the command
connects to the MongoDB instance on the local system
(e.g. 127.0.0.1 or localhost) on port 27017 and creates a
database backup named dump/ in the current directory.

To backup data from a mongod or mongos instance
running on the same machine and on the default port of 27017
use the following command:

mongodump

Warning

The data format used by mongodump from version 2.2 or
later is incompatible with earlier versions of mongod.
Do not use recent versions of mongodump to back up older
data stores.

To limit the amount of data included in the database dump, you can
specify --db and
--collection as options to the
mongodump command. For example:

mongodump --dbpath /data/db/ --out /data/backup/

mongodump --host mongodb.example.net --port 27017

mongodump will write BSON files that hold a copy of
data accessible via the mongod listening on port 27017 of
the mongodb.example.net host.

mongodump --collection collection --db test

This command creates a dump of the collection named collection
from the database test in a dump/ subdirectory of the current
working directory.

Point in Time Operation Using Oplogs

Use the --oplog option with
mongodump to collect the oplog entries to build a
point-in-time snapshot of a database within a replica set. With --oplog, mongodump copies all the data from
the source database as well as all of the oplog entries from
the beginning of the backup procedure to until the backup procedure
completes. This backup procedure, in conjunction with
mongorestore --oplogReplay,
allows you to restore a backup that reflects a consistent and specific
moment in time.

Create Backups Without a Running mongod Instance

If your MongoDB instance is not running, you can use the
--dbpath option to specify the
location to your MongoDB instance’s database files. mongodump
reads from the data files directly with this operation. This
locks the data directory to prevent conflicting writes. The
mongod process must not be running or attached to these
data files when you run mongodump in this
configuration. Consider the following example:

Example

Backup a MongoDB Instance Without a Running mongod

Given a MongoDB instance that contains the customers,
products, and suppliers databases, the following
mongodump operation backs up the databases using the
--dbpath option, which specifies the
location of the database files on the host:

mongodump --dbpath /data -o dataout

The --out option allows you to specify the directory where
mongodump will save the backup. mongodump creates
a separate backup directory for each of the backed up databases:
dataout/customers, dataout/products, and
dataout/suppliers.

Create Backups from Non-Local mongod Instances

The --host and
--port options for
mongodump allow you to connect to and backup from a remote host.
Consider the following example:

mongodump --host mongodb1.example.net --port 3017 --username user --password pass --out /opt/backup/mongodump-2012-10-24

On any mongodump command you may, as above, specify username
and password credentials to specify database authentication.

Restore a Database with mongorestore

The mongorestore utility restores a binary backup created by
mongodump. By default, mongorestore looks for a
database backup in the dump/ directory.

The mongorestore utility can restore data either by:

	connecting to a running mongod or
mongos directly, or

	writing to a set of MongoDB data files without use of a running
mongod.

mongorestore can restore either an entire database backup
or a subset of the backup.

To use mongorestore to connect to an active
mongod or mongos, use a command with the following prototype form:

mongorestore --port <port number> <path to the backup>

To use mongorestore to write to data files
without using a running mongod, use a command with the following prototype
form:

mongorestore --dbpath <database path> <path to the backup>

Consider the following example:

mongorestore dump-2012-10-25/

Here, mongorestore imports the database backup in
the dump-2012-10-25 directory to the mongod instance
running on the localhost interface.

Restore Point in Time Oplog Backup

If you created your database dump using the --oplog option to ensure a point-in-time snapshot, call
mongorestore with the
--oplogReplay
option, as in the following example:

mongorestore --oplogReplay

You may also consider using the mongorestore --objcheck
option to check the integrity of objects while inserting them into the
database, or you may consider the mongorestore --drop option to drop each
collection from the database before restoring from
backups.

Restore a Subset of data from a Binary Database Dump

mongorestore also includes the ability to a filter
to all input before inserting it into the new database. Consider the
following example:

mongorestore --filter '{"field": 1}'

Here, mongorestore only adds documents to the database from
the dump located in the dump/ folder if the documents have a
field name field that holds a value of 1. Enclose the
filter in single quotes (e.g. ') to prevent the filter from
interacting with your shell environment.

Restore Without a Running mongod

mongorestore can write data to MongoDB data files without
needing to connect to a mongod directly.

Example

Restore a Database Without a Running mongod

Given a set of backed up databases in the /data/backup/ directory:

	/data/backup/customers,

	/data/backup/products, and

	/data/backup/suppliers

The following mongorestore command restores the
products database. The command uses the --dbpath option to specify the path to the MongoDB
data files:

mongorestore --dbpath /data/db --journal /data/backup/products

The mongorestore imports the database backup in the
/data/backup/products directory to the mongod instance
that runs on the localhost interface. The mongorestore
operation imports the backup even if the mongod is not
running.

The --journal option ensures that
mongorestore records all operation in the durability
journal. The journal prevents data file corruption if
anything (e.g. power failure, disk failure, etc.) interrupts the
restore operation.

See also

mongodump and
mongorestore.

Restore Backups to Non-Local mongod Instances

By default, mongorestore connects to a MongoDB instance
running on the localhost interface (e.g. 127.0.0.1) and on the
default port (27017). If you want to restore to a different host or
port, use the --host and --port options.

Consider the following example:

mongorestore --host mongodb1.example.net --port 3017 --username user --password pass /opt/backup/mongodump-2012-10-24

As above, you may specify username and password connections if your
mongod requires authentication.

Backup and Restore with Filesystem Snapshots

This document describes a procedure for creating backups of MongoDB
systems using system-level tools, such as LVM or storage
appliance, as well as the corresponding restoration strategies.

These filesystem snapshots, or “block-level” backup methods use system
level tools to create copies of the device that holds MongoDB’s data
files. These methods complete quickly and work reliably, but require
more system configuration outside of MongoDB.

See also

Backup Strategies for MongoDB Systems and
Backup and Restore with MongoDB Tools.

Snapshots Overview

Snapshots work by creating pointers between the live data and a
special snapshot volume. These pointers are theoretically equivalent
to “hard links.” As the working data diverges from the snapshot,
the snapshot process uses a copy-on-write strategy. As a result the snapshot
only stores modified data.

After making the snapshot, you mount the snapshot image on your
file system and copy data from the snapshot. The resulting backup
contains a full copy of all data.

Snapshots have the following limitations:

	The database must be in a consistent or recoverable state when the
snapshot takes place. This means that all writes accepted by the
database need to be fully written to disk: either to the
journal or to data files.

If all writes are not on disk when the backup occurs, the backup
will not reflect these changes. If writes are in progress when the
backup occurs, the data files will reflect an inconsistent
state. With journaling all data-file states
resulting from in-progress writes are recoverable; without
journaling you must flush all pending writes to disk before
running the backup operation and must ensure that no writes occur during
the entire backup procedure.

If you do use journaling, the journal must reside on the same volume
as the data.

	Snapshots create an image of an entire disk image. Unless you need
to back up your entire system, consider isolating your MongoDB data
files, journal (if applicable), and configuration on one logical
disk that doesn’t contain any other data.

Alternately, store all MongoDB data files on a dedicated device
so that you can make backups without duplicating extraneous data.

	Ensure that you copy data from snapshots and onto other systems to
ensure that data is safe from site failures.

	Although different snapshots methods provide different capability, the
LVM method outlined below does not provide any capacity for
capturing incremental backups.

Snapshots With Journaling

If your mongod instance has journaling enabled, then you can
use any kind of file system or volume/block level snapshot tool to
create backups.

If you manage your own infrastructure on a Linux-based system, configure
your system with LVM to provide your disk packages and provide
snapshot capability. You can also use LVM-based setups within a
cloud/virtualized environment.

Note

Running LVM provides additional flexibility and enables the
possibility of using snapshots to back up MongoDB.

Snapshots with Amazon EBS in a RAID 10 Configuration

If your deployment depends on Amazon’s Elastic Block Storage (EBS) with
RAID configured within your instance, it is impossible to get a
consistent state across all disks using the platform’s snapshot tool. As
an alternative, you can do one of the following:

	Flush all writes to disk and create a write lock to ensure
consistent state during the backup process.

If you choose this option see Create Backups on Instances that do not have Journaling Enabled.

	Configure LVM to run and hold your MongoDB data files on top of the
RAID within your system.

If you choose this option, perform the LVM backup operation described
in Create a Snapshot.

Backup and Restore Using LVM on a Linux System

This section provides an overview of a simple backup process
using LVM on a Linux system. While the tools, commands, and paths may
be (slightly) different on your system the following steps provide a
high level overview of the backup operation.

Note

Only use the following procedure as a guideline for a backup system
and infrastructure. Production backup systems must consider a
number of application specific requirements and factors unique to
specific environments.

Create a Snapshot

To create a snapshot with LVM, issue a command as root in the
following format:

lvcreate --size 100M --snapshot --name mdb-snap01 /dev/vg0/mongodb

This command creates an LVM snapshot (with the --snapshot option)
named mdb-snap01 of the mongodb volume in the vg0
volume group.

This example creates a snapshot named mdb-snap01 located at
/dev/vg0/mdb-snap01. The location and paths to your systems volume
groups and devices may vary slightly depending on your operating
system’s LVM configuration.

The snapshot has a cap of at 100 megabytes, because of the parameter
--size 100M. This size does not reflect the total amount of the
data on the disk, but rather the quantity of differences between the
current state of /dev/vg0/mongodb and the creation of the snapshot
(i.e. /dev/vg0/mdb-snap01.)

Warning

Ensure that you create snapshots with enough space to account for
data growth, particularly for the period of time that it takes to copy
data out of the system or to a temporary image.

If your snapshot runs out of space, the snapshot image
becomes unusable. Discard this logical volume and create another.

The snapshot will exist when the command returns. You can restore
directly from the snapshot at any time or by creating a new logical
volume and restoring from this snapshot to the alternate image.

While snapshots are great for creating high quality backups very
quickly, they are not ideal as a format for storing backup
data. Snapshots typically depend and reside on the same storage
infrastructure as the original disk images. Therefore, it’s crucial
that you archive these snapshots and store them elsewhere.

Archive a Snapshot

After creating a snapshot, mount the snapshot and move the data to
separate storage. Your system might try to compress the backup images as
you move the offline. The following procedure fully
archives the data from the snapshot:

umount /dev/vg0/mdb-snap01
dd if=/dev/vg0/mdb-snap01 | gzip > mdb-snap01.gz

The above command sequence does the following:

	Ensures that the /dev/vg0/mdb-snap01 device is not mounted.

	Performs a block level copy of the entire snapshot image using the dd
command and compresses the result in a gzipped file in the
current working directory.

Warning

This command will create a large gz file in your current
working directory. Make sure that you run this command in a file
system that has enough free space.

Restore a Snapshot

To restore a snapshot created with the above method, issue the following
sequence of commands:

lvcreate --size 1G --name mdb-new vg0
gzip -d -c mdb-snap01.gz | dd of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

The above sequence does the following:

	Creates a new logical volume named mdb-new, in the /dev/vg0
volume group. The path to the new device will be /dev/vg0/mdb-new.

Warning

This volume will have a maximum size of 1 gigabyte. The original
file system must have had a total size of 1 gigabyte or smaller, or
else the restoration will fail.

Change 1G to your desired volume size.

	Uncompresses and unarchives the mdb-snap01.gz into the
mdb-new disk image.

	Mounts the mdb-new disk image to the /srv/mongodb directory.
Modify the mount point to correspond to your MongoDB data file
location, or other location as needed.

Note

The restored snapshot will have a stale mongod.lock file. If
you do not remove this file from the snapshot, and MongoDB may
assume that the stale lock file indicates an unclean shutdown. If
you’re running with journal enabled, and you do not
use db.fsyncLock(), you do not need to remove the
mongod.lock file. If you use db.fsyncLock() you will
need to remove the lock.

Restore Directly from a Snapshot

To restore a backup without writing to a compressed gz file, use
the following sequence of commands:

umount /dev/vg0/mdb-snap01
lvcreate --size 1G --name mdb-new vg0
dd if=/dev/vg0/mdb-snap01 of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

Remote Backup Storage

You can implement off-system backups using the combined process and SSH.

This sequence is identical to procedures explained above, except that it
archives and compresses the backup on a remote system using SSH.

Consider the following procedure:

umount /dev/vg0/mdb-snap01
dd if=/dev/vg0/mdb-snap01 | ssh username@example.com gzip > /opt/backup/mdb-snap01.gz
lvcreate --size 1G --name mdb-new vg0
ssh username@example.com gzip -d -c /opt/backup/mdb-snap01.gz | dd of=/dev/vg0/mdb-new
mount /dev/vg0/mdb-new /srv/mongodb

Create Backups on Instances that do not have Journaling Enabled

If your mongod instance does not run with journaling
enabled, or if your journal is on a separate volume, obtaining a
functional backup of a consistent state is more complicated.
As described in this section, you must flush all
writes to disk and lock the database to prevent writes during the
backup process. If you have a replica set configuration,
then for your backup use a
secondary which is not receiving reads (i.e. hidden
member).

	To flush writes to disk and to “lock” the database (to prevent
further writes), issue the db.fsyncLock() method in the
mongo shell:

db.fsyncLock();

	Perform the backup operation described in Create a Snapshot.

	To unlock the database after the snapshot has completed, use the
following command in the mongo shell:

db.fsyncUnlock();

Note

Changed in version 2.0: MongoDB 2.0 added db.fsyncLock() and
db.fsyncUnlock() helpers to the mongo
shell. Prior to this version, use the fsync
command with the lock option, as follows:

db.runCommand({ fsync: 1, lock: true });
db.runCommand({ fsync: 1, lock: false });

Note

The database cannot be locked with db.fsyncLock() while
profiling is enabled. You must disable profiling before locking
the database with db.fsyncLock(). Disable profiling
using db.setProfilingLevel() as follows in the
mongo shell:

db.setProfilingLevel(0)

Warning

Changed in version 2.2: When used in combination with fsync or
db.fsyncLock(), mongod may block some
reads, including those from mongodump, when
queued write operation waits behind the fsync
lock.

Restore a Replica Set from MongoDB Backups

This procedure outlines the process for taking MongoDB data and
restoring that data into a new replica set. Use this approach
for seeding test deployments from production backups as well as part
of disaster recovery.

You cannot simply restore a single data set to three new
mongod instances and then create a replica set. In this
situation MongoDB will force the secondaries to perform an initial
sync. The procedures in this document describe the correct and
efficient ways to deploy a replica set.

Restore Database into a Single Node Replica Set

	Obtain backup MongoDB Database files. These files may come from
a file system snapshot. The MMS
Backup Service produces MongoDB database files for stored
snapshots [http://mms.mongodb.org/help/backup/tutorial/restore-snapshot] and point and
time snapshots [http://mms.mongodb.org/help/backup/tutorial/restore-from-point-in-time-snapshot].

You can also use mongorestore to restore database files
using data created with mongodump. See
Backup and Restore with MongoDB Tools for
more information.

	Start a mongod using data files from the backup as the
dbpath. In the following example, /data/db is the dbpath to
the data files:

mongod --dbpath /data/db

	Convert your standalone mongod process to a single node
replica set by shutting down the mongod instance, and
restarting it with the --replSet
option, as in the following example:

mongod --dbpath /data/db --replSet <replName>

Optional

Consider explicitly setting a oplogSize to control
the size of the oplog created for this replica set
member.

	Connect to the mongod instance.

	Use rs.initiate() to initiate the new replica set.

Add Members to the Replica Set

MongoDB provides two options for restoring secondary members of a
replica set:

	Manually copy the database files to each data directory.

	Allow initial sync to distribute
data automatically.

The following sections outlines both approaches.

Note

If your database is large, initial sync can take a long time to
complete. For large databases, it might be preferable to copy the
database files onto each host.

Copy Database Files and Restart mongod Instance

Use the following sequence of operations to “seed” additional members
of the replica set with the restored data by copying MongoDB data
files directly.

	Shut down the mongod instance that you restored.
Using --shutdown or
db.shutdownServer() to ensure a clean shut down.

	Copy the primary’s data directory into the
dbpath of the other members of the replica set. The
dbpath is /data/db by default.

	Start the mongod instance that you restored.

	In a mongo shell connected to the primary, add
the secondaries to the replica set using
rs.add(). See Deploy a Replica Set for
more information about deploying a replica set.

Update Secondaries using Initial Sync

Use the following sequence of operations to “seed” additional members
of the replica set with the restored data using the default initial
sync operation.

	Ensure that the data directories on the prospective replica set
members are empty.

	Add each prospective member to the replica set. Initial Sync will copy the data from the
primary to the other members of the replica set.

Backup and Restore Sharded Clusters

The following tutorials describe backup and restoration for sharded clusters:

	Backup a Small Sharded Cluster with mongodump

	If your sharded cluster holds a small data set, you can use
mongodump to capture the entire backup in a reasonable
amount of time.

	Backup a Sharded Cluster with Filesystem Snapshots

	Use file system snapshots back up each component in the sharded cluster
individually. The procedure involves stopping the cluster balancer.
If your system configuration allows file system backups, this might be
more efficient than using MongoDB tools.

	Backup a Sharded Cluster with Database Dumps

	Create backups using mongodump to back up each component in the
cluster individually.

	Schedule Backup Window for Sharded Clusters

	Limit the operation of the cluster balancer to provide a window for
regular backup operations.

	Restore a Single Shard

	An outline of the procedure and consideration for restoring a single
shard from a backup.

	Restore a Sharded Cluster

	An outline of the procedure and consideration for restoring an
entire sharded cluster from backup.

	Backup a Small Sharded Cluster with mongodump

	Backup a Sharded Cluster with Filesystem Snapshots

	Backup a Sharded Cluster with Database Dumps

	Schedule Backup Window for Sharded Clusters

	Restore a Single Shard

	Restore a Sharded Cluster

Backup a Small Sharded Cluster with mongodump

Overview

If your sharded cluster holds a small data set, you can
connect to a mongos using mongodump. You can
create backups of your MongoDB cluster, if your backup infrastructure
can capture the entire backup in a reasonable amount of time and if
you have a storage system that can hold the complete MongoDB data set.

Read Sharded Cluster Backup Considerations for a high-level overview of important
considerations as well as a list of alternate backup tutorials.

Important

By default mongodump issue its queries to
the non-primary nodes.

Procedure

Capture Data

Note

If you use mongodump without specifying a database
or collection, mongodump will capture collection data
and the cluster meta-data from the config servers.

You cannot use the --oplog option for
mongodump when capturing data from
mongos. This option is only available when running
directly against a replica set member.

You can perform a backup of a sharded cluster by connecting
mongodump to a mongos. Use the following
operation at your system’s prompt:

mongodump --host mongos3.example.net --port 27017

mongodump will write BSON files that hold a copy of
data stored in the sharded cluster accessible via the
mongos listening on port 27017 of the
mongos3.example.net host.

Restore Data

Backups created with mongodump do not reflect the chunks or
the distribution of data in the sharded collection or
collections. Like all mongodump output, these backups
contain separate directories for each database and BSON files
for each collection in that database.

You can restore mongodump output to any MongoDB instance,
including a standalone, a replica set, or a new
sharded cluster. When restoring data to sharded cluster, you
must deploy and configure sharding before restoring data from the
backup. See Deploy a Sharded Cluster for more information.

Backup a Sharded Cluster with Filesystem Snapshots

Overview

This document describes a procedure for taking a backup of all
components of a sharded cluster. This procedure uses file system
snapshots to capture a copy of the mongod instance. An
alternate procedure that uses mongodump to create binary
database dumps when file-system snapshots are not available. See
Backup a Sharded Cluster with Database Dumps for the
alternate procedure.

See Sharded Cluster Backup Considerations for a full higher level overview
backing up a sharded cluster as well as links to other tutorials that
provide alternate procedures.

Important

To capture a point-in-time backup from a sharded
cluster you must stop all writes to the cluster. On a running
production system, you can only capture an approximation of
point-in-time snapshot.

Procedure

In this procedure, you will stop the cluster balancer and take a backup
up of the config database, and then take backups of each
shard in the cluster using a file-system snapshot tool. If you need an
exact moment-in-time snapshot of the system, you will need to stop all
application writes before taking the filesystem snapshots; otherwise
the snapshot will only approximate a moment in time.

For approximate point-in-time snapshots, you can improve the quality
of the backup while minimizing impact on the cluster by taking the
backup from a secondary member of the replica set that provides each
shard.

	Disable the balancer process that equalizes the
distribution of data among the shards. To disable
the balancer, use the sh.stopBalancer() method in the
mongo shell, and see the
Disable the Balancer procedure.

Warning

It is essential that you stop the balancer before creating
backups. If the balancer remains active, your resulting backups
could have duplicate data or miss some data, as chunks may migrate while recording backups.

	Lock one member of each replica set in each shard so that your
backups reflect the state of your database at the nearest possible
approximation of a single moment in time. Lock these
mongod instances in as short of an interval as possible.

To lock or freeze a sharded cluster, you must:

	use the db.fsyncLock() method in the mongo
shell connected to a single secondary member of the replica set
that provides shard mongod instance.

	Shutdown one of the config servers, to
prevent all metadata changes during the backup process.

	Use mongodump to backup one of the config servers. This backs up the cluster’s
metadata. You only need to back up one config server, as they all
hold the same data.

Issue this command against one of the config mongod
instances or via the mongos:

mongodump --db config

	Back up the replica set members of the shards that you locked. You
may back up the shards in parallel. For each shard, create a
snapshot. Use the procedures in
Backup and Restore with Filesystem Snapshots.

	Unlock all locked replica set members of each shard using the
db.fsyncUnlock() method in the mongo shell.

	Re-enable the balancer with the sh.setBalancerState()
method.

Use the following command sequence when connected to the
mongos with the mongo shell:

use config
sh.setBalancerState(true)

Backup a Sharded Cluster with Database Dumps

Overview

This document describes a procedure for taking a backup of all
components of a sharded cluster. This procedure
uses mongodump to create dumps of the mongod
instance. An alternate procedure uses file system snapshots to capture
the backup data, and may be more efficient in some situations if your
system configuration allows file system backups. See
Backup a Sharded Cluster with Filesystem Snapshots.

See Sharded Cluster Backup Considerations for a full higher level overview
of backing up a sharded cluster as well as links to other tutorials that
provide alternate procedures.

Important

To capture a point-in-time backup from a sharded
cluster you must stop all writes to the cluster. On a running
production system, you can only capture an approximation of
point-in-time snapshot.

Procedure

In this procedure, you will stop the cluster balancer and take a backup
up of the config database, and then take backups of each
shard in the cluster using mongodump to capture the backup
data. If you need an exact moment-in-time snapshot of the system, you will
need to stop all application writes before taking the filesystem
snapshots; otherwise the snapshot will only approximate a moment of
time.

For approximate point-in-time snapshots, you can improve the quality
of the backup while minimizing impact on the cluster by taking the
backup from a secondary member of the replica set that provides each
shard.

	Disable the balancer process that equalizes the
distribution of data among the shards. To disable
the balancer, use the sh.stopBalancer() method in the
mongo shell, and see the
Disable the Balancer procedure.

Warning

It is essential that you stop the balancer before creating
backups. If the balancer remains active, your resulting backups
could have duplicate data or miss some data, as chunks migrate while recording backups.

	Lock one member of each replica set in each shard so that your
backups reflect the state of your database at the nearest possible
approximation of a single moment in time. Lock these
mongod instances in as short of an interval as possible.

To lock or freeze a sharded cluster, you must:

	Shutdown one member of each replica set.

Ensure that the oplog has sufficient capacity to allow
these secondaries to catch up to the state of the primaries after
finishing the backup procedure. See
Oplog Size for more information.

	Shutdown one of the config servers, to
prevent all metadata changes during the backup process.

	Use mongodump to backup one of the config servers. This backs up the cluster’s
metadata. You only need to back up one config server, as they all
hold the same data.

Issue this command against one of the config mongod
instances or via the mongos:

mongodump --journal --db config

	Back up the replica set members of the shards that shut down using
mongodump and specifying the --dbpath
option. You may back up the shards in parallel. Consider the
following invocation:

mongodump --journal --dbpath /data/db/ --out /data/backup/

You must run this command on the system where the mongod
ran. This operation will use journaling and create a dump of the
entire mongod instance with data files stored in
/data/db/. mongodump will write the output of this
dump to the /data/backup/ directory.

	Restart all stopped replica set members of each shard as normal and
allow them to catch up with the state of the primary.

	Re-enable the balancer with the sh.setBalancerState()
method.

Use the following command sequence when connected to the
mongos with the mongo shell:

use config
sh.setBalancerState(true)

Schedule Backup Window for Sharded Clusters

Overview

In a sharded cluster, the balancer process is responsible for
distributing sharded data around the cluster, so that each
shard has roughly the same amount of data.

However, when creating backups from a sharded cluster it is important
that you disable the balancer while taking backups to ensure that no
chunk migrations affect the content of the backup captured by the
backup procedure. Using the procedure outlined in the section
Disable the Balancer you can manually stop the
balancer process temporarily. As an alternative you can
use this procedure to define a balancing window so that the balancer
is always disabled during your automated backup operation.

Procedure

If you have an automated backup schedule, you can disable all
balancing operations for a period of time. For instance, consider the
following command:

use config
db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "6:00", stop : "23:00" } } }, true)

This operation configures the balancer to run between 6:00am and
11:00pm, server time. Schedule your backup operation to run and
complete outside of this time. Ensure that the backup can complete
outside the window when the balancer is running and that the
balancer can effectively balance the collection among the shards
in the window allotted to each.

Restore a Single Shard

Overview

Restoring a single shard from backup with other unaffected shards
requires a number of special considerations and practices. This
document outlines the additional tasks you must perform when restoring
a single shard.

Consider the following resources on backups in general as well as
backup and restoration of sharded clusters specifically:

	Sharded Cluster Backup Considerations

	Restore a Sharded Cluster

	Backup Strategies for MongoDB Systems

Procedure

Always restore sharded clusters
as a whole. When you restore a single shard, keep in mind that the
balancer process might have moved chunks to or
from this shard since the last backup. If that’s the case, you must
manually move those chunks, as described in this procedure.

	Restore the shard as you would any other mongod
instance. See Backup Strategies for MongoDB Systems for overviews of these
procedures.

	For all chunks that migrate away from this shard, you do not need
to do anything at this time. You do not need to delete these
documents from the shard because the chunks are automatically
filtered out from queries by mongos. You can remove
these documents from the shard, if you like, at your leisure.

	For chunks that migrate to this shard after the most recent backup,
you must manually recover the chunks using backups of other shards,
or some other source. To determine what chunks have moved, view the
changelog collection in the Config Database.

Restore a Sharded Cluster

Overview

The procedure outlined in this document addresses how to restore an
entire sharded cluster. For information on related backup procedures
consider the following tutorials which describe backup procedures in
greater detail:

	Backup a Sharded Cluster with Filesystem Snapshots

	Backup a Sharded Cluster with Database Dumps

The exact procedure used to restore a database depends on the method
used to capture the backup. See the Backup Strategies for MongoDB Systems
document for an overview of backups with MongoDB, as well as
Sharded Cluster Backup Considerations which provides an overview of the high
level concepts important for backing up sharded clusters.

Procedure

	Stop all mongod and mongos processes.

	If shard hostnames have changed, you must manually update the
shards collection in the Config Database to use the new
hostnames. Do the following:

	Start the three config servers by
issuing commands similar to the following, using values appropriate
to your configuration:

mongod --configsvr --dbpath /data/configdb --port 27019

	Restore the Config Database on each config server.

	Start one mongos instance.

	Update the Config Database collection named shards to reflect the
new hostnames.

	Restore the following:

	Data files for each server in each shard. Because replica
sets provide each production shard, restore all the members of
the replica set or use the other standard approaches for
restoring a replica set from backup. See the
Restore a Snapshot and Restore a Database with mongorestore
sections for details on these procedures.

	Data files for each config server,
if you have not already done so in the previous step.

	Restart all the mongos instances.

	Restart all the mongod instances.

	Connect to a mongos instance from a mongo shell
and use the db.printShardingStatus() method to ensure
that the cluster is operational, as follows:

db.printShardingStatus()
show collections

Copy Databases Between Instances

Synopsis

MongoDB provides the copydb and clone
database commands to support migrations of
entire logical databases between mongod instances. With
these commands you can copy data between instances with a simple
interface without the need for an intermediate stage. The
db.cloneDatabase() and db.copyDatabase() provide
helpers for these operations in the mongo shell.
These migration helpers run the commands on the
destination server and pull data from the source server..

Data migrations that require an intermediate stage or that involve
more than one database instance are beyond the scope of this
tutorial. copydb and clone are more ideal
for use cases that resemble the following use cases:

	data migrations,

	data warehousing, and

	seeding test environments.

Also consider the Backup Strategies for MongoDB Systems and
Import and Export MongoDB Data documentation for more related
information.

Note

copydb and clone do not produce
point-in-time snapshots of the source database. Write traffic to
the source or destination database during the copy process will
result divergent data sets.

Considerations

	You must run copydb or clone on the
destination server.

	You cannot use copydb or clone with
databases that have a sharded collection in a sharded cluster,
or any database via a mongos.

	You can use copydb or clone with
databases that do not have sharded collections in a cluster
when you’re connected directly to the mongod instance.

	You can run copydb or clone commands on a
secondary member of a replica set, with properly configured
read preference.

	Each destination mongod instance must have enough
free disk space on the destination server for the database you are
copying. Use the db.stats() operation to check the size of
the database on the source mongod instance. For more
information, see db.stats().

Processes

Copy and Rename a Database

To copy a database from one MongoDB instance to another and rename
the database in the process, use the copydb command, or
the db.copyDatabase() helper in the mongo shell.

Use the following procedure to copy the database named test on
server db0.example.net to the server named db1.example.net and
rename it to records in the process:

	Verify that the database, test exists on the source
mongod instance running on the db0.example.net host.

	Connect to the destination server, running on the
db1.example.net host, using the mongo shell.

	Model your operation on the following command:

db.copyDatabase("test", "records", "db0.example.net")

Rename a Database

You can also use copydb or the
db.copyDatabase() helper to:

	rename a database within a single MongoDB instance or

	create a duplicate database for testing purposes.

Use the following procedure to rename the test database
records on a single mongod instance:

	Connect to the mongod using the mongo shell.

	Model your operation on the following command:

db.copyDatabase("test", "records")

Copy a Database with Authentication

To copy a database from a source MongoDB instance that has
authentication enabled, you can specify authentication credentials to
the copydb command or the db.copyDatabase()
helper in the mongo shell.

In the following operation, you will copy the test database from
the mongod running on db0.example.net to the
records database on the local instance (e.g. db1.example.net.)
Because the mongod instance running on db0.example.net
requires authentication for all connections, you will need to pass
db.copyDatabase() authentication credentials, as in the
following procedure:

	Connect to the destination mongod instance running on the
db1.example.net host using the mongo shell.

	Issue the following command:

db.copyDatabase("test", "records", "db0.example.net", "<username>", "<password>")

Replace <username> and <password> with your authentication
credentials.

Clone a Database

The clone command copies a database between
mongod instances like copydb; however,
clone preserves the database name from the source
instance on the destination mongod.

For many operations, clone is functionally equivalent to
copydb, but it has a more simple syntax and a more narrow
use. The mongo shell provides the
db.cloneDatabase() helper as a wrapper around
clone.

You can use the following procedure to clone a database from the
mongod instance running on db0.example.net to the
mongod running on db1.example.net:

	Connect to the destination mongod instance running on the
db1.example.net host using the mongo shell.

	Issue the following command to specify the name of the database you
want to copy:

use records

	Use the following operation to initiate the clone
operation:

db.cloneDatabase("db0.example.net")

Recover Data after an Unexpected Shutdown

If MongoDB does not shutdown cleanly [1] the on-disk
representation of the data files will likely reflect an inconsistent
state which could lead to data corruption. [2]

To prevent data inconsistency and corruption, always shut down the
database cleanly and use the durability journaling. MongoDB writes data to the journal, by default,
every 100 milliseconds, such that MongoDB can always recover to a
consistent state even in the case of an unclean shutdown due to power
loss or other system failure.

If you are not running as part of a replica set and do
not have journaling enabled, use the following procedure to recover
data that may be in an inconsistent state. If you are running as part
of a replica set, you should always restore from a backup or restart
the mongod instance with an empty dbpath and
allow MongoDB to perform an initial sync to restore the data.

See also

The Administration documents, including
Replica Set Syncing, and the
documentation on the repair, repairpath, and
journal settings.

	[1]	To ensure a clean shut down, use the
db.shutdownServer() from the mongo shell, your
control script, the mongod --shutdown option on Linux
systems, “Control-C” when running mongod in interactive
mode, or kill $(pidof mongod) or kill -2 $(pidof mongod).

	[2]	You can also use the db.collection.validate()
method to test the integrity of a single collection. However, this
process is time consuming, and without journaling you can safely
assume that the data is in an invalid state and you should either
run the repair operation or resync from an intact member of the
replica set.

Process

Indications

When you are aware of a mongod instance running without
journaling that stops unexpectedly and you’re not running with
replication, you should always run the repair operation before
starting MongoDB again. If you’re using replication, then restore from
a backup and allow replication to perform an initial sync to restore data.

If the mongod.lock file in the data directory specified by
dbpath, /data/db by default, is not a zero-byte file,
then mongod will refuse to start, and you will find a
message that contains the following line in your MongoDB log our
output:

Unclean shutdown detected.

This indicates that you need to run mongod with the
--repair option. If you run repair when
the mongodb.lock file exists in your dbpath, or the
optional --repairpath, you will see a
message that contains the following line:

old lock file: /data/db/mongod.lock. probably means unclean shutdown

If you see this message, as a last resort you may remove the lockfile
and run the repair operation before starting the database
normally, as in the following procedure:

Overview

Warning

Recovering a member of a replica set.

Do not use this procedure to recover a member of a
replica set. Instead you should either restore from
a backup or perform an initial sync using
data from an intact member of the set, as described in
Resync a Member of a Replica Set.

There are two processes to repair data files that result from an
unexpected shutdown:

	Use the --repair option in
conjunction with the --repairpath
option. mongod will read the existing data files, and
write the existing data to new data files. This does not modify or
alter the existing data files.

You do not need to remove the mongod.lock file before using
this procedure.

	Use the --repair option.
mongod will read the existing data files, write the
existing data to new files and replace the existing, possibly
corrupt, files with new files.

You must remove the mongod.lock file before using this
procedure.

Note

--repair functionality is also
available in the shell with the db.repairDatabase()
helper for the repairDatabase command.

Procedures

To repair your data files using the --repairpath
option to preserve the original data files unmodified:

	Start mongod using --repair
to read the existing data files.

mongod --dbpath /data/db --repair --repairpath /data/db0

When this completes, the new repaired data files will be in the
/data/db0 directory.

	Start mongod using the following invocation to point the
dbpath at /data/db0:

mongod --dbpath /data/db0

Once you confirm that the data files are operational you may delete
or archive the data files in the /data/db directory.

To repair your data files without preserving the original files, do
not use the --repairpath option, as in
the following procedure:

	Remove the stale lock file:

rm /data/db/mongod.lock

Replace /data/db with your dbpath where your MongoDB
instance’s data files reside.

Warning

After you remove the mongod.lock file you must run the
--repair process before using your
database.

	Start mongod using --repair
to read the existing data files.

mongod --dbpath /data/db --repair

When this completes, the repaired data files will replace the
original data files in the /data/db directory.

	Start mongod using the following invocation to point the
dbpath at /data/db:

mongod --dbpath /data/db

mongod.lock

In normal operation, you should never remove the mongod.lock
file and start mongod. Instead consider the one of the above methods
to recover the database and remove the lock files. In dire
situations you can remove the lockfile, and start the database using the
possibly corrupt files, and attempt to recover data from the database;
however, it’s impossible to predict the state of the database in these
situations.

If you are not running with journaling, and your database shuts down
unexpectedly for any reason, you should always proceed as if your database
is in an inconsistent and likely corrupt state. If at all possible restore
from backup or, if running as a replica
set, restore by performing an initial sync using data from an intact
member of the set, as described in Resync a Member of a Replica Set.

MongoDB Scripting

The mongo shell is an interactive JavaScript shell for
MongoDB, and is part of all MongoDB distributions [http://www.mongodb.org/downloads]. This section provides an
introduction to the shell, and outlines key functions, operations, and
use of the mongo shell. Also consider FAQ: The mongo Shell and
the shell method and other relevant
reference material.

Note

Most examples in the MongoDB Manual use
the mongo shell; however, many drivers provide similar interfaces to MongoDB.

	Server-side JavaScript

	Details MongoDB’s support for executing JavaScript code for
server-side operations.

	Data Types in the mongo Shell

	Describes the super-set of JSON available for use in the
mongo shell.

	Write Scripts for the mongo Shell

	An introduction to the mongo shell for writing scripts to
manipulate data and administer MongoDB.

	Getting Started with the mongo Shell

	Introduces the use and operation of the MongoDB shell.

	Access the mongo Shell Help Information

	Describes the available methods for accessing online help for the
operation of the mongo interactive shell.

	mongo Shell Quick Reference

	A high level reference to the use and operation of the
mongo shell.

	Server-side JavaScript

	Data Types in the mongo Shell

	Write Scripts for the mongo Shell

	Getting Started with the mongo Shell

	Access the mongo Shell Help Information

	mongo Shell Quick Reference

Write Scripts for the mongo Shell

You can write scripts for the mongo shell in JavaScript
that manipulate data in MongoDB or perform administrative
operation. For more information about the mongo shell see
MongoDB Scripting, and see the Running .js files via a mongo shell Instance on the Server
section for more information about using these mongo
script.

This tutorial provides an introduction to writing JavaScript that uses
the mongo shell to access MongoDB.

Opening New Connections

From the mongo shell or from a JavaScript file, you can
instantiate database connections using the Mongo()
constructor:

new Mongo()
new Mongo(<host>)
new Mongo(<host:port>)

Consider the following example that instantiates a new connection to
the MongoDB instance running on localhost on the default port and sets
the global db variable to myDatabase using the
getDB() method:

conn = new Mongo();
db = conn.getDB("myDatabase");

Additionally, you can use the connect() method
to connect to the MongoDB instance. The following example connects to
the MongoDB instance that is running on localhost with the
non-default port 27020 and set the global db variable:

db = connect("localhost:27020/myDatabase");

Differences Between Interactive and Scripted mongo

When writing scripts for the mongo shell, consider the
following:

	To set the db global variable, use the getDB()
method or the connect() method. You can assign the database
reference to a variable other than db.

	Inside the script, cal db.getLastError() explicitly to
wait for the result of write operations.

	You cannot use any shell helper (e.g. use <dbname>, show
dbs, etc.) inside the JavaScript file because they are not valid
JavaScript.

The following table maps the most common mongo shell
helpers to their JavaScript equivalents.

	Shell Helpers
	JavaScript Equivalents

	show dbs, show databases
	db.adminCommand('listDatabases')

	use <db>
	db = db.getSiblingDB('<db>')

	show collections
	db.getCollectionNames()

	show users
	db.system.users.find()

	show log <logname>
	db.adminCommand({ 'getLog' : '<logname>' })

	show logs
	db.adminCommand({ 'getLog' : '*' })

	it
	cursor = db.collection.find()
if (cursor.hasNext()){
 cursor.next();
}

	In interactive mode, mongo prints the results of
operations including the content of all cursors. In scripts, either
use the JavaScript print() function or the mongo
specific printjson() function which returns formatted JSON.

Example

To print all items in a result cursor in mongo shell
scripts, use the following idiom:

cursor = db.collection.find();
while (cursor.hasNext()) {
 printjson(cursor.next());
}

Scripting

From the system prompt, use mongo to evaluate JavaScript.

--eval option

Use the --eval option to mongo to
pass the shell a JavaScript fragment, as in the following:

mongo test --eval "printjson(db.getCollectionNames())"

This returns the output of db.getCollectionNames() using the
mongo shell connected to the mongod or
mongos instance running on port 27017 on the
localhost interface.

Execute a JavaScript file

You can specify a .js file to the mongo shell, and
mongo will execute the JavaScript directly. Consider the
following example:

mongo localhost:27017/test myjsfile.js

This operation executes the myjsfile.js script in a
mongo shell that connects to the test database
on the mongod instance accessible via the localhost
interface on port 27017.

Alternately, you can specify the mongodb connection parameters inside
of the javascript file using the Mongo() constructor. See
Opening New Connections for more information.

You can execute a .js file from within the mongo shell,
using the load() function, as in the following:

load("myjstest.js")

This function loads and executes the myjstest.js file.

The load() method accepts relative and absolute paths.
If the current working directory of the mongo shell
is /data/db, and the myjstest.js resides in the
/data/db/scripts directory, then the following calls within
the mongo shell would be equivalent:

load("scripts/myjstest.js")
load("/data/db/scripts/myjstest.js")

Note

There is no search path for the load()
function. If the desired script is not in the current working
directory or the full specified path, mongo will not be
able to access the file.

Getting Started with the mongo Shell

This document provides a basic introduction to using the
mongo shell. See Install MongoDB for instructions on
installing MongoDB for your system.

Start the mongo Shell

To start the mongo shell and connect to your MongoDB instance running on localhost with default port:

	Go to your <mongodb installation dir>:

cd <mongodb installation dir>

	Type ./bin/mongo to start mongo:

./bin/mongo

If you have added the <mongodb installation dir>/bin to the
PATH environment variable, you can just type mongo instead
of ./bin/mongo.

	To display the database you are using, type db:

db

The operation should return test, which is the default database.
To switch databases, issue the use <db> helper, as in the
following example:

use <database>

To list the available databases, use the helper show dbs. See
also How can I access different databases temporarily? to access a different database
from the current database without switching your current database
context (i.e. db..)

To start the mongo shell with other options, see
examples of starting up mongo and
mongo reference which provides details on the
available options.

Note

When starting, mongo checks the user’s HOME
directory for a JavaScript file named .mongorc.js. If found, mongo interprets the
content of .mongorc.js before displaying the prompt for the
first time. If you use the shell to evaluate a JavaScript file or
expression, either by using the --eval option on the
command line or by specifying a .js file to mongo, mongo will read the .mongorc.js
file after the JavaScript has finished processing.

Executing Queries

From the mongo shell, you can use the shell methods to run queries, as in the following example:

db.<collection>.find()

	The db refers to the current database.

	The <collection> is the name of the collection to query. See
Collection Help to list the available collections.

If the mongo shell does not accept the name of the
collection, for instance if the name contains a space, hyphen, or
starts with a number, you can use an alternate syntax to refer to
the collection, as in the following:

db["3test"].find()

db.getCollection("3test").find()

	The find() method is the JavaScript
method to retrieve documents from <collection>. The
find() method returns a
cursor to the results; however, in the mongo
shell, if the returned cursor is not assigned to a variable using the
var keyword, then the cursor is automatically iterated up to 20
times to print up to the first 20 documents that match the query. The
mongo shell will prompt Type it to iterate another 20
times.

You can set the DBQuery.shellBatchSize attribute to change the
number of iteration from the default value 20, as in the
following example which sets it to 10:

DBQuery.shellBatchSize = 10;

For more information and examples on cursor handling in the
mongo shell, see Cursors.

See also Cursor Help for list of
cursor help in the mongo shell.

For more documentation of basic MongoDB operations in the
mongo shell, see:

	Getting Started with MongoDB

	mongo Shell Quick Reference

	Read Operations

	Write Operations

	Indexing Tutorials

	Read Operations

	Write Operations

Print

The mongo shell automatically prints the results of the
find() method if the returned cursor
is not assigned to a variable using the var keyword. To format the
result, you can add the .pretty() to the operation, as in the
following:

db.<collection>.find().pretty()

In addition, you can use the following explicit print methods in the
mongo shell:

	print() to print without formatting

	print(tojson(<obj>)) to print with JSON formatting and
equivalent to printjson()

	printjson() to print with JSON formatting and equivalent
to print(tojson(<obj>))

Evaluate a JavaScript File

You can execute a .js file from within the mongo shell,
using the load() function, as in the following:

load("myjstest.js")

This function loads and executes the myjstest.js file.

The load() method accepts relative and absolute paths.
If the current working directory of the mongo shell
is /data/db, and the myjstest.js resides in the
/data/db/scripts directory, then the following calls within
the mongo shell would be equivalent:

load("scripts/myjstest.js")
load("/data/db/scripts/myjstest.js")

Note

There is no search path for the load()
function. If the desired script is not in the current working
directory or the full specified path, mongo will not be
able to access the file.

Use a Custom Prompt

You may modify the content of the prompt by creating the variable
prompt in the shell. The prompt variable can hold strings as well
as any arbitrary JavaScript. If prompt holds a function that returns a
string, mongo can display dynamic information in each
prompt. Consider the following examples:

Example

Create a prompt with the number of operations issued in the current
session, define the following variables:

cmdCount = 1;
prompt = function() {
 return (cmdCount++) + "> ";
 }

The prompt would then resemble the following:

1> db.collection.find()
2> show collections
3>

Example

To create a mongo shell prompt in the form of
<database>@<hostname>$ define the following variables:

host = db.serverStatus().host;

prompt = function() {
 return db+"@"+host+"$ ";
 }

The prompt would then resemble the following:

<database>@<hostname>$ use records
switched to db records
records@<hostname>$

Example

To create a mongo shell prompt that contains the system
up time and the number of documents in the current database,
define the following prompt variable:

prompt = function() {
 return "Uptime:"+db.serverStatus().uptime+" Documents:"+db.stats().objects+" > ";
 }

The prompt would then resemble the following:

Uptime:5897 Documents:6 > db.people.save({name : "James"});
Uptime:5948 Documents:7 >

Use an External Editor in the mongo Shell

New in version 2.2.

In the mongo shell you can use the edit operation to
edit a function or variable in an external editor. The edit
operation uses the value of your environments EDITOR variable.

At your system prompt you can define the EDITOR variable and start
mongo with the following two operations:

export EDITOR=vim
mongo

Then, consider the following example shell session:

MongoDB shell version: 2.2.0
> function f() {}
> edit f
> f
function f() {
 print("this really works");
}
> f()
this really works
> o = {}
{ }
> edit o
> o
{ "soDoes" : "this" }
>

Note

As mongo shell interprets code edited in an external
editor, it may modify code in functions, depending on the
JavaScript compiler. For mongo may convert 1+1 to
2 or remove comments. The actual changes affect only the
appearance of the code and will vary based on the version of
JavaScript used but will not affect the semantics of the code.

Exit the Shell

To exit the shell, type quit() or use the <Ctrl-c> shortcut.

Access the mongo Shell Help Information

In addition to the documentation in the MongoDB Manual, the mongo shell provides some additional
information in its “online” help system. This document provides an
overview of accessing this help information.

See also

	mongo Manual Page

	MongoDB Scripting, and

	mongo Shell Quick Reference.

Command Line Help

To see the list of options and help for starting the mongo
shell, use the --help option from the command line:

mongo --help

Shell Help

To see the list of help, in the mongo shell, type help:

help

Database Help

	To see the list of databases on the server, use the show dbs
command:

show dbs

New in version 2.4: show databases is now an alias for show dbs

	To see the list of help for methods you can use on the db
object, call the db.help() method:

db.help()

	To see the implementation of a method in the shell, type the
db.<method name> without the parenthesis (()), as in the
following example which will return the implementation of the method
db.addUser():

db.addUser

Collection Help

	To see the list of collections in the current database, use the
show collections command:

show collections

	To see the help for methods available on the collection objects
(e.g. db.<collection>), use the db.<collection>.help()
method:

db.collection.help()

<collection> can be the name of a collection that exists,
although you may specify a collection that doesn’t exist.

	To see the collection method implementation, type the
db.<collection>.<method> name without the parenthesis (()),
as in the following example which will return the implementation of
the save() method:

db.collection.save

Cursor Help

When you perform read operations with
the find() method in the
mongo shell, you can use various cursor methods to modify
the find() behavior and various
JavaScript methods to handle the cursor returned from the
find() method.

	To list the available modifier and cursor handling methods, use the
db.collection.find().help() command:

db.collection.find().help()

<collection> can be the name of a collection that exists,
although you may specify a collection that doesn’t exist.

	To see the implementation of the cursor method, type the
db.<collection>.find().<method> name without the parenthesis
(()), as in the following example which will return the
implementation of the toArray() method:

db.collection.find().toArray

Some useful methods for handling cursors are:

	hasNext() which checks whether the
cursor has more documents to return.

	next() which returns the next document and
advances the cursor position forward by one.

	forEach(<function>) which iterates the
whole cursor and applies the <function> to each document returned
by the cursor. The <function> expects a single argument which
corresponds to the document from each iteration.

For examples on iterating a cursor and retrieving the documents from
the cursor, see cursor handling. See
also Cursor for all available cursor methods.

Type Help

To get a list of the wrapper classes available in the mongo
shell, such as BinData(), type help misc in the
mongo shell:

help misc

mongo Shell Quick Reference

mongo Shell Command History

You can retrieve previous commands issued in the mongo shell
with the up and down arrow keys. Command history is stored in
~/.dbshell file. See .dbshell for more
information.

Command Line Options

The mongo executable can be started with numerous options.
See mongo executable page for details on all
available options.

The following table displays some common options for mongo:

	Option
	Description

	--help
	Show command line options

	--nodb
	Start mongo shell without connecting to a database.

To connect later, see Opening New Connections.

	--shell
	Used in conjunction with a JavaScript file (i.e.
<file.js>) to continue in the
mongo shell after running the JavaScript file.

See JavaScript file for an
example.

Command Helpers

The mongo shell provides various help. The following table
displays some common help methods and commands:

	Help Methods and Commands
	Description

	help
	Show help.

	db.help()
	Show help for database methods.

	db.<collection>.help()
	Show help on collection methods. The <collection> can be the
name of an existing collection or a non-existing collection.

	show dbs
	Print a list of all databases on the server.

	use <db>
	Switch current database to <db>. The mongo shell
variable db is set to the current database.

	show collections
	Print a list of all collections for current database

	show users
	Print a list of users for current database.

	show profile
	Print the five most recent operations that took 1 millisecond or
more. See documentation on the database profiler for more information.

	show databases
	
New in version 2.4: Print a list of all available databases.

	load()
	Execute a JavaScript file. See
Getting Started with the mongo Shell
for more information.

Basic Shell JavaScript Operations

The mongo shell provides numerous
mongo Shell Methods methods for database operations.

In the mongo shell, db is the variable that references
the current database. The variable is automatically set to the default
database test or is set when you use the use <db> to switch
current database.

The following table displays some common JavaScript operations:

	JavaScript Database Operations
	Description

	db.auth()
	If running in secure mode, authenticate the user.

	coll = db.<collection>
	Set a specific collection in the current database to a variable
coll, as in the following example:

coll = db.myCollection;

You can perform operations on the myCollection using the
variable, as in the following example:

coll.find();

	find()
	Find all documents in the collection and returns a cursor.

See the db.collection.find() and
Query Documents for more information and
examples.

See Cursors for additional information on
cursor handling in the mongo shell.

	insert()
	Insert a new document into the collection.

	update()
	Update an existing document in the collection.

See Write Operations for more information.

	save()
	Insert either a new document or update an existing document in
the collection.

See Write Operations for more information.

	remove()
	Delete documents from the collection.

See Write Operations for more information.

	drop()
	Drops or removes completely the collection.

	ensureIndex()
	Create a new index on the collection if the index does not
exist; otherwise, the operation has no effect.

	db.getSiblingDB()
	Return a reference to another database using this same
connection without explicitly switching the current database.
This allows for cross database queries. See
How can I access different databases temporarily? for more information.

For more information on performing operations in the shell, see:

	MongoDB CRUD Concepts

	Read Operations

	Write Operations

	mongo Shell Methods

Keyboard Shortcuts

Changed in version 2.2.

The mongo shell provides most keyboard shortcuts similar to
those found in the bash shell or in Emacs. For some functions
mongo provides multiple key bindings, to accommodate
several familiar paradigms.

The following table enumerates the keystrokes supported by the
mongo shell:

	Keystroke
	Function

	Up-arrow
	previous-history

	Down-arrow
	next-history

	Home
	beginning-of-line

	End
	end-of-line

	Tab
	autocomplete

	Left-arrow
	backward-character

	Right-arrow
	forward-character

	Ctrl-left-arrow
	backward-word

	Ctrl-right-arrow
	forward-word

	Meta-left-arrow
	backward-word

	Meta-right-arrow
	forward-word

	Ctrl-A
	beginning-of-line

	Ctrl-B
	backward-char

	Ctrl-C
	exit-shell

	Ctrl-D
	delete-char (or exit shell)

	Ctrl-E
	end-of-line

	Ctrl-F
	forward-char

	Ctrl-G
	abort

	Ctrl-J
	accept-line

	Ctrl-K
	kill-line

	Ctrl-L
	clear-screen

	Ctrl-M
	accept-line

	Ctrl-N
	next-history

	Ctrl-P
	previous-history

	Ctrl-R
	reverse-search-history

	Ctrl-S
	forward-search-history

	Ctrl-T
	transpose-chars

	Ctrl-U
	unix-line-discard

	Ctrl-W
	unix-word-rubout

	Ctrl-Y
	yank

	Ctrl-Z
	Suspend (job control works in linux)

	Ctrl-H (i.e. Backspace)
	backward-delete-char

	Ctrl-I (i.e. Tab)
	complete

	Meta-B
	backward-word

	Meta-C
	capitalize-word

	Meta-D
	kill-word

	Meta-F
	forward-word

	Meta-L
	downcase-word

	Meta-U
	upcase-word

	Meta-Y
	yank-pop

	Meta-[Backspace]
	backward-kill-word

	Meta-<
	beginning-of-history

	Meta->
	end-of-history

Queries

In the mongo shell, perform read operations using the
find() and findOne()
methods.

The find() method returns a cursor object
which the mongo shell iterates to print documents on
screen. By default, mongo prints the first 20. The
mongo shell will prompt the user to “Type it” to continue
iterating the next 20 results.

The following table provides some common read operations in the
mongo shell:

	Read Operations
	Description

	db.collection.find(<query>)
	Find the documents matching the <query> criteria in the
collection. If the <query> criteria is not specified or is
empty (i.e {}), the read operation selects all documents in
the collection.

The following example selects the documents in the users
collection with the name field equal to "Joe":

coll = db.users;
coll.find({ name: "Joe" });

For more information on specifying the <query> criteria, see
Query Documents.

	db.collection.find(<query>, <projection>)
	Find documents matching the <query> criteria and return just
specific fields in the <projection>.

The following example selects all documents from the collection
but returns only the name field and the _id field. The
_id is always returned unless explicitly specified to not
return.

coll = db.users;
coll.find({ },
 { name: true }
);

For more information on specifying the <projection>, see
Limit Fields to Return from a Query.

	db.collection.find().sort(<sort order>)
	Return results in the specified <sort order>.

The following example selects all documents from the collection
and returns the results sorted by the name field in
ascending order (1). Use -1 for descending order:

coll = db.users;
coll.find().sort({ name: 1 });

	db.collection.find(<query>).sort(<sort order>)
	Return the documents matching the <query> criteria in the
specified <sort order>.

	db.collection.find(...).limit(<n>)
	Limit result to <n> rows. Highly recommended if you need only
a certain number of rows for best performance.

	db.collection.find(...).skip(<n>)
	Skip <n> results.

	count()
	Returns total number of documents in the collection.

	db.collection.find(<query>).count()
	Returns the total number of documents that match the query.

The count() ignores limit() and skip(). For
example, if 100 records match but the limit is 10,
count() will return 100. This will be
faster than iterating yourself, but still take time.

	db.collection.findOne(<query>)
	Find and return a single document. Returns null if not found.

The following example selects a single document in the
users collection with the name field matches to
"Joe":

coll = db.users;
coll.findOne({ name: "Joe" });

Internally, the findOne()
method is the find() method
with a limit(1).

See Query Documents and
Read Operations documentation for more information and
examples. See Operators to specify other query
operators.

Error Checking Methods

The mongo shell provides numerous administrative
database methods, including error checking
methods. These methods are:

	Error Checking Methods
	Description

	db.getLastError()
	Returns error message from the last operation.

	db.getLastErrorObj()
	Returns the error document from the last operation.

Administrative Command Helpers

The following table lists some common methods to support database
administration:

	JavaScript Database Administration Methods
	Description

	db.cloneDatabase(<host>)
	Clone the current database from the <host> specified. The
<host> database instance must be in noauth mode.

	db.copyDatabase(<from>, <to>, <host>)
	Copy the <from> database from the <host> to the <to>
database on the current server.

The <host> database instance must be in noauth mode.

	db.fromColl.renameCollection(<toColl>)
	Rename collection from fromColl to <toColl>.

	db.repairDatabase()
	Repair and compact the current database. This operation can be
very slow on large databases.

	db.addUser(<user>, <pwd>)
	Add user to current database.

	db.getCollectionNames()
	Get the list of all collections in the current database.

	db.dropDatabase()
	Drops the current database.

See also administrative database methods for a full list of methods.

Opening Additional Connections

You can create new connections within the mongo shell.

The following table displays the methods to create the connections:

	JavaScript Connection Create Methods
	Description

	db = connect("<host><:port>/<dbname>")

	Open a new database connection.

	conn = new Mongo()
db = conn.getDB("dbname")

	Open a connection to a new server using new Mongo().

Use getDB() method of the connection to select a database.

See also Opening New Connections for more information on the
opening new connections from the mongo shell.

Miscellaneous

The following table displays some miscellaneous methods:

	Method
	Description

	Object.bsonsize(<document>)
	Prints the BSON size of an <document>

See the MongoDB JavaScript API Documentation [http://api.mongodb.org/js/index.html] for a full list of JavaScript
methods .

Additional Resources

Consider the following reference material that addresses the
mongo shell and its interface:

	mongo

	mongo Shell Methods

	Operators

	Database Commands

	Aggregation Reference

Additionally, the MongoDB source code repository includes a jstests
directory [https://github.com/mongodb/mongo/tree/master/jstests/]
which contains numerous mongo shell scripts.

Administration Reference

	UNIX ulimit Settings

	Describes user resources limits (i.e. ulimit) and introduces the
considerations and optimal configurations for systems that run
MongoDB deployments.

	System Collections

	Introduces the internal collections that MongoDB uses to track
per-database metadata, including indexes, collections, and
authentication credentials.

	MongoDB Extended JSON

	Describes the JSON super set used to express BSON documents
in the mongo shell and other MongoDB tools.

	Database Profiler Output

	Describes the data collected by MongoDB’s operation profiler, which
introspects operations and reports data for analysis on performance
and behavior.

	Journaling Mechanics

	Describes the internal operation of MongoDB’s journaling facility
and outlines how the journal allows MongoDB to provide provides
durability and crash resiliency.

	Exit Codes and Statuses

	Lists the unique codes returned by mongos and
mongod processes upon exit.

	UNIX ulimit Settings

	System Collections

	MongoDB Extended JSON

	Database Profiler Output

	Journaling Mechanics

	Exit Codes and Statuses

UNIX ulimit Settings

Most UNIX-like operating systems, including Linux and OS X, provide
ways to limit and control the usage of system resources such as
threads, files, and network connections on a per-process and per-user
basis. These “ulimits” prevent single users from using too many system
resources. Sometimes, these limits have low default values that can
cause a number of issues in the course of normal MongoDB operation.

Note

Red Hat Enterprise Linux and CentOS 6 place a max process
limitation of 1024 which overrides ulimit settings. Edit the
soft nproc and hard nproc values in the
/etc/security/limits.d/90-nproc.conf file to increase the
process limit.

Resource Utilization

mongod and mongos each use threads and file
descriptors to track connections and manage internal operations. This
section outlines the general resource utilization patterns for MongoDB.
Use these figures in combination with the actual information about your
deployment and its use to determine ideal ulimit settings.

Generally, all mongod and mongos instances:

	track each incoming connection with a file descriptor and a
thread.

	track each internal thread or pthread as a system process.

mongod

	1 file descriptor for each data file in use by the
mongod instance.

	1 file descriptor for each journal file used by the
mongod instance when journal is true.

	In replica sets, each mongod maintains a connection to
all other members of the set.

mongod uses background threads for a number of internal
processes, including TTL collections,
replication, and replica set health checks, which may require a small
number of additional resources.

mongos

In addition to the threads and file descriptors for client
connections, mongos must maintain connects to all config
servers and all shards, which includes all members of all replica
sets.

For mongos, consider the following behaviors:

	mongos instances maintain a connection pool to each shard
so that the mongos can reuse connections and quickly
fulfill requests without needing to create new connections.

	You can limit the number of incoming connections using
the maxConns run-time option.

By restricting the number of incoming connections you can prevent a
cascade effect where the mongos creates too many
connections on the mongod instances.

Note

Changed in version 2.5.0: MongoDB removed the upward limit on the maxConns
setting.

Review and Set Resource Limits

ulimit

Note

Both the “hard” and the “soft” ulimit affect MongoDB’s
performance. The “hard” ulimit refers to the maximum number of
processes that a user can have active at any time. This is the
ceiling: no non-root process can increase the “hard” ulimit. In
contrast, the “soft” ulimit is the limit that is actually
enforced for a session or process, but any process can increase it
up to “hard” ulimit maximum.

A low “soft” ulimit can cause can't create new thread,
closing connection errors if the number of connections
grows too high. For this reason, it is extremely important to set
both ulimit values to the recommended values.

You can use the ulimit command at the system prompt to check
system limits, as in the following example:

$ ulimit -a
-t: cpu time (seconds) unlimited
-f: file size (blocks) unlimited
-d: data seg size (kbytes) unlimited
-s: stack size (kbytes) 8192
-c: core file size (blocks) 0
-m: resident set size (kbytes) unlimited
-u: processes 192276
-n: file descriptors 21000
-l: locked-in-memory size (kb) 40000
-v: address space (kb) unlimited
-x: file locks unlimited
-i: pending signals 192276
-q: bytes in POSIX msg queues 819200
-e: max nice 30
-r: max rt priority 65
-N 15: unlimited

ulimit refers to the per-user limitations for various
resources. Therefore, if your mongod instance executes as a
user that is also running multiple processes, or multiple
mongod processes, you might see contention for these
resources. Also, be aware that the processes value (i.e. -u)
refers to the combined number of distinct processes and sub-process
threads.

You can change ulimit settings by issuing a command in the
following form:

ulimit -n <value>

For many distributions of Linux you can change values by substituting
the -n option for any possible value in the output of ulimit
-a. On OS X, use the launchctl limit command. See your
operating system documentation for the precise procedure for changing
system limits on running systems.

Note

After changing the ulimit settings, you must restart the
process to take advantage of the modified settings. You can use the
/proc file system to see the current limitations on a running
process.

Depending on your system’s configuration, and default settings, any
change to system limits made using ulimit may revert following
system a system restart. Check your distribution and operating
system documentation for more information.

/proc File System

Note

This section applies only to Linux operating systems.

The /proc file-system stores the per-process limits in the
file system object located at /proc/<pid>/limits, where <pid>
is the process’s PID or process identifier. You can use the
following bash function to return the content of the limits
object for a process or processes with a given name:

return-limits(){

 for process in $@; do
 process_pids=`ps -C $process -o pid --no-headers | cut -d " " -f 2`

 if [-z $@]; then
 echo "[no $process running]"
 else
 for pid in $process_pids; do
 echo "[$process #$pid -- limits]"
 cat /proc/$pid/limits
 done
 fi

 done

}

You can copy and paste this function into a current shell session or
load it as part of a script. Call the function with one the following
invocations:

return-limits mongod
return-limits mongos
return-limits mongod mongos

The output of the first command may resemble the following:

[mongod #6809 -- limits]
Limit Soft Limit Hard Limit Units
Max cpu time unlimited unlimited seconds
Max file size unlimited unlimited bytes
Max data size unlimited unlimited bytes
Max stack size 8720000 unlimited bytes
Max core file size 0 unlimited bytes
Max resident set unlimited unlimited bytes
Max processes 192276 192276 processes
Max open files 1024 4096 files
Max locked memory 40960000 40960000 bytes
Max address space unlimited unlimited bytes
Max file locks unlimited unlimited locks
Max pending signals 192276 192276 signals
Max msgqueue size 819200 819200 bytes
Max nice priority 30 30
Max realtime priority 65 65
Max realtime timeout unlimited unlimited us

Recommended Settings

Every deployment may have unique requirements and settings; however,
the following thresholds and settings are particularly important for
mongod and mongos deployments:

	-f (file size): unlimited

	-t (cpu time): unlimited

	-v (virtual memory): unlimited [1]

	-n (open files): 64000

	-m (memory size): unlimited [1]

	-u (processes/threads): 32000

Always remember to restart your mongod and
mongos instances after changing the ulimit settings to
make sure that the settings change takes effect.

	[1]	(1, 2) If you limit virtual or resident memory size on a
system running MongoDB the operating system will refuse to honor
additional allocation requests.

System Collections

Synopsis

MongoDB stores system information in collections that use the
<database>.system.* namespace, which MongoDB reserves for
internal use. Do not create collections that begin with system.

MongoDB also stores some additional instance-local metadata in the
local database, specifically for
replication purposes.

Collections

System collections include these collections stored in the admin database:

	
admin.system.roles

	
New in version 2.6.

The admin.system.roles collection stores custom roles that
administrators create and assign to users to provide access to
specific resources.

	
admin.system.users

	
Changed in version 2.6.

The admin.system.users collection stores the user’s
authentication credentials as well as any roles assigned to the user.
Users may define authorization roles in the
admin.system.roles collection.

System collections also include these collections stored directly in each database:

	
<database>.system.namespaces

	The <database>.system.namespaces collection contains
information about all of the database’s collections. Additional
namespace metadata exists in the database.ns files and is
opaque to database users.

	
<database>.system.indexes

	The <database>.system.indexes collection lists all the
indexes in the database. Add and remove data from this collection
via the ensureIndex() and
dropIndex()

	
<database>.system.profile

	The <database>.system.profile collection stores database
profiling information. For information on profiling, see Database Profiling.

	
<database>.system.js

	The <database>.system.js collection holds special JavaScript
code for use in server side JavaScript. See
Store a JavaScript Function on the Server for
more information.

MongoDB Extended JSON

MongoDB import and export utilities (i.e. mongoimport and
mongoexport) and MongoDB REST Interfaces [http://docs.mongodb.org/ecosystem/tools/http-interfaces] render an approximation of MongoDB BSON
documents in JSON format.

The REST interface supports three different modes for document output:

	Strict mode that produces output that conforms to the JSON RFC
specifications [http://www.json.org].

	JavaScript mode that produces output that most JavaScript
interpreters can process (via the --jsonp option)

	mongo Shell mode produces output that the
mongo shell can process. This is “extended” JavaScript
format.

MongoDB can process of these representations in REST input.

Special representations of BSON data in JSON
format make it possible to render information that have no obvious
corresponding JSON. In some cases MongoDB supports multiple equivalent
representations of the same type information. Consider the following
table:

	BSON Data Type
	Strict Mode
	JavaScript Mode (via JSONP)
	mongo Shell Mode
	Notes

	
	
data_binary

	

	{
 "$binary": "<bindata>",
 "$type": "<t>"
}

	{
 "$binary": "<bindata>",
 "$type": "<t>"
}

	BinData (<t>, <bindata>)

	<bindata> is the base64 representation of a binary
string.

<t> is the hexadecimal representation of a single byte
that indicates the data type.

	
	
data_date

	

	{
 "$date": <date>
}

	new Date(<date>)

	new Date (<date>)

	<date> is the JSON representation of a 64-bit signed
integer for milliseconds since epoch UTC (unsigned before
version 1.9.1).

	
	
data_timestamp

	

	{
 "$timestamp":
 {
 "t": <t>,
 "i": <i>
 }
}

	{
 "$timestamp":
 {
 "t": <t>,
 "i": <i>
 }
}

	Timestamp(<t>, <i>)

	<t> is the JSON representation
of a 32-bit unsigned integer
for seconds since epoch.

<i> is a 32-bit unsigned
integer for the increment.

	
	
data_regex

	

	{
 "$regex": "<sRegex>",
 "$options": "<sOptions>"
}

	/<jRegex>/<jOptions>

	/<jRegex>/<jOptions>

	<sRegex> is a string of valid JSON characters.

<jRegex> is a string that may contain valid JSON
characters and unescaped double quote (") characters, but may not
contain unescaped forward slash (/) characters.

<sOptions> is a string containing the regex options
represented by the letters of the alphabet.

<jOptions> is a string that may contain only the
characters ‘g’, ‘i’, ‘m’ and ‘s’ (added in v1.9). Because
the JavaScript and mongo Shell representations
support a limited range of options, any nonconforming
options will be dropped when converting to this
representation.

	
	
data_oid

	

	{
 "$oid": "<id>"
}

	{
 "$oid": "<id>"
}

	ObjectId("<id>")

	<id> is a 24-character hexadecimal string.

	
	
data_ref

	

	{
 "$ref": "<name>",
 "$id": "<id>"
}

	{
 "$ref" : "<name>",
 "$id" : "<id>"
}

	DBRef("<name>", "<id>")

	<name> is a string of valid JSON characters.

<id> is any valid extended JSON type.

	
	
data_undefined

	

	{
 "$undefined": true
}

	undefined

	undefined

	The representation for the JavaScript/BSON undefined type.

	
	
data_minkey

	

	{
 "$minKey": 1
}

	{
 "$minKey": 1
}

	MinKey

	The representation of the MinKey BSON data type that
compares lower than all other types. See
What is the compare order for BSON types? for more
information on comparison order for BSON types.

	
	
data_maxkey

	

	{
 "$maxKey": 1
}

	{
 "$maxKey": 1
}

	MaxKey

	The representation of the MaxKey BSON data type that
compares higher than all other types. See
What is the compare order for BSON types? for more
information on comparison order for BSON types.

Database Profiler Output

The database profiler captures data information about read and write
operations, cursor operations, and database commands. To configure the
database profile and set the thresholds for capturing profile data,
see the Analyze Performance of Database Operations section.

The database profiler writes data in the system.profile collection,
which is a capped collection. To view the profiler’s output,
use normal MongoDB queries on the system.profile collection.

Note

Because the database profiler writes data to the
system.profile collection in a
database, the profiler will profile some write activity, even for
databases that are otherwise read-only.

Example system.profile Document

The documents in the system.profile collection have the following form. This
example document reflects an update operation:

{
 "ts" : ISODate("2012-12-10T19:31:28.977Z"),
 "op" : "update",
 "ns" : "social.users",
 "query" : {
 "name" : "jane"
 },
 "updateobj" : {
 "$set" : {
 "likes" : [
 "basketball",
 "trekking"
]
 }
 },
 "nscanned" : 8,
 "moved" : true,
 "nmoved" : 1,
 "nupdated" : 1,
 "keyUpdates" : 0,
 "numYield" : 0,
 "lockStats" : {
 "timeLockedMicros" : {
 "r" : NumberLong(0),
 "w" : NumberLong(258)
 },
 "timeAcquiringMicros" : {
 "r" : NumberLong(0),
 "w" : NumberLong(7)
 }
 },
 "millis" : 0,
 "client" : "127.0.0.1",
 "user" : ""
}

Output Reference

For any single operation, the documents created by the database
profiler will include a subset of the following fields. The precise
selection of fields in these documents depends on the type of
operation.

	
system.profile.ts

	The timestamp of the operation.

	
system.profile.op

	The type of operation. The possible values are:

	insert

	query

	update

	remove

	getmore

	command

	
system.profile.ns

	The namespace the operation targets. Namespaces in MongoDB
take the form of the database, followed by a dot (.),
followed by the name of
the collection.

	
system.profile.query

	The query document used.

	
system.profile.command

	The command operation.

	
system.profile.updateobj

	The <update> document passed in
during an update operation.

	
system.profile.cursorid

	The ID of the cursor accessed by a getmore operation.

	
system.profile.ntoreturn

	
Changed in version 2.2: In 2.0, MongoDB includes this field for query and
command operations. In 2.2, this information MongoDB also
includes this field for getmore operations.

The number of documents the operation specified to return. For
example, the profile command would return one document
(a results document) so the ntoreturn value would be 1. The
limit(5) command would return five
documents so the ntoreturn value would be 5.

If the ntoreturn value is 0, the command did not specify a
number of documents to return, as would be the case with a simple
find() command with no limit
specified.

	
system.profile.ntoskip

	
New in version 2.2.

The number of documents the skip() method
specified to skip.

	
system.profile.nscanned

	The number of documents that MongoDB scans in the index in order to
carry out the operation.

In general, if nscanned is much higher than nreturned, the
database is scanning many objects to find the target objects.
Consider creating an index to improve this.

	
system.profile.moved

	If moved has a value of true indicates that the update operation moved one or
more documents to a new location on disk. These operations take
more time than
in-place updates, and typically occur when documents grow as a
result of document growth.

	
system.profile.nmoved

	
New in version 2.2.

The number of documents moved on disk by the operation.

	
system.profile.nupdated

	
New in version 2.2.

The number of documents updated by the operation.

	
system.profile.keyUpdates

	
New in version 2.2.

The number of index keys the update changed in
the operation. Changing an index key
carries a small performance cost because the database must remove the old
key and inserts a new key into the B-tree index.

	
system.profile.numYield

	
New in version 2.2.

The number of times the operation yielded to allow other operations
to complete. Typically, operations yield when they need access to
data that MongoDB has not yet fully read into memory. This allows
other operations that have data in memory to complete while MongoDB
reads in data for the yielding operation. For more information,
see the FAQ on when operations yield.

	
system.profile.lockStats

	
New in version 2.2.

The time in microseconds the operation spent acquiring and holding
locks. This field reports data for the following lock types:

	R - global read lock

	W - global write lock

	r - database-specific read lock

	w - database-specific write lock

	
system.profile.lockStats.timeLockedMicros

	The time in microseconds the operation held a specific lock. For
operations that require more than one lock, like those
that lock the local database to update the oplog, then
this value may be longer than the total length of the
operation (i.e. millis.)

	
system.profile.lockStats.timeAcquiringMicros

	The time in microseconds the operation spent waiting to acquire a
specific lock.

	
system.profile.nreturned

	The number of documents returned by the operation.

	
system.profile.responseLength

	The length in bytes of the operation’s result document. A large
responseLength can affect performance.
To limit the size of the
result document for a query operation, you can use any of the
following:

	Projections

	The limit() method

	The batchSize() method

Note

When MongoDB writes query profile information to the log,
the responseLength value is in a field
named reslen.

	
system.profile.millis

	The time in milliseconds for the server to perform the operation.
This time does not include network time nor time to acquire the lock.

	
system.profile.client

	The IP address or hostname of the client connection where the
operation originates.

For some operations, such as db.eval(), the client is
0.0.0.0:0 instead of an actual client.

	
system.profile.user

	The authenticated user who ran the operation.

Exit Codes and Statuses

MongoDB will return one of the following codes and statuses when
exiting. Use this guide to interpret logs and when troubleshooting
issues with mongod and mongos instances.

	
0

	Returned by MongoDB applications upon successful exit.

	
2

	The specified options are in error or are incompatible
with other options.

	
3

	Returned by mongod if there is a mismatch between hostnames
specified on the command line and in the local.sources
collection. mongod may also return this status if
oplog collection in the local database is not readable.

	
4

	The version of the database is different from the version supported
by the mongod (or mongod.exe) instance. The
instance exits cleanly. Restart mongod with the
--upgrade option to upgrade the
database to the version supported by this mongod
instance.

	
5

	Returned by mongod if a moveChunk operation
fails to confirm a commit.

	
12

	Returned by the mongod.exe process on Windows when it
receives a Control-C, Close, Break or Shutdown event.

	
14

	Returned by MongoDB applications which encounter an unrecoverable
error, an uncaught exception or uncaught signal. The system exits
without performing a clean shut down.

	
20

	Message: ERROR: wsastartup failed <reason>

Returned by MongoDB applications on Windows following an error in the
WSAStartup function.

Message: NT Service Error

Returned by MongoDB applications for Windows due to failures installing,
starting or removing the NT Service for the application.

	
45

	Returned when a MongoDB application cannot open a file or cannot
obtain a lock on a file.

	
47

	MongoDB applications exit cleanly following a large clock skew (32768
milliseconds) event.

	
48

	mongod exits cleanly if the server socket closes. The
server socket is on port 27017 by default, or as specified to
the --port run-time option.

	
49

	Returned by mongod.exe or mongos.exe on Windows
when either receives a shutdown message from the
Windows Service Control Manager.

	
100

	Returned by mongod when the process throws an uncaught exception.

Security

This section outlines basic security and risk management strategies and
access control. The included tutorials outline specific tasks for
configuring firewalls, authentication, and system privileges.

	Security Introduction

	A high-level introduction to security and MongoDB deployments.

	Security Concepts

	The core documentation of security.

	Access Control

	Control access to MongoDB instances using authentication and authorization.

	Network Exposure and Security

	Discusses potential security risks related to the network and
strategies for decreasing possible network-based attack vectors for
MongoDB.

	Security and MongoDB API Interfaces

	Discusses potential risks related to MongoDB’s JavaScript, HTTP and
REST interfaces, including strategies to control those risks.

	Sharded Cluster Security

	MongoDB controls access to sharded clusters with key files.

	System Event Auditing

	Audit server and client activity for mongod and
mongos instances.

	Security Tutorials

	Tutorials for enabling and configuring security features for MongoDB.

	Create a Vulnerability Report

	Report a vulnerability in MongoDB.

	Network Security Tutorials

	Ensure that the underlying network configuration supports a secure
operating environment for MongoDB deployments, and appropriately
limits access to MongoDB deployments.

	Access Control Tutorials

	MongoDB’s access control system provides role-based access control
for limiting access to MongoDB deployments. These tutorials describe
procedures relevant for the operation and maintenance of this access
control system.

	Security Reference

	Reference for security related functions.

	Security Introduction

	Security Concepts
	Access Control

	Inter-Process Authentication

	Sharded Cluster Security

	Network Exposure and Security

	Security and MongoDB API Interfaces

	System Event Auditing

	Security Tutorials
	Network Security Tutorials
	Configure Linux iptables Firewall for MongoDB

	Configure Windows netsh Firewall for MongoDB

	Connect to MongoDB with SSL

	Upgrade a Cluster to Use SSL

	Access Control Tutorials
	Enable Authentication

	Create a User Administrator

	Add a User to a Database

	Define MongoDB Access Roles

	Modify User Privileges

	View Existing Access Roles

	Change a User’s Password

	Generate a Key File

	Deploy MongoDB with Kerberos Authentication

	Authenticate with x.509 Certificate

	Authenticate Using SASL and LDAP

	Configure System Events Auditing

	Create a Vulnerability Report

	Security Reference
	System-Defined Roles

	system.roles Collection

	system.users Collection

	Resource Document

	Privilege Actions

	Default MongoDB Port

	Audit Operations

	Security Release Notes

Security Tutorials

The following tutorials provide instructions for enabling and using
the security features available in MongoDB.

	Network Security Tutorials

	Ensure that the underlying network configuration supports a secure
operating environment for MongoDB deployments, and appropriately
limits access to MongoDB deployments.

	Configure Linux iptables Firewall for MongoDB

	Basic firewall configuration patterns and examples for iptables
on Linux systems.

	Configure Windows netsh Firewall for MongoDB

	Basic firewall configuration patterns and examples for netsh
on Windows systems.

	Connect to MongoDB with SSL

	SSL allows MongoDB clients to
support encrypted connections to mongod instances.

	Access Control Tutorials

	MongoDB’s access control system provides role-based access control
for limiting access to MongoDB deployments. These tutorials describe
procedures relevant for the operation and maintenance of this access
control system.

	Enable Authentication

	Describes the process for enabling authentication for MongoDB
deployments.

	Create a User Administrator

	Create users with special permissions to to create, modify, and
remove other users, as well as administer authentication credentials
(e.g. passwords).

	Add a User to a Database

	Create non-administrator users using MongoDB’s role-based
authentication system.

	Define MongoDB Access Roles

	Create custom role.

	Modify User Privileges

	Modify the actions available to a user on specific database resources.

	View Existing Access Roles

	View a role’s privileges.

	Deploy MongoDB with Kerberos Authentication

	Describes the process, for MongoDB Enterprise, used to enable and
implement a Kerberos-based authentication system for MongoDB
deployments.

	Configure System Events Auditing

	Enable and configure MongoDB Enterprise auditing feature.

	Create a Vulnerability Report

	Report a vulnerability in MongoDB.

	Network Security Tutorials
	Configure Linux iptables Firewall for MongoDB

	Configure Windows netsh Firewall for MongoDB

	Connect to MongoDB with SSL

	Upgrade a Cluster to Use SSL

	Access Control Tutorials
	Enable Authentication

	Create a User Administrator

	Add a User to a Database

	Define MongoDB Access Roles

	Modify User Privileges

	View Existing Access Roles

	Change a User’s Password

	Generate a Key File

	Deploy MongoDB with Kerberos Authentication

	Authenticate with x.509 Certificate

	Authenticate Using SASL and LDAP

	Configure System Events Auditing

	Create a Vulnerability Report

Network Security Tutorials

The following tutorials provide information on handling network
security for MongoDB.

	Configure Linux iptables Firewall for MongoDB

	Basic firewall configuration patterns and examples for iptables
on Linux systems.

	Configure Windows netsh Firewall for MongoDB

	Basic firewall configuration patterns and examples for netsh
on Windows systems.

	Connect to MongoDB with SSL

	SSL allows MongoDB clients to
support encrypted connections to mongod instances.

	Upgrade a Cluster to Use SSL

	Rolling upgrade process to use SSL.

	Configure Linux iptables Firewall for MongoDB

	Configure Windows netsh Firewall for MongoDB

	Connect to MongoDB with SSL

	Upgrade a Cluster to Use SSL

Configure Linux iptables Firewall for MongoDB

On contemporary Linux systems, the iptables program provides
methods for managing the Linux Kernel’s netfilter or network
packet filtering capabilities. These firewall rules make it possible
for administrators to control what hosts can connect to the system,
and limit risk exposure by limiting the hosts that can connect to a
system.

This document outlines basic firewall configurations for iptables
firewalls on Linux. Use these approaches as a starting point for your
larger networking organization. For a detailed overview of security
practices and risk management for MongoDB, see Security Concepts.

See also

For MongoDB deployments on Amazon’s web services, see the
Amazon EC2 [http://docs.mongodb.org/ecosystem/platforms/amazon-ec2] page, which addresses Amazon’s
Security Groups and other EC2-specific security features.

Overview

Rules in iptables configurations fall into chains, which describe
the process for filtering and processing specific streams of
traffic. Chains have an order, and packets must pass through earlier
rules in a chain to reach later rules. This document addresses only the
following two chains:

	INPUT

	Controls all incoming traffic.

	OUTPUT

	Controls all outgoing traffic.

Given the default ports of all MongoDB
processes, you must configure networking rules that permit only
required communication between your application and the appropriate
mongod and mongos instances.

Be aware that, by default, the default policy of iptables is to
allow all connections and traffic unless explicitly disabled. The
configuration changes outlined in this document will create rules that
explicitly allow traffic from specific addresses and on specific
ports, using a default policy that drops all traffic that is not
explicitly allowed. When you have properly configured your
iptables rules to allow only the traffic that you want to permit,
you can Change Default Policy to DROP.

Patterns

This section contains a number of patterns and examples for
configuring iptables for use with MongoDB deployments. If you have
configured different ports using the port configuration
setting, you will need to modify the rules accordingly.

Traffic to and from mongod Instances

This pattern is applicable to all mongod instances running
as standalone instances or as part of a replica set.

The goal of this pattern is to explicitly allow traffic to the
mongod instance from the application server. In the
following examples, replace <ip-address> with the IP address of
the application server:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27017 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27017 -m state --state ESTABLISHED -j ACCEPT

The first rule allows all incoming traffic from <ip-address> on
port 27017, which allows the application server to connect to the
mongod instance. The second rule, allows outgoing traffic
from the mongod to reach the application server.

Optional

If you have only one application server, you can replace
<ip-address> with either the IP address itself, such as:
198.51.100.55. You can also express this using CIDR notation as
198.51.100.55/32. If you want to permit a larger block of
possible IP addresses you can allow traffic from a /24 using
one of the following specifications for the <ip-address>, as
follows:

10.10.10.10/24
10.10.10.10/255.255.255.0

Traffic to and from mongos Instances

mongos instances provide query routing for sharded
clusters. Clients connect to mongos instances, which
behave from the client’s perspective as mongod
instances. In turn, the mongos connects to all
mongod instances that are components of the sharded
cluster.

Use the same iptables command to allow traffic to and from these
instances as you would from the mongod instances that are
members of the replica set. Take the configuration outlined in the
Traffic to and from mongod Instances section as an example.

Traffic to and from a MongoDB Config Server

Config servers, host the config database that stores metadata
for sharded clusters. Each production cluster has three config
servers, initiated using the mongod --configsvr
option. [1] Config servers listen for connections on port
27019. As a result, add the following iptables rules to the
config server to allow incoming and outgoing connection on port
27019, for connection to the other config servers.

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27019 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27019 -m state --state ESTABLISHED -j ACCEPT

Replace <ip-address> with the address or address space of all
the mongod that provide config servers.

Additionally, config servers need to allow incoming connections from
all of the mongos instances in the cluster and all
mongod instances in the cluster. Add rules that
resemble the following:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27019 -m state --state NEW,ESTABLISHED -j ACCEPT

Replace <ip-address> with the address of the
mongos instances and the shard mongod
instances.

	[1]	You can also run a config server by setting the
configsvr option in a configuration file.

Traffic to and from a MongoDB Shard Server

For shard servers, running as mongod --shardsvr
[2] Because the default port number when running with
shardsvr is 27018, you must configure the following
iptables rules to allow traffic to and from each shard:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 27018 -m state --state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27018 -m state --state ESTABLISHED -j ACCEPT

Replace the <ip-address> specification with the IP address of all
mongod. This allows you to permit incoming and outgoing
traffic between all shards including constituent replica set members,
to:

	all mongod instances in the shard’s replica sets.

	all mongod instances in other shards. [3]

Furthermore, shards need to be able make outgoing connections to:

	all mongos instances.

	all mongod instances in the config servers.

Create a rule that resembles the following, and replace the
<ip-address> with the address of the config servers and the
mongos instances:

iptables -A OUTPUT -d <ip-address> -p tcp --source-port 27018 -m state --state ESTABLISHED -j ACCEPT

	[2]	You can also specify the shard server option using
the shardsvr setting in the configuration file. Shard
members are also often conventional replica sets using the default
port.

	[3]	All shards in a cluster need to be able to
communicate with all other shards to facilitate chunk and
balancing operations.

Provide Access For Monitoring Systems

	The mongostat diagnostic tool, when running with the
--discover needs to be able to
reach all components of a cluster, including the config servers,
the shard servers, and the mongos instances.

	If your monitoring system needs access the HTTP interface, insert
the following rule to the chain:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 28017 -m state --state NEW,ESTABLISHED -j ACCEPT

Replace <ip-address> with the address of the instance that
needs access to the HTTP or REST interface. For all deployments,
you should restrict access to this port to only the monitoring
instance.

Optional

For shard server mongod instances running with
shardsvr, the rule would resemble the following:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 28018 -m state --state NEW,ESTABLISHED -j ACCEPT

For config server mongod instances running with
configsvr, the rule would resemble the following:

iptables -A INPUT -s <ip-address> -p tcp --destination-port 28019 -m state --state NEW,ESTABLISHED -j ACCEPT

Change Default Policy to DROP

The default policy for iptables chains is to allow all
traffic. After completing all iptables configuration changes, you
must change the default policy to DROP so that all traffic that
isn’t explicitly allowed as above will not be able to reach components
of the MongoDB deployment. Issue the following commands to change this
policy:

iptables -P INPUT DROP

iptables -P OUTPUT DROP

Manage and Maintain iptables Configuration

This section contains a number of basic operations for managing and
using iptables. There are various front end tools that automate
some aspects of iptables configuration, but at the core all
iptables front ends provide the same basic functionality:

Make all iptables Rules Persistent

By default all iptables rules are only stored in memory. When
your system restarts, your firewall rules will revert to their
defaults. When you have tested a rule set and have guaranteed that it
effectively controls traffic you can use the following operations to
you should make the rule set persistent.

On Red Hat Enterprise Linux, Fedora Linux, and related distributions
you can issue the following command:

service iptables save

On Debian, Ubuntu, and related distributions, you can use the
following command to dump the iptables rules to the
/etc/iptables.conf file:

iptables-save > /etc/iptables.conf

Run the following operation to restore the network rules:

iptables-restore < /etc/iptables.conf

Place this command in your rc.local file, or in the
/etc/network/if-up.d/iptables file with other similar operations.

List all iptables Rules

To list all of currently applied iptables rules, use the following
operation at the system shell.

iptables --L

Flush all iptables Rules

If you make a configuration mistake when entering iptables rules
or simply need to revert to the default rule set, you can use the
following operation at the system shell to flush all rules:

iptables --F

If you’ve already made your iptables rules persistent, you will
need to repeat the appropriate procedure in the
Make all iptables Rules Persistent section.

Configure Windows netsh Firewall for MongoDB

On Windows Server systems, the netsh program provides
methods for managing the Windows Firewall. These firewall rules make it possible
for administrators to control what hosts can connect to the system,
and limit risk exposure by limiting the hosts that can connect to a
system.

This document outlines basic Windows Firewall configurations.
Use these approaches as a starting point for your
larger networking organization.
For a detailed over view of security
practices and risk management for MongoDB, see
Security Concepts.

See also

Windows Firewall [http://technet.microsoft.com/en-us/network/bb545423.aspx]
documentation from Microsoft.

Overview

Windows Firewall processes rules in an ordered determined
by rule type, and parsed in the following order:

	Windows Service Hardening

	Connection security rules

	Authenticated Bypass Rules

	Block Rules

	Allow Rules

	Default Rules

By default, the policy in Windows Firewall allows all outbound connections
and blocks all incoming connections.

Given the default ports of all MongoDB
processes, you must configure networking rules that permit only
required communication between your application and the appropriate
mongod.exe and mongos.exe instances.

The configuration changes outlined in this document will create rules
which explicitly allow traffic from specific addresses and on specific
ports, using a default policy that drops all traffic that is not
explicitly allowed.

You can configure the Windows Firewall with using the netsh command line
tool or through a windows application. On Windows Server 2008 this
application is Windows Firewall With Advanced Security in Administrative Tools.
On previous versions of Windows Server, access the
Windows Firewall application in the System and Security control panel.

The procedures in this document use the netsh command line tool.

Patterns

This section contains a number of patterns and examples for
configuring Windows Firewall for use with MongoDB deployments.
If you have configured different ports using the port configuration
setting, you will need to modify the rules accordingly.

Traffic to and from mongod.exe Instances

This pattern is applicable to all mongod.exe instances running
as standalone instances or as part of a replica set.
The goal of this pattern is to explicitly allow traffic to the
mongod.exe instance from the application server.

netsh advfirewall firewall add rule name="Open mongod port 27017" dir=in action=allow protocol=TCP localport=27017

This rule allows all incoming traffic to port 27017, which
allows the application server to connect to the
mongod.exe instance.

Windows Firewall also allows enabling network access for
an entire application rather than to a specific port, as in the
following example:

netsh advfirewall firewall add rule name="Allowing mongod" dir=in action=allow program=" C:\mongodb\bin\mongod.exe"

You can allow all access for a mongos.exe server, with the
following invocation:

netsh advfirewall firewall add rule name="Allowing mongos" dir=in action=allow program=" C:\mongodb\bin\mongos.exe"

Traffic to and from mongos.exe Instances

mongos.exe instances provide query routing for
sharded clusters. Clients connect to mongos.exe
instances, which behave from the client’s perspective as
mongod.exe instances. In turn, the mongos.exe
connects to all mongod.exe instances that are components of
the sharded cluster.

Use the same Windows Firewall command to allow traffic to
and from these instances as you would from the mongod.exe
instances that are members of the replica set.

netsh advfirewall firewall add rule name="Open mongod shard port 27018" dir=in action=allow protocol=TCP localport=27018

Traffic to and from a MongoDB Config Server

Configuration servers, host the config database that stores metadata
for sharded clusters. Each production cluster has three configuration
servers, initiated using the mongod --configsvr
option. [1] Configuration servers listen for connections on port
27019. As a result, add the following Windows Firewall rules to the
config server to allow incoming and outgoing connection on port
27019, for connection to the other config servers.

netsh advfirewall firewall add rule name="Open mongod config svr port 27019" dir=in action=allow protocol=TCP localport=27019

Additionally, config servers need to allow incoming connections from
all of the mongos.exe instances in the cluster and all
mongod.exe instances in the cluster. Add rules that
resemble the following:

netsh advfirewall firewall add rule name="Open mongod config svr inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=27019

Replace <ip-address> with the addresses of the
mongos.exe instances and the shard mongod.exe
instances.

	[1]	You can also run a config server by setting the
configsvr option in a configuration file.

Traffic to and from a MongoDB Shard Server

For shard servers, running as mongod --shardsvr
[2] Because the default port number when running with
shardsvr is 27018, you must configure the following
Windows Firewall rules to allow traffic to and from each shard:

netsh advfirewall firewall add rule name="Open mongod shardsvr inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=27018
netsh advfirewall firewall add rule name="Open mongod shardsvr outbound" dir=out action=allow protocol=TCP remoteip=<ip-address> localport=27018

Replace the <ip-address> specification with the IP address of all
mongod.exe instances. This allows you to permit incoming
and outgoing traffic between all shards including constituent replica
set members to:

	all mongod.exe instances in the shard’s replica sets.

	all mongod.exe instances in other shards. [3]

Furthermore, shards need to be able make outgoing connections to:

	all mongos.exe instances.

	all mongod.exe instances in the config servers.

Create a rule that resembles the following, and replace the
<ip-address> with the address of the config servers and the
mongos.exe instances:

netsh advfirewall firewall add rule name="Open mongod config svr outbound" dir=out action=allow protocol=TCP remoteip=<ip-address> localport=27018

	[2]	You can also specify the shard server option using
the shardsvr setting in the configuration file. Shard
members are also often conventional replica sets using the default
port.

	[3]	All shards in a cluster need to be able to
communicate with all other shards to facilitate chunk and
balancing operations.

Provide Access For Monitoring Systems

	The mongostat diagnostic tool, when running with the
--discover needs to be able to
reach all components of a cluster, including the config servers,
the shard servers, and the mongos.exe instances.

	If your monitoring system needs access the HTTP interface, insert
the following rule to the chain:

netsh advfirewall firewall add rule name="Open mongod HTTP monitoring inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=28017

Replace <ip-address> with the address of the instance that
needs access to the HTTP or REST interface. For all deployments,
you should restrict access to this port to only the monitoring
instance.

Optional

For shard server mongod.exe instances running with
shardsvr, the rule would resemble the following:

netsh advfirewall firewall add rule name="Open mongos HTTP monitoring inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=28018

For config server mongod.exe instances running with
configsvr, the rule would resemble the following:

netsh advfirewall firewall add rule name="Open mongod configsvr HTTP monitoring inbound" dir=in action=allow protocol=TCP remoteip=<ip-address> localport=28019

Manage and Maintain Windows Firewall Configurations

This section contains a number of basic operations for managing and
using netsh. While you can use the GUI front ends to manage the
Windows Firewall, all core functionality is accessible is
accessible from netsh.

Delete all Windows Firewall Rules

To delete the firewall rule allowing mongod.exe traffic:

netsh advfirewall firewall delete rule name="Open mongod port 27017" protocol=tcp localport=27017

netsh advfirewall firewall delete rule name="Open mongod shard port 27018" protocol=tcp localport=27018

List All Windows Firewall Rules

To return a list of all Windows Firewall rules:

netsh advfirewall firewall show rule name=all

Reset Windows Firewall

To reset the Windows Firewall rules:

netsh advfirewall reset

Backup and Restore Windows Firewall Rules

To simplify administration of larger collection of systems, you can export or
import firewall systems from different servers) rules very easily on Windows:

Export all firewall rules with the following command:

netsh advfirewall export "C:\temp\MongoDBfw.wfw"

Replace "C:\temp\MongoDBfw.wfw" with a path of your choosing. You
can use a command in the following form to import a file created using
this operation:

netsh advfirewall import "C:\temp\MongoDBfw.wfw"

Connect to MongoDB with SSL

This document outlines the use and operation of MongoDB’s SSL
support. SSL allows MongoDB clients to support encrypted connections
to mongod instances.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain
support for SSL. To use SSL, you must either build MongoDB locally
passing the --ssl option to scons or use MongoDB
Enterprise [http://www.mongodb.com/products/mongodb-enterprise].

These instructions outline the process for getting started with SSL and
assume that you have already installed a build of MongoDB that includes
SSL support and that your client driver supports SSL. For instructions
on upgrading a cluster currently not using SSL to using SSL, see
Upgrade a Cluster to Use SSL.

Changed in version 2.5.3: 	MongoDB’s SSL encryption only allows use of strong SSL ciphers
with a minimum of 128-bit key length for all connections.

	MongoDB Enterprise for Windows includes support for SSL.

Configure mongod and mongos for SSL

Combine SSL Certificate and Key File

Before you can use SSL, you must have a .pem file that
contains the public key certificate and private key. MongoDB can use
any valid SSL certificate. To generate a self-signed certificate and
private key, use a command that resembles the following:

cd /etc/ssl/
openssl req -new -x509 -days 365 -nodes -out mongodb-cert.crt -keyout mongodb-cert.key

This operation generates a new, self-signed certificate with no
passphrase that is valid for 365 days. Once you have the certificate,
concatenate the certificate and private key to a .pem file, as
in the following example:

cat mongodb-cert.key mongodb-cert.crt > mongodb.pem

Set Up mongod and mongos with SSL Certificate and Key

To use SSL in your MongoDB deployment, include the following run-time
options with mongod and mongos:

	sslMode set to requireSSL.
This setting restricts each server to use only SSL encrypted
connections. See sslMode for details.

	sslPEMKeyFile with the .pem file that contains the
SSL certificate and key.

Consider the following syntax for mongod:

mongod --sslMode requireSSL --sslPEMKeyFile <pem>

For example, given an SSL certificate located at
/etc/ssl/mongodb.pem, configure mongod to use SSL
encryption for all connections with the following command:

mongod --sslMode requireSSL --sslPEMKeyFile /etc/ssl/mongodb.pem

Note

	Specify <pem> with the full path name to the certificate.

	If the private key portion of the <pem> is encrypted, specify
the passphrase. See SSL Certificate Passphrase.

	You may also specify these options in the configuration file, as in the following example:

sslMode = requireSSL
sslPEMKeyFile = /etc/ssl/mongodb.pem

To connect, to mongod and mongos instances using
SSL, the mongo shell and MongoDB tools must include the
--ssl option. See SSL Configuration for Clients for more information on
connecting to mongod and mongos running with SSL.

See also

Upgrade a Cluster to Use SSL

Set Up mongod and mongos with Certificate Validation

To set up mongod or mongos for SSL encryption
using an SSL certificate signed by a certificate authority, include the
following run-time options during startup:

	sslMode set to requireSSL. This setting restricts each
server to use only SSL encrypted connections. See sslMode
for details.

	sslPEMKeyFile with the name of the .pem file that
contains the signed SSL certificate and key.

	sslCAFile with the name of the .pem file that
contains the root certificate chain from the Certificate Authority.

Consider the following syntax for mongod:

mongod --sslMode requireSSL --sslPEMKeyFile <pem> --sslCAFile <ca>

For example, given a signed SSL certificate located at
/etc/ssl/mongodb.pem and the certificate authority file at
/etc/ssl/ca.pem, you can configure mongod for SSL
encryption as follows:

mongod --sslMode requireSSL --sslPEMKeyFile /etc/ssl/mongodb.pem --sslCAFile /etc/ssl/ca.pem

Note

	Specify the <pem> file and the <ca> file with either the
full path name or the relative path name.

	If the <pem> is encrypted, specify the passphrase. See
SSL Certificate Passphrase.

	You may also specify these options in the configuration file, as in the following example:

sslMode = requireSSL
sslPEMKeyFile = /etc/ssl/mongodb.pem
sslCAFile = /etc/ssl/ca.pem

To connect, to mongod and mongos instances using
SSL, the mongo tools must include the both the
--ssl and
--sslPEMKeyFile option.
See SSL Configuration for Clients for more information on connecting to
mongod and mongos running with SSL.

See also

Upgrade a Cluster to Use SSL

Block Revoked Certificates for Clients

To prevent clients with revoked certificates from connecting, include
the sslCRLFile to specify a .pem file that contains
revoked certificates.

For example, the following mongod with SSL configuration
includes the sslCRLFile setting:

mongod --sslMode requireSSL --sslCRLFile /etc/ssl/ca-crl.pem --sslPEMKeyFile /etc/ssl/mongodb.pem --sslCAFile /etc/ssl/ca.pem

Clients with revoked certificates in the /etc/ssl/ca-crl.pem
will not be able to connect to this mongod instance.

Validate Only if a Client Presents a Certificate

In most cases it is important to ensure that clients present valid
certificates. However, if you have clients that cannot present a
client certificate, or are transitioning to using a certificate
authority you may only want to validate certificates from clients that
present a certificate.

If you want to bypass validation for clients that don’t present
certificates, include the sslWeakCertificateValidation
run-time option with mongod and mongos. If the
client does not present a certificate, no validation occurs. These
connections, though not validated, are still encrypted using SSL.

For example, consider the following mongod with an SSL
configuration that includes the sslWeakCertificateValidation
setting:

mongod --sslMode requireSSL --sslWeakCertificateValidation --sslPEMKeyFile /etc/ssl/mongodb.pem --sslCAFile /etc/ssl/ca.pem

Then, clients can connect either with the option --ssl
and no certificate or with the option --ssl
and a valid certificate. See SSL Configuration for Clients for more
information on SSL connections for clients.

Note

If the client presents a certificate, the certificate must be a
valid certificate.

All connections, including those that have not presented
certificates are encrypted using SSL.

Run in FIPS Mode

If your mongod or mongos is running on a system
with an OpenSSL library configured with the FIPS 140-2 module, you can
run mongod or mongos in FIPS mode, with the
sslFIPSMode setting.

SSL Certificate Passphrase

The PEM files for sslPEMKeyFile and
sslClusterFile may be encrypted. With encrypted PEM files,
you must specify the passphrase at startup with a command-line or a
configuration file option or enter the passphrase when prompted.

Changed in version 2.6: In previous versions, you can only specify the passphrase with a
command-line or a configuration file option.

To specify the passphrase in clear text on the command line or in a
configuration file, use the sslPEMKeyPassword and/or the
sslClusterPassword option.

To have MongoDB prompt for the passphrase at the start of
mongod or mongos and avoid specifying the
passphrase in clear text, omit the sslPEMKeyPassword and/or
the sslClusterPassword option. MongoDB will prompt for each
passphrase as necessary.

Important

The passphrase prompt option is available if you run the
MongoDB instance in the foreground with a connected terminal. If you
run mongod or mongos in a non-interactive
session (e.g. without a terminal or as a service on Windows),
you cannot use the passphrase prompt option.

SSL Configuration for Clients

Clients must have support for SSL to work with a mongod or a
mongos instance that has SSL support enabled. The current
versions of the Python, Java, Ruby, Node.js, .NET, and C++ drivers have
support for SSL, with full support coming in future releases of other
drivers.

mongo SSL Configuration

For SSL connections, you must use the mongo shell built with
SSL support or distributed with MongoDB Enterprise. To support SSL,
mongo has the following settings:

	--ssl

	--sslPEMKeyFile with the name of the
.pem file that contains the SSL certificate and key.

	--sslCAFile with the name of the .pem
file that contains the certificate from the Certificate Authority.

	--sslPEMKeyPassword option if the
client certificate-key file is encrypted.

Connect to MongoDB Instance with SSL Encryption

To connect to a mongod or mongos instance that
requires only a SSL encryption mode,
start mongo shell with --ssl, as in
the following:

mongo --ssl

Connect to MongoDB Instance that Requires Client Certificates

To connect to a mongod or mongos that requires
CA-signed client certificates, start the mongo shell with
--ssl and the --sslPEMKeyFile option to specify the signed certificate-key file, as
in the following:

mongo --ssl --sslPEMKeyFile /etc/ssl/client.pem

Connect to MongoDB Instance that Validates when Presented with a Certificate

To connect to a mongod or mongos instance that
only requires valid certificates when the client presents a certificate, start mongo shell either
with the --ssl ssl and no certificate or
with the --ssl ssl and a valid signed
certificate.

For example, if mongod is running with weak certificate
validation, both of the following mongo shell clients can
connect to that mongod:

mongo --ssl
mongo --ssl --sslPEMKeyFile /etc/ssl/client.pem

Important

If the client presents a certificate, the certificate
must be valid.

MMS Monitoring Agent

The Monitoring agent will also have to connect via SSL in order to gather its
stats. Because the agent already utilizes SSL for its communications
to the MMS servers, this is just a matter of enabling SSL support in
MMS itself on a per host basis.

Use the “Edit” host button (i.e. the pencil) on the Hosts page in the
MMS console to enable SSL.

Please see the MMS documentation [http://mms.mongodb.com/help] for more
information about MMS configuration.

PyMongo

Add the “ssl=True” parameter to a PyMongo
MongoClient [http://api.mongodb.org/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient]
to create a MongoDB connection to an SSL MongoDB instance:

from pymongo import MongoClient
c = MongoClient(host="mongodb.example.net", port=27017, ssl=True)

To connect to a replica set, use the following operation:

from pymongo import MongoReplicaSetClient
c = MongoReplicaSetClient("mongodb.example.net:27017",
 replicaSet="mysetname", ssl=True)

PyMongo also supports an “ssl=true” option for the MongoDB URI:

mongodb://mongodb.example.net:27017/?ssl=true

Java

Consider the following example “SSLApp.java” class file:

import com.mongodb.*;
import javax.net.ssl.SSLSocketFactory;

public class SSLApp {

 public static void main(String args[]) throws Exception {

 MongoClientOptions o = new MongoClientOptions.Builder()
 .socketFactory(SSLSocketFactory.getDefault())
 .build();

 MongoClient m = new MongoClient("localhost", o);

 DB db = m.getDB("test");
 DBCollection c = db.getCollection("foo");

 System.out.println(c.findOne());
 }
}

Ruby

The recent versions of the Ruby driver have support for connections
to SSL servers. Install the latest version of the driver with the
following command:

gem install mongo

Then connect to a standalone instance, using the following form:

require 'rubygems'
require 'mongo'

connection = MongoClient.new('localhost', 27017, :ssl => true)

Replace connection with the following if you’re connecting to a
replica set:

connection = MongoReplicaSetClient.new(['localhost:27017'],
 ['localhost:27018'],
 :ssl => true)

Here, mongod instance run on “localhost:27017” and
“localhost:27018”.

Node.JS (node-mongodb-native)

In the node-mongodb-native [https://github.com/mongodb/node-mongodb-native] driver, use the following invocation to
connect to a mongod or mongos instance via SSL:

var db1 = new Db(MONGODB, new Server("127.0.0.1", 27017,
 { auto_reconnect: false, poolSize:4, ssl:ssl });

To connect to a replica set via SSL, use the following form:

var replSet = new ReplSetServers([
 new Server(RS.host, RS.ports[1], { auto_reconnect: true }),
 new Server(RS.host, RS.ports[0], { auto_reconnect: true }),
],
 {rs_name:RS.name, ssl:ssl}
);

.NET

As of release 1.6, the .NET driver supports SSL connections with
mongod and mongos instances. To connect using
SSL, you must add an option to the connection string, specifying
ssl=true as follows:

var connectionString = "mongodb://localhost/?ssl=true";
var server = MongoServer.Create(connectionString);

The .NET driver will validate the certificate against the local
trusted certificate store, in addition to providing encryption of the
server. This behavior may produce issues during testing if the server
uses a self-signed certificate. If you encounter this issue, add the
sslverifycertificate=false option to the connection string to
prevent the .NET driver from validating the certificate, as follows:

var connectionString = "mongodb://localhost/?ssl=true&sslverifycertificate=false";
var server = MongoServer.Create(connectionString);

MongoDB Tools

Changed in version 2.5.3.

Various MongoDB utility programs supports SSL. These tools include:

	mongodump

	mongoexport

	mongofiles

	mongoimport

	mongooplog

	mongorestore

	mongostat

	mongotop

Tip

To use SSL connections with these tools, use the same SSL
options as the mongo shell. See
mongo SSL Configuration.

Upgrade a Cluster to Use SSL

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Changed in version 2.5.3.

The MongoDB server supports listening for both SSL encrypted and
unencrypted connections on the same TCP port. This allows upgrades of
MongoDB clusters to use SSL encrypted connections. To upgrade from a
MongoDB cluster using no SSL encryption to one using only SSL
encryption, use the following rolling upgrade process:

	For each node of a cluster, start the node with the option
--sslMode set to allowSSL. The --sslMode
allowSSL setting allows the node to accept both SSL
and non-SSL incoming connections. Its connections to other servers
do not use SSL. Include other SSL options as well as any other options that are
required for your specific configuration. For example:

mongod --replSet <name> --sslMode allowSSL --sslPEMKeyFile <path to SSL Certificate and key PEM file> --sslCAFile <path to root CA PEM file>

Upgrade all nodes of the cluster to these settings.

Note

You may also specify these options in the configuration file, as in the following example:

sslMode = <disabled|allowSSL|preferSSL|requireSSL>
sslPEMKeyFile = <path to SSL certificate and key PEM file>
sslCAFile = <path to root CA PEM file>

	Switch all clients to use SSL. See SSL Configuration for Clients.

	For each node of a cluster, use the setParameter
command to update the sslMode to preferSSL.
[1] With preferSSL as its
sslMode, the node accepts both SSL and non-SSL incoming
connections, and its connections to other servers use SSL. For
example:

db.getSiblingDB('admin').runCommand({ setParameter: 1, sslMode: "preferSSL" })

Upgrade all nodes of the cluster to these settings.

At this point, all connections should be using SSL.

	Finally, for each node of the cluster, use the
setParameter command to update the sslMode
to requireSSL. [1] With requireSSL
as its sslMode, the node will reject any non-SSL
connections. For example:

db.getSiblingDB('admin').runCommand({ setParameter: 1, sslMode: "requireSSL" })

	[1]	(1, 2) As an alternative to using the
setParameter command, you can also
restart the nodes with the appropriate SSL options and values.

Access Control Tutorials

The following tutorials provide instructions on how to enable
authentication and limit access for users with privilege roles.

	Enable Authentication

	Describes the process for enabling authentication for MongoDB
deployments.

	Create a User Administrator

	Create users with special permissions to to create, modify, and
remove other users, as well as administer authentication credentials
(e.g. passwords).

	Add a User to a Database

	Create non-administrator users using MongoDB’s role-based
authentication system.

	Define MongoDB Access Roles

	Create custom role.

	Modify User Privileges

	Modify the actions available to a user on specific database resources.

	View Existing Access Roles

	View a role’s privileges.

	Change a User’s Password

	Only user administrators can edit credentials. This tutorial
describes the process for editing an existing user’s password.

	Generate a Key File

	Use key file to allow the components of MongoDB sharded cluster or
replica set to mutually authenticate.

	Deploy MongoDB with Kerberos Authentication

	Describes the process, for MongoDB Enterprise, used to enable and
implement a Kerberos-based authentication system for MongoDB
deployments.

	Authenticate with x.509 Certificate

	Use x.509 for client authentication and internal member authentication.

	Authenticate Using SASL and LDAP

	Describes for MongoDB Enterprise the process to authenticate with SASL/LDAP.

	Enable Authentication

	Create a User Administrator

	Add a User to a Database

	Define MongoDB Access Roles

	Modify User Privileges

	View Existing Access Roles

	Change a User’s Password

	Generate a Key File

	Deploy MongoDB with Kerberos Authentication

	Authenticate with x.509 Certificate

	Authenticate Using SASL and LDAP

Enable Authentication

Enable authentication using the auth or keyFile
settings. Use auth for standalone instances, and
keyFile with replica sets and
sharded clusters. keyFile implies
auth and allows members of a MongoDB deployment to
authenticate internally.

Authentication requires at least one administrator user in the
admin database. You can create the user before enabling
authentication or after enabling authentication.

See also

Deploy MongoDB with Kerberos Authentication.

Procedures

You can enable authentication using either of the following
procedures, depending

Create the Administrator Credentials and then Enable Authentication

	Start the mongod or mongos instance without
the auth or keyFile setting.

	Create the administrator user as described in
Create a User Administrator.

	Re-start the mongod or mongos instance with the
auth or keyFile setting.

Enable Authentication and then Create Administrator

	Start the mongod or mongos instance with
the auth or keyFile setting.

	Connect to the instance on the same system so that you can
authenticate using the localhost exception.

	Create the administrator user as described in
Create a User Administrator.

Query Authenticated Users

If you have the userAdmin or
userAdminAnyDatabase role on a database, you can query
authenticated users in that database with the following operation:

db.system.users.find()

Create a User Administrator

In a MongoDB deployment, users with either the
userAdmin or userAdminAnyDatabase roles are
effective administrative “superusers”. Users
with either of these roles can create and modify any other users and can
assign them any privileges. The user also can grant itself any
privileges. In production deployments, this user should have no other
roles and should only administer users and privileges.

This should be the first user created for a MongoDB deployment. This
user can then create all other users in the system.

Important

The userAdminAnyDatabase user can grant
itself and any other user full access to the entire MongoDB
instance. The credentials to log in as this user should be
carefully controlled.

Users with the userAdmin and
userAdminAnyDatabase privileges are not the same as the
UNIX root superuser in that this role confers no additional
access beyond user administration. These users cannot perform
administrative operations or read or write data without first
conferring themselves with additional permissions.

Note

The userAdmin is a database specific privilege, and
only grants a user the ability to administer users on a single
database. However, for the admin database,
userAdmin allows a user the ability to gain
userAdminAnyDatabase, and so for the admin database
only these roles are effectively the same.

Create a User Administrator

	Connect to the mongod or mongos by either:

	Authenticating as an existing user with the userAdmin
or userAdminAnyDatabase role.

	Authenticating using the localhost exception. When creating the first user in a
deployment, you must authenticate using the localhost exception.

	Switch to the admin database:

db = db.getSiblingDB('admin')

	Add the user with either the userAdmin role or
userAdminAnyDatabase role, and only that role, by issuing
a command similar to the following, where <username> is the
username and <password> is the password:

db.addUser({ user: "<username>",
 pwd: "<password>",
 roles: ["userAdminAnyDatabase"] })

To authenticate as this user, you must authenticate against the
admin database.

Authenticate with Full Administrative Access via Localhost

If there are no users for the admin database, you can connect with
full administrative access via the localhost interface. This bypass
exists to support bootstrapping new deployments. This approach is
useful, for example, if you want to run mongod or
mongos with authentication before creating your first user.

To authenticate via localhost, connect to the mongod or
mongos from a client running on the same system. Your
connection will have full administrative access.

To disable the localhost bypass, set the
enableLocalhostAuthBypass parameter using
setParameter during startup:

mongod --setParameter enableLocalhostAuthBypass=0

Note

For versions of MongoDB 2.2 prior to 2.2.4, if mongos is
running with keyFile, then all users connecting over the
localhost interface must authenticate, even if there aren’t any users
in the admin database. Connections on localhost are not correctly
granted full access on sharded systems that run those versions.

MongoDB 2.2.4 resolves this issue.

Note

In version 2.2, you cannot add the first user to a sharded cluster
using the localhost connection. If you are running a 2.2
sharded cluster and want to enable authentication, you must deploy
the cluster and add the first user to the admin database before
restarting the cluster to run with keyFile.

Add a User to a Database

To add a user to a database you must authenticate to that database as a
user with the userAdmin or userAdminAnyDatabase
role. If you have not first created a user with one of those roles, do
so as described in Create a User Administrator.

When adding a user to multiple databases, you must define the user
for each database. See Password Hashing Insecurity for
important security information.

To add a user, pass the db.addUser() method a well formed
privilege document that contains the
user’s credentials and privileges. The db.addUser() method
adds the document to the database’s system.users collection.

Changed in version 2.4: In previous versions of MongoDB, you could change an existing user’s
password by calling db.addUser() again with the user’s
username and their updated password. Anything specified in the
addUser() method would override the existing information for
that user. In newer versions of MongoDB, this will result in a duplicate
key error.

To change a user’s password in version
2.4 or newer, see Change a User’s Password.

For the structure of a privilege document, see system.users.

Example

The following creates a user named Alice in the
products database and gives her readWrite and
dbAdmin privileges.

use products
db.addUser({ user: "Alice",
 pwd: "Moon1234",
 roles: ["readWrite", "dbAdmin"]
 })

Example

The following creates a user named Bob in the
admin database. The privilege document uses Bob’s credentials from the
products database and assigns him userAdmin privileges.

use admin
db.addUser({ user: "Bob",
 userSource: "products",
 roles: ["userAdmin"]
 })

Example

The following creates a user named Carlos in the
admin database and gives him readWrite access to the
config database, which lets him change certain settings for
sharded clusters, such as to disable the balancer.

db = db.getSiblingDB('admin')
db.addUser({ user: "Carlos",
 pwd: "Moon1234",
 roles: ["clusterAdmin"],
 otherDBRoles: { config: ["readWrite"]
 } })

Only the admin database supports the otherDBRoles field.

Define MongoDB Access Roles

Overview

Roles grant users access to MongoDB resources. By default, MongoDB
provides a number of roles that administrators may use to control
access to a MongoDB system. However, if these roles cannot describe
the proper limited subset of access that a user might require in a
deployment, you can define a unique role to provide these access.

Create new roles to define access to resources according to the
operational needs of a deployment.

MongoDB limits the scope of each role to the database where the role
was created. The combination of database name and name of role
uniquely defines a role in MongoDB.

Prerequisites

To create a role on a database, a user must have access that includes
the createRole action on that database.

To grant a privilege to the role, a user must have access that includes the
grantRole action on the database the privilege
targets. If the privilege targets multiple databases or the
cluster resource , the user must have access that includes the grantRole
action on the admin database.

To specify roles from which the new role inherits from, a
user must have access that includes the
grantRole action on the inherited role’s database.

Procedure

Identify Resources and Actions

Decide which resources to grant access to and which actions to grant on each resource.

When creating the role, enter these resource-action pairings in
resource documents in the
privileges array.

Identify Privileges from Existing Roles

If this role must include all the privileges of an existing role,
you can add the existing role to this role, rather than adding
privileges individually. The member role provides all its privileges
to the containing role.

When creating the new role, specify each contained role in its own
document in the roles array.

Create the Role

To create the role, use the createRole command. Consider
the following example that creates the myClusterwideAdmin role
with privileges defined in four resource documents and privileges inherited from the read role
on the admin database.

db.runCommand({ createRole: "myClusterwideAdmin",
 privileges: [
 { resource: { cluster: true }, actions: ["addShard"] },
 { resource: { db: "config", collection: "" }, actions: ["find", "update", "insert", "remove"] },
 { resource: { db: "users", collection: "usersCollection" }, actions: ["update", "insert", "remove"] },
 { resource: { db: "", collection: "" }, actions: ["find"] }
],
 roles: [
 { role: "read", db: "admin" }
],
 writeConcern: { w: "majority" , wtimeout: 5000 }
 })

Modify User Privileges

Overview

A user’s privileges determine the actions available to that user in the context of a
resource. Users receive privileges
through role assignments. A user can have multiple roles, and each role
can have multiple privileges.

Grant and revoke the user’s roles using the grantRolesToUser
and revokeRolesFromUser commands.

For an overview of roles and privileges, see Authorization.

Prerequisites

A user must have privileges that include the grantRole action on a
database to grant a role on the database.

A user must have privileges that include the revokeRole action on
a database to revoke a role on that database.

Procedure

1

Identify User’s Roles

Use the usersInfo command or db.getUser() method
to display user information. The roles array
specifies the user’s roles.

For example, to view roles for accountUser01 on the accounts
database, issue the following:

use accounts
db.getUser("accountUser01")

The roles array displays all roles for
accountUser01:

"roles" : [
 {
 "role" : "readWrite",
 "db" : "accounts"
 },
 {
 "role" : "siteRole01",
 "db" : "records"
 }
]

2

Identify the Privileges Granted by the Roles

For a given role, use the rolesInfo command or
db.getRole() method, and include the showPrivileges
parameter. The resulting role document displays the privileges granted
directly and the roles from which this role inherits privileges.

For example, to view the privileges granted by siteRole01, use the
following operation:

use records
db.getRole("siteRole01", { showPrivileges: true })

In the roles array, siteRole01 inherits
privileges from the corporate database’s read role. In
privileges array, siteRole01 grants the
privilege to perform find, insert, and update actions on the
records database.

"roles" : [
 {
 "role" : "read",
 "db" : "corporate"
 }
],
"privileges" : [
 {
 "resource" : {
 "db" : "records",
 "collection" : ""
 },
 "actions" : [
 "find",
 "insert",
 "update"
]
 }
]

To view the privileges granted by the read role, use
db.getRole() again with the appropriate parameters.

3

Identify the Privileges to Grant or Revoke

Determine which role contains the privileges and only those
privileges. If such a role does not exist, then to grant the
privileges will require creating a new role with the specific set of privileges. To
revoke a subset of privileges provided by an existing role: revoke the
original role, create a new role that
contains the privileges to keep, and then grant that role to the user.

4

Modify User

Revoke a Role

Revoke a role using the revokeRolesFromUser command. For
example, to remove the readWrite role on the accounts
database from the user accountUser01, use an operation that
resembles the following:

use accounts
db.runCommand({ revokeRolesFromUser: "accountUser01",
 roles: [{ role: "readWrite", db: "accounts" }]
 })

The revokeRolesToUser command removes the
readWrite role on the accounts database from
accountUser01‘s existing roles.

Grant a Role

Grant the role using the grantRolesToUser command. For
example, to grant the user accountUser01 the read role
on the records database, use an operation that resembles the
following:

use accounts
db.runCommand({ grantRolesToUser: "accountUser01",
 roles: [{ role: "read", db: "records" }]
 })

The grantRolesToUser command adds the read role on the
records database to accountUser01‘s existing roles.

View Existing Access Roles

MongoDB stores roles in the admin.system.roles collection in the
admin database. Each document in the collection contains the privileges
granted by a specific role.

To view a role you must have the viewRole action on the
role’s database or have authenticated as a user explicitly granted the
role.

To view a role, use the rolesInfo command:

{ rolesInfo: <role> }

For example, to view the system readWrite role issue the
following command from the mongo shell:

db.runCommand({ rolesInfo: "readWrite" })

Procedures

View a Role in the Current Database

If the role is in the current database, you can refer to the role
by name, as for the role dataEntry on the current database:

db.runCommand({ rolesInfo: "dataEntry" })

View a Role in a Different Database

If the role is in a different database, specify the role as a document.
Use the following form:

{ role: "<role name>", db: "<role db>" }

To view the custom appWriter role in the orders
database, issue the following command from the mongo shell:

db.runCommand({ rolesInfo: { role: "appWriter", db: "orders" } })

View Multiple Roles

To view information for multiple roles, specify each role as a document or
string in an array.

To view the custom appWriter and clientWriter roles
in the orders database, as well as the dataEntry role on the
current database, use the following command from the mongo
shell:

db.runCommand({ rolesInfo: [{ role: "appWriter", db: "orders" },
 { role: "clientWriter", db: "orders" },
 "dataEntry"]
 })

View All Custom Roles

To view the all custom roles, query admin.system.roles collection directly, for example:

db = db.getSiblingDB('admin')
db.system.roles.find()

Change a User’s Password

Changed in version 2.5.3.

Overview

Use he db.changeUserPassword() method to change a
user’s password.

Prerequisites

Users with changeOwnPassword access on their databases can
change their own passwords.

Users with changeAnyPassword access on a database can modify
the passwords for any user on that database.

Procedure

To update the password, pass the user’s username and the new password to the
db.changeUserPassword() method.

The following operation changes the reporting user’s
password to SOhSS3TbYhxusooLiW8ypJPxmt1oOfL:

db = db.getSiblingDB('records')
db.changeUserPassword("reporting", "SOhSS3TbYhxusooLiW8ypJPxmt1oOfL")

Note

For information on changing a user’s password prior to version 2.5.3,
see Change a User’s Password in the v2.4 Manual [http://docs.mongodb.org/v2.4/tutorial/change-user-password].

Generate a Key File

This section describes how to generate a key file to store
authentication information. After generating a key file, specify the key
file using the keyFile option when starting a
mongod or mongos instance.

A key’s length must be between 6 and 1024 characters and may only contain
characters in the base64 set. The key file must not have group or world
permissions on UNIX systems. Key file permissions are not checked on
Windows systems.

Generate a Key File

Use the following openssl command at the system shell to generate
pseudo-random content for a key file:

openssl rand -base64 741

Note

Key file permissions are not checked on Windows systems.

Key File Properties

Be aware that MongoDB strips whitespace characters (e.g. x0d,
x09, and x20) for cross-platform convenience. As a result,
the following operations produce identical keys:

echo -e "my secret key" > key1
echo -e "my secret key\n" > key2
echo -e "my secret key" > key3
echo -e "my\r\nsecret\r\nkey\r\n" > key4

Deploy MongoDB with Kerberos Authentication

New in version 2.4.

MongoDB Enterprise supports authentication using a Kerberos service.
Kerberos is an industry standard authentication protocol for large
client/server system. With Kerberos MongoDB and application ecosystems
can take advantage of existing authentication infrastructure and
processes.

Setting up and configuring a Kerberos deployment is beyond the scope
of this document. In order to use MongoDB with Kerberos, you must
have a properly configured Kerberos deployment and the ability to
generate a valid keytab file for each mongod instance in
your MongoDB deployment.

Note

The following assumes that you have a valid Kerberos keytab file
for your realm accessible on your system. The examples below assume
that the keytab file is valid and is located at
/opt/mongodb/mongod.keytab and is only accessible to the user
that runs the mongod process.

Process Overview

To run MongoDB with Kerberos support, you must:

	Configure a Kerberos service principal for each mongod
and mongos instance in your MongoDB deployment.

	Generate and distribute keytab files for each MongoDB component
(i.e. mongod and mongos)in your
deployment. Ensure that you only transmit keytab files over secure
channels.

	Optional. Start the mongod instance without
auth and create users inside of MongoDB that you can use
to bootstrap your deployment.

	Start mongod and mongos with the
KRB5_KTNAME environment variable as well as a number of required
run time options.

	If you did not create Kerberos user accounts, you can use the
localhost exception
to create users
at this point until you create the first user on the admin
database.

	Authenticate clients, including the mongo shell using
Kerberos.

Operations

Create Users and Privilege Documents

For every user that you want to be able to authenticate using Kerberos,
you must create a corresponding user document in the
system.users collection to provision
access for the user.

In the mongo shell you can pass the db.addUser()
a user privilege document to provision access to users, as in the
following operation:

db = db.getSiblingDB("$external")
db.addUser({
 "user": "application/reporting@EXAMPLE.NET",
 "roles": [{ "role":"read", db:"records"}]
 })

This grants the Kerberos user principal
application/reporting@EXAMPLE.NET read-only access to the
records database. Creating a user on the $external database allows
mongod to consult an external source (i.e. Kerberos) to
authenticate this user.

To remove access to a user or to modify a user document, see
Access Control Tutorials.

Start mongod with Kerberos Support

Once you have provisioned privileges to users in the
mongod, and obtained a valid keytab file, you must start
mongod using a command in the following form:

env KRB5_KTNAME=<path to keytab file> <mongod invocation>

For successful operation with mongod use the following run
time options in addition to your normal default configuration options:

	--setParameter with the
authenticationMechanisms=GSSAPI argument to enable support for
Kerberos.

	--auth to enable authentication.

	--keyFile to allow components of a
single MongoDB deployment to communicate with each other, if needed
to support replica set and sharded cluster
operations. keyFile implies auth.

For example, consider the following invocation:

env KRB5_KTNAME=/opt/mongodb/mongod.keytab \
 /opt/mongodb/bin/mongod --dbpath /opt/mongodb/data \
 --fork --logpath /opt/mongodb/log/mongod.log \
 --auth --setParameter authenticationMechanisms=GSSAPI

You can also specify these options using the configuration
file. As in the following:

/opt/mongodb/mongod.conf, Example configuration file.

fork = true
auth = true

dbpath = /opt/mongodb/data
logpath = /opt/mongodb/log/mongod.log
setParameter = authenticationMechanisms=GSSAPI

To use this configuration file, start mongod as in the
following:

env KRB5_KTNAME=/opt/mongodb/mongod.keytab \
 /opt/mongodb/bin/mongod --config /opt/mongodb/mongod.conf

To start a mongos instance using Kerberos, you must create
a Kerberos service principal and deploy a keytab file for this
instance, and then start the mongos with the following
invocation:

env KRB5_KTNAME=/opt/mongodb/mongos.keytab \
 /opt/mongodb/bin/mongos
 --configdb shard0.example.net,shard1.example.net,shard2.example.net \
 --setParameter authenticationMechanisms=GSSAPI \
 --keyFile /opt/mongodb/mongos.keyfile

Tip

If you installed MongoDB Enterprise using one of the official
.deb or .rpm packages and are controlling the
mongod instance using the included init/upstart scripts,
you can set the KR5_KTNAME variable in the default environment
settings file. For .rpm packages this file is located at
/etc/sysconfig/mongod. For .deb packages, this file is
/etc/default/mongodb. Set the value in a line that resembles
the following:

export KRB5_KTNAME="<setting>"

If you encounter problems when trying to start mongod or
mongos, please see the troubleshooting section for more information.

Important

Before users can authenticate to MongoDB using Kerberos
you must create users and grant them
privileges within MongoDB. If you have not created users when you
start MongoDB with Kerberos you can use the localhost
authentication exception to add users. See
the Create Users and Privilege Documents section and the
system.users Collection document for more information.

Authenticate mongo Shell with Kerberos

To connect to a mongod instance using the mongo
shell you must begin by using the kinit program to initialize and
authenticate a Kerberos session. Then, start a mongo
instance, and use the db.auth() method, to authenticate
against the special $external database, as in the following
operation:

use $external
db.auth({ mechanism: "GSSAPI", user: "application/reporting@EXAMPLE.NET" })

Alternately, you can authenticate using command line options to
mongo, as in the following equivalent example:

mongo --authenticationMechanism=GSSAPI
 --authenticationDatabase='$external' \
 --username application/reporting@EXAMPLE.NET

These operations authenticate the Kerberos principal name
application/reporting@EXAMPLE.NET to the connected
mongod, and will automatically acquire all available
privileges as needed.

Use MongoDB Drivers to Authenticate with Kerberos

At the time of release, the C++, Java, C#, and Python drivers all
provide support for Kerberos authentication to MongoDB. Consider the
following tutorials for more information:

	Authenticate to MongoDB with the Java Driver [http://docs.mongodb.org/ecosystem/tutorial/authenticate-with-java-driver/]

	Authenticate to MongoDB with the C# Driver [http://docs.mongodb.org/ecosystem/tutorial/authenticate-with-csharp-driver/]

	Authenticate to MongoDB with the C++ Driver [http://docs.mongodb.org/ecosystem/tutorial/authenticate-with-cpp-driver/]

	Python Authentication Examples [http://api.mongodb.org/python/current/examples/authentication.html]

Kerberos and the HTTP Console

MongoDB does not support kerberizing the HTTP Console [http://docs.mongodb.org/ecosystem/tools/http-interface/#http-console].

Troubleshooting

Kerberos Configuration Checklist

If you’re having trouble getting mongod to start with
Kerberos, there are a number of Kerberos-specific issues that can
prevent successful authentication. As you begin troubleshooting
your Kerberos deployment, ensure that:

	The mongod is from MongoDB Enterprise.

	You are not using the HTTP Console [http://docs.mongodb.org/ecosystem/tools/http-interface/#http-console]. MongoDB Enterprise
does not support Kerberos authentication over the HTTP Console
interface.

	You have a valid keytab file specified in the
environment running the mongod. For the mongod
instance running on the db0.example.net host, the service
principal should be mongodb/db0.example.net.

	DNS allows the mongod to resolve the components of the
Kerberos infrastructure. You should have both A and PTR
records (i.e. forward and reverse DNS) for the system that runs
the mongod instance.

	The canonical system hostname of the system that runs the
mongod instance is the resolvable fully qualified
domain for this host. Test system hostname resolution with the
hostname -f command at the system prompt.

	Both the Kerberos KDC and the system running mongod
instance must be able to resolve each other using DNS [1]

	The time systems of the systems running the mongod
instances and the Kerberos infrastructure are synchronized. Time
differences greater than 5 minutes will prevent successful
authentication.

If you still encounter problems with Kerberos, you can start both
mongod and mongo (or another client) with the
environment variable KRB5_TRACE set to different files to produce
more verbose logging of the Kerberos process to help further
troubleshooting, as in the following example:

env KRB5_KTNAME=/opt/mongodb/mongod.keytab \
 KRB5_TRACE=/opt/mongodb/log/mongodb-kerberos.log \
 /opt/mongodb/bin/mongod --dbpath /opt/mongodb/data \
 --fork --logpath /opt/mongodb/log/mongod.log \
 --auth --setParameter authenticationMechanisms=GSSAPI

	[1]	By default, Kerberos attempts to resolve hosts using
the content of the /etc/kerb5.conf before using DNS to resolve
hosts.

Common Error Messages

In some situations, MongoDB will return error messages from the GSSAPI
interface if there is a problem with the Kerberos service.

GSSAPI error in client while negotiating security context.

This error occurs on the client and reflects insufficient
credentials or a malicious attempt to authenticate.

If you receive this error ensure that you’re using the correct
credentials and the correct fully qualified domain name when
connecting to the host.

GSSAPI error acquiring credentials.

This error only occurs when attempting to start the
mongod or mongos and reflects improper
configuration of system hostname or a missing or incorrectly
configured keytab file. If you encounter this problem, consider
all the items in the Kerberos Configuration Checklist, in
particular:

	examine the keytab file, with the following command:

klist -k <keytab>

Replace <keytab> with the path to your keytab file.

	check the configured hostname for your system, with the
following command:

hostname -f

Ensure that this name matches the name in the keytab file, or use
the saslHostName to pass MongoDB the correct
hostname.

Enable the Traditional MongoDB Authentication Mechanism

For testing and development purposes you can enable both the Kerberos
(i.e. GSSAPI) authentication mechanism in combination with the
traditional MongoDB challenge/response authentication mechanism
(i.e. MONGODB-CR), using the following setParameter
run-time option:

mongod --setParameter authenticationMechanisms=GSSAPI,MONGODB-CR

Warning

All keyFile internal authentication between members of
a replica set or sharded cluster still uses the
MONGODB-CR authentication mechanism, even if MONGODB-CR is
not enabled. All client authentication will still use Kerberos.

Authenticate with x.509 Certificate

New in version 2.6.

MongoDB supports x.509 certificate authentication for use with a secure
SSL connection. The x.509
authentication allows clients to authenticate to servers with
certificates instead of with username and
password. The x.509 authentication also allows sharded cluster members
and replica set members to use x.509 certificates to verify their
membership to the cluster or the replica set instead of using keyfiles. The membership authentication is
an internal process.

Use x.509 for Client Authentication

Client x.509 Certificate

The client certificate must have the following
properties:

	A single Certificate Authority (CA) must issue the certificates
for both the client and the server.

	Client certificates must contain the following fields:

keyUsage = digitalSignature
extendedKeyUsage = clientAuth

Configure MongoDB Server

Configure the MongoDB server from the command line, as in the following:

mongod --sslMode requireSSL --sslPEMKeyFile <path to SSL certificate and key PEM file> --sslCAFile <path to root CA PEM file>

You may also specify these options in the configuration file:

sslMode = requireSSL
sslPEMKeyFile = <path to SSL certificate and key PEM file>
sslCAFile = <path to the root CA PEM file>

Include any additional options, SSL or otherwise, that are required for
your specific configuration.

Add x.509 Certificate subject as a User

To authenticate with a client certificate, you must first add the value
of the subject from the client certificate as a MongoDB user.

	You can retrieve the subject from the client certificate with
the following command:

openssl x509 -in <pathToClient PEM> -inform PEM -subject -nameopt RFC2253

The command returns the subject string as well as certificate:

subject= CN=myName,OU=myOrgUnit,O=myOrg,L=myLocality,ST=myState,C=myCountry
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

	Add the value of the subject, omitting the spaces, from the
certificate as a user.

For example, in the mongo shell, to add the user with
both the readWrite role in the test database and the
userAdminAnyDatabase role which is defined only in the admin
database:

db.getSiblingDB("$external").runCommand(
 {
 createUser: "CN=myName,OU=myOrgUnit,O=myOrg,L=myLocality,ST=myState,C=myCountry",
 roles: [
 { role: 'readWrite', db: 'test' },
 { role: 'userAdminAnyDatabase', db: 'admin' }
],
 writeConcern: { w: "majority" , wtimeout: 5000 }
 }
)

In the above example, to add the user with the readWrite role in
the test database, the role specification document specified
'test' in the db field. To add userAdminAnyDatabase
role for the user, the above example specified 'admin' in the
db field.

Note

Some roles are defined only in the admin database, including:
clusterAdmin, readAnyDatabase, readWriteAnyDatabase,
dbAdminAnyDatabase, and userAdminAnyDatabase. To add a
user with these roles, specify 'admin' in the db.

See Add a User to a Database for details on adding a user
with roles.

Authenticate with a x.509 Certificate

To authenticate with a client certificate, you must first add a MongoDB
user that corresponds to the client certificate. See
Add x.509 Certificate subject as a User.

To authenticate, use the db.auth() method in the
$external database, specifying "MONGODB-X509" for the
mechanism field, and the user that corresponds to the client
certificate for the user field.

For example, if using the mongo shell,

	Connect mongo shell to the mongod set up for
SSL:

mongo --ssl --sslPEMKeyFile <path to CA signed client PEM file>

	To perform the authentication, use the db.auth() method in
the $external database. For the mechanism field, specify
"MONGODB-X509", and for the user field, specify the user, or
the subject, that corresponds to the client certificate.

db.getSiblingDB("$external").auth(
 {
 mechanism: "MONGODB-X509",
 user: "CN=myName,OU=myOrgUnit,O=myOrg,L=myLocality,ST=myState,C=myCountry"
 }
)

Use x.509 for Replica Set/Sharded Cluster Member Authentication

Member x.509 Certificate

The member certificate, used for internal authentication to verify
membership to the sharded cluster or a replica set, must have the
following properties:

	A single Certificate Authority (CA) must issue all the x.509
certificates for the members of a sharded cluster or a replica set.

	The member certificate’s subject, which contains the
Distinguished Name (DN), must match the subject of the
certificate on the server, starting from and including the
Organizational Unit (OU) of the certificate on the server.

Configure Clusters

To specify the x.509 certificate for internal cluster member
authentication, append the additional SSL options
--clusterAuthMode and --sslClusterFile, as in the
following example for a member of a replica set:

mongod --replSet <name> --sslMode requireSSL --clusterAuthMode x509 --sslClusterFile <path to membership certificate and key PEM file> --sslPEMKeyFile <path to SSL certificate and key PEM file> --sslCAFile <path to root CA PEM file>

Include any additional options, SSL or otherwise, that are required for
your specific configuration. For instance, if the membership key is
encrypted, set the --sslClusterPassword to the passphrase to
decrypt the key or have MongoDB prompt for the passphrase. See
SSL Certificate Passphrase for details.

Note

You may also specify these options in the configuration file, as in the following example:

sslMode = requireSSL
sslPEMKeyFile = <path to SSL certificate and key PEM file>
sslCAFile = <path to root CA PEM file>
clusterAuthMode = x509
sslClusterFile = <path to membership certificate and key PEM file>

Upgrade from Keyfile Authentication to to x.509 Authentication

To upgrade clusters that are currently using keyfile authentication to
x.509 authentication, use a rolling upgrade process.

Clusters Currently Using SSL

For clusters using SSL and keyfile authentication, to upgrade to x.509
cluster authentication, use the following rolling upgrade process:

	For each node of a cluster, start the node with the option
--clusterAuthMode set to sendKeyFile and the option
--sslClusterFile set to the appropriate path of the node’s
certificate. Include other SSL options as well as any other options that are
required for your specific configuration. For example:

mongod --replSet <name> --sslMode requireSSL --clusterAuthMode sendKeyFile --sslClusterFile <path to membership certificate and key PEM file> --sslPEMKeyFile <path to SSL Certificate and key PEM file> --sslCAFile <path to root CA PEM file>

With this setting, each node continues to use its keyfile to
authenticate itself as a member. However, each node can now accept
either a keyfile or an x.509 certificate from other members to
authenticate those members. Upgrade all nodes of the cluster to
this setting.

	Then, for each node of a cluster, connect to the node and use the
setParameter command to update the clusterAuthMode
to sendX509. [1] For example,

db.getSiblingDB('admin').runCommand({ setParameter: 1, clusterAuthMode: "sendX509" })

With this setting, each node uses its x.509 certificate, specified
with the --sslClusterFile option in the previous step, to
authenticate itself as a member. However, each node continues to
accept either a keyfile or an x.509 certificate from other members
to authenticate those members. Upgrade all nodes of the cluster to
this setting.

	Optional but recommended. Finally, for each node of the cluster,
connect to the node and use the setParameter command to
update the clusterAuthMode to x509 to only use the
x.509 certificate for authentication. [1]
For example:

db.getSiblingDB('admin').runCommand({ setParameter: 1, clusterAuthMode: "x509" })

See --clusterAuthMode for the various modes and their
descriptions.

Clusters Currently Not Using SSL

For clusters using keyfile authentication but not SSL, to upgrade to
x.509 authentication, use the following rolling upgrade process:

	For each node of a cluster, start the node with the option
--sslMode set to allowSSL, the option
--clusterAuthMode set to sendKeyFile and the option
--sslClusterFile set to the appropriate path of the node’s
certificate. Include other SSL options as well as any other options that are
required for your specific configuration. For example:

mongod --replSet <name> --sslMode allowSSL --clusterAuthMode sendKeyFile --sslClusterFile <path to membership certificate and key PEM file> --sslPEMKeyFile <path to SSL certificate and key PEM file> --sslCAFile <path to root CA PEM file>

The --sslMode allowSSL setting allows the
node to accept both SSL and non-SSL incoming connections. Its
outgoing connections do not use SSL.

The --clusterAuthMode sendKeyFile
setting allows each node continues to use its keyfile to
authenticate itself as a member. However, each node can now accept
either a keyfile or an x.509 certificate from other members to
authenticate those members.

Upgrade all nodes of the cluster to these settings.

	Then, for each node of a cluster, connect to the node and use the
setParameter command to update the sslMode
to preferSSL and the clusterAuthMode to
sendX509. [1] For example:

db.getSiblingDB('admin').runCommand({ setParameter: 1, sslMode: "preferSSL", clusterAuthMode: "sendX509" })

With the sslMode set to preferSSL, the node accepts
both SSL and non-SSL incoming connections, and its outgoing
connections use SSL.

With the clusterAuthMode set to sendX509, each node
uses its x.509 certificate, specified with the
--sslClusterFile option in the previous step, to
authenticate itself as a member. However, each node continues to
accept either a keyfile or an x.509 certificate from other members
to authenticate those members.

Upgrade all nodes of the cluster to these settings.

	Optional but recommended. Finally, for each node of the cluster,
connect to the node and use the setParameter command to
update the sslMode to requireSSL and the
clusterAuthMode to x509. [1]
For example:

db.getSiblingDB('admin').runCommand({ setParameter: 1, sslMode: "requireSSL", clusterAuthMode: "x509" })

With the sslMode set to requireSSL, the node only uses
SSL connections.

With the clusterAuthMode set to x509, the node only
uses the x.509 certificate for authentication.

See --clusterAuthMode for the various modes and their
descriptions.

	[1]	(1, 2, 3, 4) As an alternative to using the
setParameter command, you can also
restart the nodes with the appropriate SSL and x509 options and
values.

Authenticate Using SASL and LDAP

MongoDB Enterprise provides support for proxy authentication of users.
This allows administrators to configure a MongoDB cluster to
authenticate users via Linux PAM or by proxying authentication requests
to a specified Lightweight Directory Access Protocol (LDAP) service.

Note

MongoDB Enterprise for Windows does not include LDAP
support for authentication.

Warning

Because the transmission of the user password to the MongoDB server
uses SASL PLAIN mechanism, you should, in general, use only on a
trusted channel (VPN, SSL, trusted wired network).

Configure saslauthd

LDAP support for user authentication requires proper configuration of
the saslauthd daemon process as well as the MongoDB server.

On systems that configure saslauthd with a
/etc/sysconfig/saslauthd file, such as Red Hat Enterprise Linux,
Fedora, CentOS, Amazon Linux AMI, set the mechanism MECH to
ldap:

MECH=ldap

On systems that configure saslauthd with a
/etc/default/saslauthd file, set the MECHANISMS option to
ldap:

MECHANISMS="ldap"

To use with ActiveDirectory, start saslauthd with the following
configuration options:

ldap_servers: <ldap uri, e.g. ldaps://ad.example.net>
ldap_use_sasl: yes
ldap_mech: DIGEST-MD5
ldap_auth_method: fastbind

To connect to an OpenLDAP server, update the saslauthd.conf file
with the following configuration options:

ldap_servers: <ldap uri, e.g. ldaps://ad.example.net>
ldap_search_base: <search base, e.g. ou=Users,dc=example,dc=com>
ldap_filter: <filter, e.g. (uid=%u)>

The ldap_servers specifies the uri of the LDAP server used for
authentication. The ldap_search_base specifies distinguished name to
which the search is relative. The search includes the base or objects
below. The ldap_filter specifies the search filter.

For example, a sample saslauthd.conf file may have the following
content:

ldap_servers: ldaps://ad.example.net
ldap_search_base: ou=Users,dc=example,dc=com
ldap_filter: (uid=%u)

The values for these configuration options should correspond to the
values specific for your test. For example, to filter on email, specify
ldap_filter: (mail=%n) instead.

Tip

For OpenLDAP installed on the local machine, you can specify for
ldap_servers the value ldap://localhost:389.

To use this sample OpenLDAP configuration, create users with a uid
attribute (login name) and place under the Users organizational
unit (ou) under the domain components (dc) example and
com.

Test saslauthd Configuration

To test the saslauthd configuration, use testsaslauthd utility,
as in the following example:

testsaslauthd -u testuser -p testpassword -f /var/run/saslauthd/mux

For more information on saslauthd configuration, see
http://www.openldap.org/doc/admin24/guide.html#Configuringsaslauthd.

Configure MongoDB Server

To configure the MongoDB server to use the saslauthd instance for
proxy authentication, enable --auth and set the
saslauthdPath parameter to the path to the Unix-domain
Socket of the saslauthd instance and the
authenticationMechanisms parameter to PLAIN.

Configure the MongoDB server using either the command line option
–setParameter or the configuration
file:

	If saslauthd has a socket path of /<some>/<path>/saslauthd,
set the saslauthdPath parameter to
/<some>/<path>/saslauthd/mux and the
authenticationMechanisms parameter to PLAIN, as in
the following command line example:

mongod --auth --setParameter saslauthdPath=/<some>/<path>/saslauthd/mux --setParameter authenticationMechanisms=PLAIN

Or if using a configuration file, add the parameters:

auth=true
setParameter=saslauthdPath=/<some>/<path>/saslauthd/mux
setParameter=authenticationMechanisms=PLAIN

	To use the default Unix-domain socket path, set the
saslauthdPath to the empty string ""
and the authenticationMechanisms parameter to PLAIN,
as in the following command line example:

mongod --auth --setParameter saslauthdPath="" --setParameter authenticationMechanisms=PLAIN

Or if using a configuration file, add the parameters:

setParameter=saslauthdPath=""
setParameter=authenticationMechanisms=PLAIN
auth=true

Authenticate in the mongo Shell

To perform the authentication in the mongo shell, use the
db.auth() method in the $external database.

Specify the value "PLAIN" in the mechanism field, the user and
password in the user and pwd fields respectively, and the value
false in the digestPassword field. You must specify
false for digestPassword since the server must receive an
undigested password to forward on to saslauthd, as in the following
example:

db.getSiblingDB("$external").auth(
 {
 mechanism: "PLAIN",
 user: "application/reporting@EXAMPLE.NET",
 pwd: "some1nterestingPwd",
 digestPassword: false
 }
)

Configure System Events Auditing

New in version 2.5.3.

MongoDB Enterprise supports auditing of
operations. The audit facility can
write the event log to the console, the syslog, a JSON file, or
a BSON file.

See also

System Event Auditing

Note

Auditing is available for mongos and
mongod instances.

Enable and Configure Audit Output

Use the --auditLog option to enable
auditing and specify where to output the log.

Output to Syslog

To enable auditing and have the audit log print to the syslog in JSON
format, specify syslog to the --auditLog setting. For example:

mongod --dbpath data/db --auditLog syslog

Note

Output to syslog is not available on Windows.

Warning

The syslog message limit can result in the truncation of the audit
messages. The auditing system will neither detect the truncation nor
error upon its occurrence.

You may also specify these options in the configuration file:

dbpath=data/db
auditLog=syslog

Output to Console

To enable auditing and have the audit log record output to standard
output (i.e. stdout), specify console to the
--auditLog setting. For example:

mongod --dbpath data/db --auditLog console

You may also specify these options in the configuration file:

dbpath=data/db
auditLog=console

Output to JSON File

To enable auditing and have the audit log print to a file in JSON
format, specify jsonfile to the --auditLog
setting and specify the filename to the --auditPath. The --auditPath
accepts either full path name or relative path name. For example, the
following enables auditing events to a file with the relative
path name of data/db/auditLog.json.

mongod --dbpath data/db --auditLog jsonfile --auditPath data/db/auditLog.json

The audit file rotate at the same time as the server log file.

You may also specify these options in the configuration file:

dbpath=data/db
auditLog=jsonfile
auditPath=data/db/auditLog.json

Output to BSON File

To enable auditing and have the audit log print to a file in BSON
binary format, specify bsonfile to the --auditLog setting and specify the filename to the
--auditPath. The --auditPath accepts either full path name or relative path
name. For example, the following enables auditing events to a BSON
file with the relative path name of data/db/auditLog.bson.

mongod --dbpath data/db --auditLog bsonfile --auditPath data/db/auditLog.bson

The audit file rotate at the same time as the server log file.

You may also specify these options in the configuration file:

dbpath=data/db
auditLog=bsonfile
auditPath=data/db/auditLog.bson

To view the contents of the file, pass the file to the MongoDB utility
bsondump. For example, the following converts the audit log
into a human-readable form and output to standard output:

bsondump data/db/auditLog.bson

Filter Events

By default, the audit facility logs all auditable operations. The audit feature has an
--auditFilter option to determine
which events to log. The --auditFilter option takes a document of the form:

{ atype: <expression> }

The <expression> is a query condition expression to match on Audit Operations.

Filter for a Single Operation Type

For example, to audit only the createCollection action, use the
filter { atype: "createCollection" }:

Tip

To specify the filter as a command-line option, enclose the filter document
in quotes to pass the document as a string.

mongod --dbpath data/db --auditLog bsonfile --auditPath data/db/audit1.bson --auditFilter '{ atype: "createCollection" }'

You may also specify these options in the configuration file:

dbpath=data/db
auditLog=bsonfile
auditPath=data/db/audit1.bson
auditFilter={ atype: "createCollection" }

Filter for Multiple Operation Types

To match on multiple operations, use the $in operator in
the <expression> as in the following:

Tip

To specify the filter as a command-line option, enclose the filter document
in quotes to pass the document as a string.

mongod --dbpath data/db --auditLog bsonfile --auditPath data/db/audit2.bson --auditFilter '{ atype: { $in: ["createCollection", "dropCollection"] } }'

You may also specify these options in the configuration file:

dbpath=data/db
auditLog=bsonfile
auditPath=data/db/audit2.bson
auditFilter={ atype: { $in: ["createCollection", "dropCollection"] } }

Filter on Authentication Operations on a Single Database

For authentication operations, you can also specify a specific
database with the param.db field:

{ atype: <expression>, "param.db": <database> }

For example, to audit only authenticate operations that occur
against the test database, use the filter { atype:
"authenticate", "param.db": "test" }:

Tip

To specify the filter as a command-line option, enclose the
filter document in quotes to pass the document as a string.

mongod --dbpath data/db --auth --auditLog jsonfile --auditPath data/db/auditLog.json --auditFilter '{ atype: "authenticate", "param.db": "test" }'

You may also specify these options in the configuration file:

dbpath=data/db
auth=true
auditLog=jsonfile
auditPath=data/db/auditLog.json
auditFilter={ atype: "authenticate", "param.db": "test" }

To filter on all authenticate operations across databases, use the
filter { atype: "authenticate" }.

Create a Vulnerability Report

If you believe you have discovered a vulnerability in MongoDB or have
experienced a security incident related to MongoDB, please report the
issue to aid in its resolution.

To report an issue, we strongly suggest filing a ticket in the
SECURITY [https://jira.mongodb.org/browse/SECURITY] project in JIRA. MongoDB, Inc
responds to vulnerability notifications within 48 hours.

Create the Report in JIRA

Submit a ticket in the Security [https://jira.mongodb.org/browse/SECURITY]
project at: <http://jira.mongodb.org/browse>.
The ticket number will become the reference identification for the
issue for its lifetime. You can use this identifier for tracking
purposes.

Information to Provide

All vulnerability reports should contain as much information
as possible so MongoDB’s developers can move quickly to resolve the issue.
In particular, please include the following:

	The name of the product.

	Common Vulnerability information, if applicable, including:

	CVSS (Common Vulnerability Scoring System) Score.

	CVE (Common Vulnerability and Exposures) Identifier.

	Contact information, including an email address and/or phone number,
if applicable.

Send the Report via Email

While JIRA is the preferred reporting method, you may also report
vulnerabilities via email to security@mongodb.com.

You may encrypt email using MongoDB’s public key at
http://docs.mongodb.org/10gen-security-gpg-key.asc.

MongoDB, Inc. responds to vulnerability reports sent via
email with a response email that contains a reference number for a JIRA ticket
posted to the SECURITY [https://jira.mongodb.org/browse/SECURITY] project.

Evaluation of a Vulnerability Report

MongoDB, Inc. validates all submitted vulnerabilities and uses Jira
to track all communications regarding a vulnerability,
including requests for clarification or additional information. If
needed, MongoDB representatives set up a conference call to exchange
information regarding the vulnerability.

Disclosure

MongoDB, Inc. requests that you do not publicly disclose any information
regarding the vulnerability or exploit the issue until it has had the
opportunity to analyze the vulnerability, to respond to the notification,
and to notify key users, customers, and partners.

The amount of time required to validate a reported vulnerability
depends on the complexity and severity of the issue. MongoDB, Inc. takes all
required vulnerabilities very seriously and will always ensure that
there is a clear and open channel of communication with the reporter.

After validating an issue, MongoDB, Inc. coordinates public disclosure of
the issue with the reporter in a mutually agreed timeframe and
format. If required or requested, the reporter of a vulnerability will
receive credit in the published security bulletin.

Security Reference

Security Methods in the mongo Shell

	Name
	Description

	db.addUser()
	Adds a user to a database, and allows administrators to configure the user’s privileges.

	db.auth()
	Authenticates a user to a database.

	db.changeUserPassword()
	Changes an existing user’s password.

Security Commands in the mongo Shell

	Name
	Description

	logApplicationMessage
	Posts a custom message to the audit log.

	Name
	Description

	createUser
	Creates a new user.

	updateUser
	Updates a user’s data.

	dropUser
	Removes a single user.

	dropAllUsersFromDatabase
	Deletes all users associated with a database.

	grantRolesToUser
	Grants a role and its privileges to a user.

	revokeRolesFromUser
	Removes a role from a user.

	usersInfo
	Returns information about the specified users.

	Name
	Description

	createRole
	Creates a role and specifies its privileges.

	updateRole
	Updates a user-defined role.

	dropRole
	Deletes the user-defined role.

	dropAllRolesFromDatabase
	Deletes all user-defined roles from a database.

	grantPrivilegesToRole
	Assigns privileges to a user-defined role.

	revokePrivilegesFromRole
	Removes the specified privileges from a user-defined role.

	grantRolesToRole
	Specifies roles from which a user-defined role inherits privileges.

	revokeRolesFromRole
	Removes specified inherited roles from a user-defined role.

	rolesInfo
	Returns information for the specified role or roles.

Security Reference Documentation

	System-Defined Roles

	Reference on MongoDB provided roles and corresponding access.

	system.roles Collection

	Describes the content of the collection that stores user-defined roles.

	system.users Collection

	Describes the content of the collection that stores users’ credentials and
role assignments.

	Resource Document

	Describes the resource document for roles.

	Privilege Actions

	List of the actions available for privileges.

	Default MongoDB Port

	List of default ports used by MongoDB.

	Audit Operations

	List of operations that are auditable.

	System-Defined Roles

	system.roles Collection

	system.users Collection

	Resource Document

	Privilege Actions

	Default MongoDB Port

	Audit Operations

Security Release Notes Alerts

	Security Release Notes

	Security vulnerability for password.

	Security Release Notes

System-Defined Roles

MongoDB uses role-based authorization to give users access to data and
commands. In addition to providing the ability to create
user-defined roles, MongoDB provides
system-defined roles.

Roles

Database User Roles

	
read

	Provides users with the ability to read data from any collection
within a specific logical database. This includes
find() and the following database
commands:

	aggregate

	checkShardingIndex

	cloneCollectionAsCapped

	collStats

	count

	dataSize

	dbHash

	dbStats

	distinct

	filemd5

	geoNear

	geoSearch

	geoWalk

	group

	mapReduce (inline output only.)

	text (beta feature.)

	
readWrite

	Provides users with the ability to read from or write to any
collection within a specific logical database. Users with
readWrite have access to all of the operations
available to read users, as well as the following basic
write operations: insert(),
remove(), and
update().

Additionally, users with the readWrite have access to
the following database commands:

	cloneCollection (as the target database.)

	convertToCapped

	create (and to create collections implicitly.)

	drop()

	dropIndexes

	emptycapped

	ensureIndex()

	findAndModify

	mapReduce (output to a collection.)

	renameCollection (within the same database.)

Database Administration Roles

	
dbAdmin

	Provides the ability to perform the following set of administrative
operations within the scope of this logical database.

	clean

	collMod

	collStats

	compact

	convertToCapped

	create

	db.createCollection()

	dbStats

	drop()

	dropIndexes

	ensureIndex()

	indexStats

	profile

	reIndex

	renameCollection (within a single database.)

	validate

Furthermore, only dbAdmin has the ability to read the
system.profile collection.

	
userAdmin

	Users with this role can modify permissions for existing users
and create new users. userAdmin does not restrict the
permissions that a user can grant, and a userAdmin
user can grant privileges to themselves or other users in excess of
the userAdmin users’ current privileges.

Important

userAdmin is effectively the superuser
role for a specific database. Users with userAdmin
can grant themselves all privileges. However,
userAdmin does not explicitly authorize a user for
any privileges beyond user administration.

Note

The userAdmin is a database specific privilege, and
only grants a user the ability to administer users on a single
database. However, for the admin database,
userAdmin allows a user the ability to gain
userAdminAnyDatabase, and so for the admin database
only these roles are effectively the same.

Administrative Roles

	
clusterAdmin

	clusterAdmin grants access to several administration
operations that affect or present information about the whole system,
rather than just a single database. These privileges include but
are not limited to replica set and sharded cluster
administrative functions.

clusterAdmin is only applicable on the admin
database, and does not confer any access to the local or
config databases.

Specifically, users with the clusterAdmin role have
access to the following operations:

	addShard

	closeAllDatabases

	connPoolStats

	connPoolSync

	_cpuProfilerStart

	_cpuProfilerStop

	cursorInfo

	diagLogging

	dropDatabase

	enableSharding

	flushRouterConfig

	fsync

	db.fsyncUnlock()

	getCmdLineOpts

	getLog

	getParameter

	getShardMap

	getShardVersion

	hostInfo

	db.currentOp()

	db.killOp()

	listDatabases

	listShards

	logRotate

	moveChunk

	movePrimary

	netstat

	removeShard

	repairDatabase

	replSetFreeze

	replSetGetStatus

	replSetInitiate

	replSetMaintenance

	replSetReconfig

	replSetStepDown

	replSetSyncFrom

	resync

	serverStatus

	setParameter

	setShardVersion

	shardCollection

	shardingState

	shutdown

	splitChunk

	splitVector

	split

	top

	touch

	unsetSharding

For some cluster administration operations, MongoDB requires read
and write access to the local or config databases. You must specify
this access separately from clusterAdmin. See the
Combined-Access Operations section for more information.

All-Database Roles

The following roles apply to all databases in a mongod
instance and are roughly equivalent to their single-database
equivalents. You must specify the following “any” database roles on the
admin databases.

	
readAnyDatabase

	readAnyDatabase provides users with the same read-only
permissions as read, except it applies to all logical
databases in the MongoDB environment.

	
readWriteAnyDatabase

	readWriteAnyDatabase provides users with the same read and
write permissions as readWrite, except it applies to all
logical databases in the MongoDB environment.

	
userAdminAnyDatabase

	userAdminAnyDatabase provides users with the same
access to user administration operations as userAdmin,
except it applies to all logical databases in the MongoDB
environment.

Important

Because users with userAdminAnyDatabase
and userAdmin have the ability to create and modify
permissions in addition to their own level of access, this role
is effectively the MongoDB system superuser. However,
userAdminAnyDatabase and userAdmin do
not explicitly authorize a user for any privileges beyond user
administration.

	
dbAdminAnyDatabase

	dbAdminAnyDatabase provides users with the same access
to database administration operations as dbAdmin,
except it applies to all logical databases in the MongoDB
environment.

Combined-Access Operations

The following operations are available only to users that have multiple
roles:

	sh.status()

	Requires clusterAdmin and read access to
the config database.

	applyOps, eval [1]

	Requires readWriteAnyDatabase,
userAdminAnyDatabase, dbAdminAnyDatabase and
clusterAdmin (on the admin database.)

The following operations related to cluster administration are not available to
users who have only the clusterAdmin role:

	rs.conf()

	Requires read on the local database.

	sh.addShard()

	Requires readWrite on the config database.

	[1]	The mongo shell provides
db.eval() as a helper for the eval command.
As a wrapper, db.eval() requires the same privileges.

system.roles Collection

New in version 2.5.3.

The system.roles collection in the admin database stores the
user-defined roles. To create and manage these user-defined
roles, MongoDB provides role management commands.

system.roles Schema

The documents in the system.roles collection have the following
schema:

{
 _id: <system-defined id>,
 role: "<role name>",
 db: "<database>",
 privileges: [
 {
 resource: <resource document>,
 actions: ["<action>", ...]
 },
 ...
],
 roles: [
 { role: "<role name>", db: "<database>" },
 ...
]
}

A system.roles document has the following fields:

	
admin.system.roles.role

	The role field is a string that
specifies the name of the role.

	
admin.system.roles.db

	The db field is a string that specifies
the database to which the role belongs. MongoDB uniquely identifies
each role by the pairing of its name (i.e.
role) and its database.

	
admin.system.roles.privileges

	The privileges array contains the
privilege documents that define the privileges for the role. A
privilege document has the following syntax:

{
 resource: <resource document>,
 actions: ["<action>", ...]
}

Each privilege document has the following fields:

	
admin.system.roles.privileges[n].resource

	A document that specifies the resources upon which the
actions for the
privilege applies. For the document’s syntax and rules, see
Resource Document.

	
admin.system.roles.privileges[n].actions

	An array of actions permitted on the resource. For a list of
actions, see Privilege Actions.

	
admin.system.roles.roles

	The roles array contains role documents
that specify the roles from which this role inherits privileges. A
role document has the following syntax:

{ role: "<role name>", db: "<database>" }

A role document has the following fields:

	
admin.system.roles.roles[n].role

	The name of the role. A role can be a system-defined role provided by MongoDB or a user-defined
role.

	
admin.system.roles.roles[n].db

	The name of the database where the role is defined.

Examples

Consider following sample documents found in system.roles
collection of the admin database.

A User-Defined Role Specifies Privileges

Consider following sample document for the role appUser found in
system.roles collection of the admin database:

{
 _id: "admin.appUser",
 role: "appUser",
 db: "myApp",
 privileges: [
 { resource: { db: "myApp" , collection: "" },
 actions: ["find", "createCollection", "dbStats", "collStats"] },
 { resource: { db: "myApp", collection: "logs" },
 actions: ["insert"] },
 { resource: { db: "myApp", collection: "data" },
 actions: ["insert", "update", "remove", "compact"] },
 { resource: { db: "myApp", collection: "system.indexes" },
 actions: ["find"] },
 { resource: { db: "myApp", collection: "system.namespaces" },
 actions: ["find"] },
],
 roles: []
}

The privileges array lists the five privileges that the appUser
role specifies:

	The first privilege permits its actions ("find",
"createCollection", "dbStats", "collStats") on all the
collections in the myApp database excluding its system
collections. See Specify a Database as Resource.

	The next two privileges permits additional actions on specific
collections, logs and data, in the myApp database. See
Specify a Collection of a Database as Resource.

	The last two privileges permits actions on two system
collections. While the first
privilege gives database-wide permission for the find action,
the action does not apply to myApp‘s system collections. To
give access to a system collection, a privilege must explicitly
specify the collection. See Resource Document.

As indicated by the empty roles array, appUser inherits no
additional privileges from other roles.

User-Defined Role Inherits from Other Roles

Consider following sample document for the role appAdmin found in
system.roles collection of the admin database. The document
shows that the appAdmin role specifies privileges, as well as
inherits privileges from other roles:

{
 _id: "myApp.appAdmin",
 role: "appAdmin",
 db: "myApp",
 privileges: [
 {
 resource: { db: "myApp", collection: "" },
 actions: ["insert", "dbStats", "collStats", "compact", "repairDatabase"]
 },
 {
 resource: { cluster : true },
 actions: ["shutdown"]
 }
],
 roles: [
 { role: "replAdmin", db: "admin" },
 { role: "appUser", db: "myApp" }
]
}

The privileges array lists the two privileges that the appAdmin
role specifies.

	The first privilege permits its actions ("insert",
"dbStats", "collStats", "compact", "repairDatabase")
on all the collections in the myApp database excluding its
system collections. See Specify a Database as Resource.

	The second privilege specifies the privilege to perform the
shutdown action applies to the cluster resource. See
Cluster Resource.

The roles array lists the roles, identified by the role names and
databases, from which the role appAdmin inherits privileges.

system.users Collection

Changed in version 2.5.3.

The system.users collection in the admin database stores user
authentication and authorization information. To manage data in this collection,
MongoDB provides user management commands.

system.users Schema

The documents in the system.users collection have the following
schema:

{
 _id: <system defined id>,
 user: "<name>",
 db: "<database>",
 credentials: { <authentication credentials> },
 roles: [
 { role: "<role name>", db: "<database>" },
 ...
],
 customData: <custom information>
 }

Each system.users document has the following fields:

	
admin.system.users.user

	The user field is a string that
identifies the user. A user exists in the context of a single logical
database but can have access to other databases through roles
specified in the roles array.

	
admin.system.users.db

	The db field specifies the database
associated with the user. The user’s privileges are not necessarily
limited to this database. The user can have privileges in additional
databases through the roles array.

	
admin.system.users.credentials

	The credentials field contains the
user’s authentication information. For users with externally stored
authentication credentials, such as users that use Kerberos
or x.509 certificates for authentication, the system.users
document for that user does not contain the
credentials field.

	
admin.system.users.roles

	The roles array contains role documents
that specify the roles granted to the user. The array contains both
system-defined roles and user-defined
role.

A role document has the following syntax:

{ role: "<role name>", db: "<database>" }

A role document has the following fields:

	
admin.system.users.roles[n].role

	The name of a role. A role can be a system-defined role provided by MongoDB or a custom
user-defined role.

	
admin.system.users.roles[n].db

	The name of the database where role is defined.

When specifying a role using the role management or user management commands, you can specify the role name alone
(e.g. "readWrite") if the role that exists on the database on which
the command is run.

	
admin.system.users.customData

	The customData field contains optional
custom information about the user.

Example

Consider the following document in the system.users collection:

{
 _id: "home.Kari",
 user: "Kari",
 db: "home",
 credentials: { "MONGODB-CR" :"<hashed password>" },
 roles : [
 { role: "read", db: "home" },
 { role: "readWrite", db: "test" },
 { role: "appUser", db: "myApp" }
],
 customData: { zipCode: 64157 }
}

The document shows that a user Kari is associated with the home
database. Kari has the read role in the home
database, the readWrite role in the test database, and
the appUser role in the myApp database.

Resource Document

The resource document specifies the resources upon which a
privilege permits actions.

Database and/or Collection Resource

To specify databases and/or collections, use the following syntax:

{ db: <database>, collection: <collection> }

Specify a Collection of a Database as Resource

If both the db field and the collection field are specified,
i.e. both are non-empty strings, the resource is the specified
collection in the specified database. For example, the following
document specifies a resource of the users collection in the
test database:

{ db: "test", collection: "users" }

See also

Collection-Level Access Control

Specify a Database as Resource

If only the collection field is an empty string (""), the
resource is the specified database, excluding the system
collections. For example, the
following resource document specifies the resource of the test
database, excluding the system collections:

{ db: "test", collection: "" }

Note

When you specify a database as the resource, the system
collections are excluded, unless you name them explicitly, as in the
following:

{ db: "test", collection: "system.namespaces" }

System collections include but are not limited to the following:

	<database>.system.profile

	<database>.system.namespaces

	<database>.system.indexes

	<database>.system.js

	local.system.replset

	system.users Collection in the admin database

	system.roles Collection in the admin database

Specify Collections Across Databases as Resource

If only the db field is an empty string (""), the resource is
all collections with the specified name across all databases. For
example, the following document specifies the resource of all
the users collections across all the databases:

{ db: "", collection: "users" }

Specify All Non-System Collections in All Databases

If both the db and collection fields are empty strings
(""), the resource is all collections, excluding the system
collections, in all the databases:

{ db: "", collection: "" }

Cluster Resource

To specify the cluster as the resource, use the following syntax:

{ cluster : true }

Use the cluster resource for actions that affect the state of the
system rather than act on specific set of databases or collections.
Examples of such actions are shutdown, replSetReconfig, and
addShard. For example, the following document grants the
action shutdown on the cluster.

{ resource: { cluster : true }, actions: ["shutdown"] }

Privilege Actions

MongoDB uses role-based authorization to give users access to data and
commands. Roles provide privileges to users, where privileges specify
the actions permitted on a resource. This
page lists the actions available for defining
privileges.

Actions For User and Role Management Operations

New in version 2.5.3.

MongoDB provides user and role management commands, which require proper authorization to use
in order to prevent privilege escalation attacks.

The following actions relate to privileges needed to perform user
and role management commands:

	
createUser

	The user can create new users in the given database.

	
createRole

	The user can create new roles in the given database.

	
dropUser

	The user can remove any user from the given database.

	
dropRole

	The user can delete any role from the given database.

	
grantRole

	The user can grant any role in the database to any user from any
database in the system.

	
revokeRole

	The user can remove any role from any user from any database in the
system.

	
changeOwnPassword

	Users with this action can change their own passwords.
Grant changeOwnPassword on the cluster resource.

	
changeAnyPassword

	The user can change the password of any user in the given database.

	
changeOwnCustomData

	Users with this action can change their own custom information, as
stored in the customData field of documents in the admin.system.users
collection. Grant changeOwnCustomData on the cluster
resource.

	
changeAnyCustomData

	The user can change the custom information of any user in the given
database. MongoDB stores custom information in the customData field of
the documents in admin.system.users collection.

	
viewUser

	The user can view the information of any user in the given database.

	
viewRole

	The user can view information about any role in the given database.

Actions For Database Operations

The following actions relate to privileges needed to perform various
database operations:

	
	_migrateClone

	_recvChunkAbort

	_recvChunkCommit

	_recvChunkStart

	_recvChunkStatus

	_transferMods

	addShard

	captrunc

	clean

	clone

	cloneCollectionLocalSource

	cloneCollectionTarget

	closeAllDatabases

	collMod

	collStats

	compact

	connPoolStats

	connPoolSync

	convertToCapped

	cpuProfiler

	createCollection

	cursorInfo

	dbHash

	dbStats

	delete

	diagLogging

	dropCollection

	dropDatabase

	enableSharding

	
	find

	flushRouterConfig

	fsync

	getCmdLineOpts

	getLog

	getParameter

	getShardMap

	getShardVersion

	handshake

	hostInfo

	indexStats

	inprog

	insert

	killCursors

	killop

	listDatabases

	listShards

	logRotate

	moveChunk

	movePrimary

	netstat

	profileEnable

	reIndex

	removeShard

	repairDatabase

	replSetElect

	replSetFreeze

	replSetFresh

	
	replSetGetRBID

	replSetGetStatus

	replSetHeartbeat

	replSetInitiate

	replSetMaintenance

	replSetReconfig

	replSetStepDown

	replSetSyncFrom

	resync

	serverStatus

	setParameter

	setShardVersion

	shardCollection

	shardingState

	shutdown

	split

	splitChunk

	splitVector

	storageDetails

	top

	touch

	unlock

	unsetSharding

	update

	userAdmin

	validate

	writeBacksQueued

	writebacklisten

Default MongoDB Port

The following table lists the default ports used by MongoDB:

	Default Port
	Description

	27017
	The default port for mongod and mongos
instances. You can change this port with port or
--port.

	27018
	The default port when running with --shardsvr runtime operation or shardsvr
setting.

	27019
	The default port when running with --configsvr runtime operation or configsvr
setting.

	28017
	The default port for the web status page. The web status
page is always accessible at a port number that is 1000 greater
than the port determined by port.

Audit Operations

Note

The audit system is
available only in MongoDB Enterprise [http://www.mongodb.com/products/mongodb-enterprise].

The audit system logs the following operations:

Schema (DDL) Operations

	Operations
	

	
createCollection

createDatabase

createIndex

renameCollection

	
dropCollection

dropDatabase

dropIndex

Replica Set Operations

	Operations

	replSetReconfig

Authentication and Authorization Operations

	Operations
	
	

	
authenticate

authCheck

	
createUser

dropAllUsersFromDatabase

dropUser

updateUser

	
createRole

dropAllRolesFromDatabase

dropRole

grantRolesToUser

grantRolesToRole

grantPrivilegesToRole

revokePrivilegesFromRole

revokeRolesFromRole

revokeRolesFromUser

updateRole

Note

For authCheck operations, the auditing system logs only
authorization failures.

General Operations

	Operations

	
applicationMessage

auditLogRotate

shutdown

For applicationMessage operations, see logApplicationMessage.

Security Release Notes

Access to system.users Collection

Changed in version 2.4.

In 2.4, only users with the userAdmin role have access to the
system.users collection.

In version 2.2 and earlier, the read-write users of a database all have
access to the system.users collection, which contains the user
names and user password hashes. [1]

	[1]	Read-only users do not have access
to the system.users collection.

Password Hashing Insecurity

If a user has the same password for multiple databases, the hash will
be the same. A malicious user could exploit this to gain access on a
second database using a different user’s credentials.

As a result, always use unique username and password combinations
for each database.

Thanks to Will Urbanski, from Dell SecureWorks, for identifying this issue.

Aggregation

Aggregations operations process data records and return computed
results. Aggregation operations group values from multiple documents
together, and can perform a variety of operations on the grouped data
to return a single result. MongoDB provides three ways to perform
aggregation: the aggregation pipeline, the map-reduce function, and single purpose aggregation methods and
commands.

	Aggregation Introduction

	A high-level introduction to aggregation.

	Aggregation Concepts

	Introduces the use and operation of the data aggregation modalities available in MongoDB.

	Aggregation Pipeline

	The aggregation pipeline is a framework for performing aggregation
tasks, modeled on the concept of data processing pipelines. Using
this framework, MongoDB passes the documents of a single collection
through a pipeline. The pipeline transforms the documents into
aggregated results, and is accessed through the
aggregate database command.

	Map-Reduce

	Map-reduce is a generic multi-phase data aggregation modality for
processing quantities of data. MongoDB provides map-reduce with the
mapReduce database command.

	Single Purpose Aggregation Operations

	MongoDB provides a collection of specific data aggregation
operations to support a number of common data aggregation
functions. These operations include returning counts of documents,
distinct values of a field, and simple grouping operations.

	Aggregation Mechanics

	Details internal optimization operations, limits, support for sharded
collections, and concurrency concerns.

	Aggregation Examples

	Examples and tutorials for data aggregation operations in MongoDB.

	Aggregation Reference

	References for all aggregation operations material for all data aggregation methods in MongoDB.

	Aggregation Introduction

	Aggregation Concepts
	Aggregation Pipeline

	Map-Reduce

	Single Purpose Aggregation Operations

	Aggregation Mechanics
	Aggregation Pipeline Optimization

	Aggregation Pipeline Limits

	Aggregation Pipeline and Sharded Collections

	Map-Reduce and Sharded Collections

	Map Reduce Concurrency

	Aggregation Examples
	Aggregation with the Zip Code Data Set

	Aggregation with User Preference Data

	Map-Reduce Examples

	Perform Incremental Map-Reduce

	Troubleshoot the Map Function

	Troubleshoot the Reduce Function

	Aggregation Reference
	Aggregation Commands Comparison

	SQL to Aggregation Mapping Chart

	Aggregation Interfaces

Aggregation Examples

This document provides the practical examples that display the
capabilities of aggregation.

	Aggregation with the Zip Code Data Set

	Use the aggregation pipeline to group values and to calculate
aggregated sums and averages for a collection of United States zip
codes.

	Aggregation with User Preference Data

	Use the pipeline to sort, normalize, and sum data on a collection
of user data.

	Map-Reduce Examples

	Define map-reduce operations that select ranges, group data, and
calculate sums and averages.

	Perform Incremental Map-Reduce

	Run a map-reduce operations over one collection and output results
to another collection.

	Troubleshoot the Map Function

	Steps to troubleshoot the map function.

	Troubleshoot the Reduce Function

	Steps to troubleshoot the reduce function.

	Aggregation with the Zip Code Data Set

	Aggregation with User Preference Data

	Map-Reduce Examples

	Perform Incremental Map-Reduce

	Troubleshoot the Map Function

	Troubleshoot the Reduce Function

Aggregation with the Zip Code Data Set

The examples in this document use the zipcode collection. This
collection is available at: media.mongodb.org/zips.json [http://media.mongodb.org/zips.json]. Use mongoimport to
load this data set into your mongod instance.

Data Model

Each document in the zipcode collection has the following form:

{
 "_id": "10280",
 "city": "NEW YORK",
 "state": "NY",
 "pop": 5574,
 "loc": [
 -74.016323,
 40.710537
]
}

The _id field holds the zip code as a string.

The city field holds the city.

The state field holds the two letter state abbreviation.

The pop field holds the population.

The loc field holds the location as a latitude longitude pair.

All of the following examples use the aggregate() helper in the mongo
shell. aggregate() provides a
wrapper around the aggregate database command. See the
documentation for your driver for a
more idiomatic interface for data aggregation operations.

Return States with Populations above 10 Million

To return all states with a population greater than 10 million, use
the following aggregation operation:

db.zipcodes.aggregate({ $group :
 { _id : "$state",
 totalPop : { $sum : "$pop" } } },
 { $match : {totalPop : { $gte : 10*1000*1000 } } })

Aggregations operations using the aggregate() helper process all documents in the
zipcodes collection. aggregate() connects a number of pipeline operators, which define the aggregation
process.

In this example, the pipeline passes all documents in the
zipcodes collection through the following steps:

	the $group operator collects all documents and
creates documents for each state.

These new per-state documents have one field in addition the
_id field: totalPop which is a generated field using the
$sum operation to calculate the total value of all
pop fields in the source documents.

After the $group operation the documents in the
pipeline resemble the following:

{
 "_id" : "AK",
 "totalPop" : 550043
}

	the $match operation filters these documents so that
the only documents that remain are those where the value of
totalPop is greater than or equal to 10 million.

The $match operation does not alter the documents,
which have the same format as the documents output by
$group.

The equivalent SQL for this operation is:

SELECT state, SUM(pop) AS totalPop
 FROM zipcodes
 GROUP BY state
 HAVING totalPop >= (10*1000*1000)

Return Average City Population by State

To return the average populations for cities in each state, use the
following aggregation operation:

db.zipcodes.aggregate({ $group :
 { _id : { state : "$state", city : "$city" },
 pop : { $sum : "$pop" } } },
 { $group :
 { _id : "$_id.state",
 avgCityPop : { $avg : "$pop" } } })

Aggregations operations using the aggregate() helper process all documents in the
zipcodes collection. aggregate() connects a number of pipeline operators that define the aggregation
process.

In this example, the pipeline passes all documents in the
zipcodes collection through the following steps:

	the $group operator collects all documents and
creates new documents for every combination of the city and
state fields in the source document.

After this stage in the pipeline, the documents resemble the
following:

{
 "_id" : {
 "state" : "CO",
 "city" : "EDGEWATER"
 },
 "pop" : 13154
}

	the second $group operator collects documents by the
state field and use the $avg expression to
compute a value for the avgCityPop field.

The final output of this aggregation operation is:

{
 "_id" : "MN",
 "avgCityPop" : 5335
},

Return Largest and Smallest Cities by State

To return the smallest and largest cities by population for each
state, use the following aggregation operation:

db.zipcodes.aggregate({ $group:
 { _id: { state: "$state", city: "$city" },
 pop: { $sum: "$pop" } } },
 { $sort: { pop: 1 } },
 { $group:
 { _id : "$_id.state",
 biggestCity: { $last: "$_id.city" },
 biggestPop: { $last: "$pop" },
 smallestCity: { $first: "$_id.city" },
 smallestPop: { $first: "$pop" } } },

 // the following $project is optional, and
 // modifies the output format.

 { $project:
 { _id: 0,
 state: "$_id",
 biggestCity: { name: "$biggestCity", pop: "$biggestPop" },
 smallestCity: { name: "$smallestCity", pop: "$smallestPop" } } })

Aggregation operations using the aggregate() helper process all documents in the
zipcodes collection. aggregate() combines a number of pipeline operators that define the aggregation
process.

All documents from the zipcodes collection pass into the pipeline,
which consists of the following steps:

	the $group operator collects all documents and
creates new documents for every combination of the city and
state fields in the source documents.

By specifying the value of _id as a sub-document that contains
both fields, the operation preserves the state field for use
later in the pipeline. The documents produced by this stage of the
pipeline have a second field, pop, which uses the
$sum operator to provide the total of the pop
fields in the source document.

At this stage in the pipeline, the documents resemble the following:

{
 "_id" : {
 "state" : "CO",
 "city" : "EDGEWATER"
 },
 "pop" : 13154
}

	$sort operator orders the documents in the pipeline
based on the vale of the pop field from largest to
smallest. This operation does not alter the documents.

	the second $group operator collects the documents in
the pipeline by the state field, which is a field inside the
nested _id document.

Within each per-state document this $group operator
specifies four fields: Using the $last expression,
the $group operator creates the biggestcity and
biggestpop fields that store the city with the largest
population and that population. Using the $first
expression, the $group operator creates the
smallestcity and smallestpop fields that store the city with
the smallest population and that population.

The documents, at this stage in the pipeline resemble the following:

{
 "_id" : "WA",
 "biggestCity" : "SEATTLE",
 "biggestPop" : 520096,
 "smallestCity" : "BENGE",
 "smallestPop" : 2
}

	The final operation is $project, which renames the
_id field to state and moves the biggestCity,
biggestPop, smallestCity, and smallestPop into
biggestCity and smallestCity sub-documents.

The output of this aggregation operation is:

{
 "state" : "RI",
 "biggestCity" : {
 "name" : "CRANSTON",
 "pop" : 176404
 },
 "smallestCity" : {
 "name" : "CLAYVILLE",
 "pop" : 45
 }
}

Aggregation with User Preference Data

Data Model

Consider a hypothetical sports club with a database that contains a
user collection that tracks the user’s join dates, sport preferences,
and stores these data in documents that resemble the following:

{
 _id : "jane",
 joined : ISODate("2011-03-02"),
 likes : ["golf", "racquetball"]
}
{
 _id : "joe",
 joined : ISODate("2012-07-02"),
 likes : ["tennis", "golf", "swimming"]
}

Normalize and Sort Documents

The following operation returns user names in upper case and in
alphabetical order. The aggregation includes user names for all documents in
the users collection. You might do this to normalize user names for
processing.

db.users.aggregate(
 [
 { $project : { name:{$toUpper:"$_id"} , _id:0 } },
 { $sort : { name : 1 } }
]
)

All documents from the users collection pass through the
pipeline, which consists of the following operations:

	The $project operator:
	creates a new field called name.

	converts the value of the _id to upper case, with the
$toUpper operator. Then the
$project creates a new field, named name
to hold this value.

	suppresses the id field. $project will pass
the _id field by default, unless explicitly suppressed.

	The $sort operator orders the results by the
name field.

The results of the aggregation would resemble the following:

{
 "name" : "JANE"
},
{
 "name" : "JILL"
},
{
 "name" : "JOE"
}

Return Usernames Ordered by Join Month

The following aggregation operation returns user names sorted by the
month they joined. This kind of aggregation could help generate
membership renewal notices.

db.users.aggregate(
 [
 { $project : { month_joined : {
 $month : "$joined"
 },
 name : "$_id",
 _id : 0
 },
 { $sort : { month_joined : 1 } }
]
)

The pipeline passes all documents in the users collection through
the following operations:

	The $project operator:
	Creates two new fields: month_joined and name.

	Suppresses the id from the results. The aggregate() method includes the _id, unless
explicitly suppressed.

	The $month operator converts the values of the
joined field to integer representations of the month. Then the
$project operator assigns those values to the
month_joined field.

	The $sort operator sorts the results by the
month_joined field.

The operation returns results that resemble the following:

{
 "month_joined" : 1,
 "name" : "ruth"
},
{
 "month_joined" : 1,
 "name" : "harold"
},
{
 "month_joined" : 1,
 "name" : "kate"
}
{
 "month_joined" : 2,
 "name" : "jill"
}

Return Total Number of Joins per Month

The following operation shows how many people joined each month of the
year. You might use this aggregated data for recruiting and marketing
strategies.

db.users.aggregate(
 [
 { $project : { month_joined : { $month : "$joined" } } } ,
 { $group : { _id : {month_joined:"$month_joined"} , number : { $sum : 1 } } },
 { $sort : { "_id.month_joined" : 1 } }
]
)

The pipeline passes all documents in the users collection through
the following operations:

	The $project operator creates a new field called
month_joined.

	The $month operator converts the values of the
joined field to integer representations of the month. Then the
$project operator assigns the values to the
month_joined field.

	The $group operator collects all documents with a
given month_joined value and counts how many documents there are
for that value. Specifically, for each unique value,
$group creates a new “per-month” document with two
fields:
	_id, which contains a nested document with the
month_joined field and its value.

	number, which is a generated field. The $sum
operator increments this field by 1 for every document containing
the given month_joined value.

	The $sort operator sorts the documents created by
$group according to the contents of the
month_joined field.

The result of this aggregation operation would resemble the following:

{
 "_id" : {
 "month_joined" : 1
 },
 "number" : 3
},
{
 "_id" : {
 "month_joined" : 2
 },
 "number" : 9
},
{
 "_id" : {
 "month_joined" : 3
 },
 "number" : 5
}

Return the Five Most Common “Likes”

The following aggregation collects top five most “liked” activities in
the data set. This type of analysis could help inform planning and
future development.

db.users.aggregate(
 [
 { $unwind : "$likes" },
 { $group : { _id : "$likes" , number : { $sum : 1 } } },
 { $sort : { number : -1 } },
 { $limit : 5 }
]
)

The pipeline begins with all documents in the users collection,
and passes these documents through the following operations:

	The $unwind operator separates each value in the
likes array, and creates a new version of the source document
for every element in the array.

Example

Given the following document from the users collection:

{
 _id : "jane",
 joined : ISODate("2011-03-02"),
 likes : ["golf", "racquetball"]
}

The $unwind operator would create the following
documents:

{
 _id : "jane",
 joined : ISODate("2011-03-02"),
 likes : "golf"
}
{
 _id : "jane",
 joined : ISODate("2011-03-02"),
 likes : "racquetball"
}

	The $group operator collects all documents the same
value for the likes field and counts each grouping. With this
information, $group creates a new document with two
fields:

	_id, which contains the likes value.

	number, which is a generated field. The $sum
operator increments this field by 1 for every document containing
the given likes value.

	The $sort operator sorts these documents by the
number field in reverse order.

	The $limit operator only includes the first 5 result
documents.

The results of aggregation would resemble the following:

{
 "_id" : "golf",
 "number" : 33
},
{
 "_id" : "racquetball",
 "number" : 31
},
{
 "_id" : "swimming",
 "number" : 24
},
{
 "_id" : "handball",
 "number" : 19
},
{
 "_id" : "tennis",
 "number" : 18
}

Map-Reduce Examples

In the mongo shell, the db.collection.mapReduce()
method is a wrapper around the mapReduce command. The
following examples use the db.collection.mapReduce() method:

Consider the following map-reduce operations on a collection
orders that contains documents of the following prototype:

{
 _id: ObjectId("50a8240b927d5d8b5891743c"),
 cust_id: "abc123",
 ord_date: new Date("Oct 04, 2012"),
 status: 'A',
 price: 25,
 items: [{ sku: "mmm", qty: 5, price: 2.5 },
 { sku: "nnn", qty: 5, price: 2.5 }]
}

Return the Total Price Per Customer

Perform the map-reduce operation on the orders collection to group
by the cust_id, and calculate the sum of the price for each
cust_id:

	Define the map function to process each input document:

	In the function, this refers to the document that the
map-reduce operation is processing.

	The function maps the price to the cust_id for each
document and emits the cust_id and price pair.

var mapFunction1 = function() {
 emit(this.cust_id, this.price);
 };

	Define the corresponding reduce function with two arguments
keyCustId and valuesPrices:

	The valuesPrices is an array whose elements are the price
values emitted by the map function and grouped by keyCustId.

	The function reduces the valuesPrice array to the
sum of its elements.

var reduceFunction1 = function(keyCustId, valuesPrices) {
 return Array.sum(valuesPrices);
 };

	Perform the map-reduce on all documents in the orders collection
using the mapFunction1 map function and the reduceFunction1
reduce function.

db.orders.mapReduce(
 mapFunction1,
 reduceFunction1,
 { out: "map_reduce_example" }
)

This operation outputs the results to a collection named
map_reduce_example. If the map_reduce_example collection
already exists, the operation will replace the contents with the
results of this map-reduce operation:

Calculate Order and Total Quantity with Average Quantity Per Item

In this example, you will perform a map-reduce operation on the
orders collection for all documents that have an ord_date
value greater than 01/01/2012. The operation groups by the
item.sku field, and calculates the number of
orders and the total quantity ordered for each sku. The operation concludes by
calculating the average quantity per order for each sku value:

	Define the map function to process each input document:

	In the function, this refers to the document that the
map-reduce operation is processing.

	For each item, the function associates the sku with a new
object value that contains the count of 1 and the
item qty for the order and emits the sku and value pair.

var mapFunction2 = function() {
 for (var idx = 0; idx < this.items.length; idx++) {
 var key = this.items[idx].sku;
 var value = {
 count: 1,
 qty: this.items[idx].qty
 };
 emit(key, value);
 }
 };

	Define the corresponding reduce function with two arguments
keySKU and countObjVals:

	countObjVals is an array whose elements are the objects
mapped to the grouped keySKU values passed by map
function to the reducer function.

	The function reduces the countObjVals array to a single
object reducedValue that contains the count and the
qty fields.

	In reducedVal, the count field contains the sum of the
count fields from the individual array elements, and the
qty field contains the sum of the qty fields from the
individual array elements.

var reduceFunction2 = function(keySKU, countObjVals) {
 reducedVal = { count: 0, qty: 0 };

 for (var idx = 0; idx < countObjVals.length; idx++) {
 reducedVal.count += countObjVals[idx].count;
 reducedVal.qty += countObjVals[idx].qty;
 }

 return reducedVal;
 };

	Define a finalize function with two arguments key and
reducedVal. The function modifies the reducedVal object
to add a computed field named avg and returns the modified
object:

var finalizeFunction2 = function (key, reducedVal) {

 reducedVal.avg = reducedVal.qty/reducedVal.count;

 return reducedVal;

 };

	Perform the map-reduce operation on the orders collection using
the mapFunction2, reduceFunction2, and
finalizeFunction2 functions.

db.orders.mapReduce(mapFunction2,
 reduceFunction2,
 {
 out: { merge: "map_reduce_example" },
 query: { ord_date:
 { $gt: new Date('01/01/2012') }
 },
 finalize: finalizeFunction2
 }
)

This operation uses the query field to select only those
documents with ord_date greater than new
Date(01/01/2012). Then it output the results to a collection
map_reduce_example. If the map_reduce_example collection
already exists, the operation will merge the existing contents with
the results of this map-reduce operation.

Perform Incremental Map-Reduce

Map-reduce operations can handle complex aggregation tasks. To perform
map-reduce operations, MongoDB provides the mapReduce
command and, in the mongo shell, the
db.collection.mapReduce() wrapper method.

If the map-reduce data set is constantly growing, you may want to
perform an incremental map-reduce rather than
performing the map-reduce operation over the entire data set each time.

To perform incremental map-reduce:

	Run a map-reduce job over the current collection and output the
result to a separate collection.

	When you have more data to process, run subsequent map-reduce job
with:
	the query parameter that specifies conditions that match
only the new documents.

	the out parameter that specifies the reduce action to
merge the new results into the existing output collection.

Consider the following example where you schedule a map-reduce
operation on a sessions collection to run at the end of each day.

Data Setup

The sessions collection contains documents that log users’ sessions
each day, for example:

db.sessions.save({ userid: "a", ts: ISODate('2011-11-03 14:17:00'), length: 95 });
db.sessions.save({ userid: "b", ts: ISODate('2011-11-03 14:23:00'), length: 110 });
db.sessions.save({ userid: "c", ts: ISODate('2011-11-03 15:02:00'), length: 120 });
db.sessions.save({ userid: "d", ts: ISODate('2011-11-03 16:45:00'), length: 45 });

db.sessions.save({ userid: "a", ts: ISODate('2011-11-04 11:05:00'), length: 105 });
db.sessions.save({ userid: "b", ts: ISODate('2011-11-04 13:14:00'), length: 120 });
db.sessions.save({ userid: "c", ts: ISODate('2011-11-04 17:00:00'), length: 130 });
db.sessions.save({ userid: "d", ts: ISODate('2011-11-04 15:37:00'), length: 65 });

Initial Map-Reduce of Current Collection

Run the first map-reduce operation as follows:

	Define the map function that maps the userid to an
object that contains the fields userid, total_time, count,
and avg_time:

var mapFunction = function() {
 var key = this.userid;
 var value = {
 userid: this.userid,
 total_time: this.length,
 count: 1,
 avg_time: 0
 };

 emit(key, value);
 };

	Define the corresponding reduce function with two arguments
key and values to calculate the total time and the count.
The key corresponds to the userid, and the values is an
array whose elements corresponds to the individual objects mapped to the
userid in the mapFunction.

var reduceFunction = function(key, values) {

 var reducedObject = {
 userid: key,
 total_time: 0,
 count:0,
 avg_time:0
 };

 values.forEach(function(value) {
 reducedObject.total_time += value.total_time;
 reducedObject.count += value.count;
 }
);
 return reducedObject;
 };

	Define the finalize function with two arguments key and
reducedValue. The function modifies the reducedValue document
to add another field average and returns the modified document.

var finalizeFunction = function (key, reducedValue) {

 if (reducedValue.count > 0)
 reducedValue.avg_time = reducedValue.total_time / reducedValue.count;

 return reducedValue;
 };

	Perform map-reduce on the session collection using the
mapFunction, the reduceFunction, and the
finalizeFunction functions. Output the results to a collection
session_stat. If the session_stat collection already exists,
the operation will replace the contents:

db.sessions.mapReduce(mapFunction,
 reduceFunction,
 {
 out: { reduce: "session_stat" },
 finalize: finalizeFunction
 }
)

Subsequent Incremental Map-Reduce

Later, as the sessions collection grows, you can run additional
map-reduce operations. For example, add new documents to the
sessions collection:

db.sessions.save({ userid: "a", ts: ISODate('2011-11-05 14:17:00'), length: 100 });
db.sessions.save({ userid: "b", ts: ISODate('2011-11-05 14:23:00'), length: 115 });
db.sessions.save({ userid: "c", ts: ISODate('2011-11-05 15:02:00'), length: 125 });
db.sessions.save({ userid: "d", ts: ISODate('2011-11-05 16:45:00'), length: 55 });

At the end of the day, perform incremental map-reduce on the
sessions collection, but use the query field to select only the
new documents. Output the results to the collection session_stat,
but reduce the contents with the results of the incremental
map-reduce:

db.sessions.mapReduce(mapFunction,
 reduceFunction,
 {
 query: { ts: { $gt: ISODate('2011-11-05 00:00:00') } },
 out: { reduce: "session_stat" },
 finalize: finalizeFunction
 }
);

Troubleshoot the Map Function

The map function is a JavaScript function that associates or “maps”
a value with a key and emits the key and value pair during a
map-reduce operation.

To verify the key and value pairs emitted by the map
function, write your own emit function.

Consider a collection orders that contains documents of the
following prototype:

{
 _id: ObjectId("50a8240b927d5d8b5891743c"),
 cust_id: "abc123",
 ord_date: new Date("Oct 04, 2012"),
 status: 'A',
 price: 250,
 items: [{ sku: "mmm", qty: 5, price: 2.5 },
 { sku: "nnn", qty: 5, price: 2.5 }]
}

	Define the map function that maps the price to the
cust_id for each document and emits the cust_id and price
pair:

var map = function() {
 emit(this.cust_id, this.price);
};

	Define the emit function to print the key and value:

var emit = function(key, value) {
 print("emit");
 print("key: " + key + " value: " + tojson(value));
}

	Invoke the map function with a single document from the orders
collection:

var myDoc = db.orders.findOne({ _id: ObjectId("50a8240b927d5d8b5891743c") });
map.apply(myDoc);

	Verify the key and value pair is as you expected.

emit
key: abc123 value:250

	Invoke the map function with multiple documents from the orders
collection:

var myCursor = db.orders.find({ cust_id: "abc123" });

while (myCursor.hasNext()) {
 var doc = myCursor.next();
 print ("document _id= " + tojson(doc._id));
 map.apply(doc);
 print();
}

	Verify the key and value pairs are as you expected.

See also

The map function must meet various requirements. For a list of all
the requirements for the map function, see mapReduce,
or the mongo shell helper method
db.collection.mapReduce().

Troubleshoot the Reduce Function

The reduce function is a JavaScript function that “reduces” to a
single object all the values associated with a particular key during a
map-reduce operation. The reduce function
must meet various requirements. This tutorial helps verify that the
reduce function meets the following criteria:

	The reduce function must return an object whose type must be
identical to the type of the value emitted by the map
function.

	The order of the elements in the valuesArray should not affect
the output of the reduce function.

	The reduce function must be idempotent.

For a list of all the requirements for the reduce function, see
mapReduce, or the mongo shell helper method
db.collection.mapReduce().

Confirm Output Type

You can test that the reduce function returns a value that is the
same type as the value emitted from the map function.

	Define a reduceFunction1 function that takes the arguments
keyCustId and valuesPrices. valuesPrices is an array of
integers:

var reduceFunction1 = function(keyCustId, valuesPrices) {
 return Array.sum(valuesPrices);
 };

	Define a sample array of integers:

var myTestValues = [5, 5, 10];

	Invoke the reduceFunction1 with myTestValues:

reduceFunction1('myKey', myTestValues);

	Verify the reduceFunction1 returned an integer:

20

	Define a reduceFunction2 function that takes the arguments
keySKU and valuesCountObjects. valuesCountObjects is an array of
documents that contain two fields count and qty:

var reduceFunction2 = function(keySKU, valuesCountObjects) {
 reducedValue = { count: 0, qty: 0 };

 for (var idx = 0; idx < valuesCountObjects.length; idx++) {
 reducedValue.count += valuesCountObjects[idx].count;
 reducedValue.qty += valuesCountObjects[idx].qty;
 }

 return reducedValue;
 };

	Define a sample array of documents:

var myTestObjects = [
 { count: 1, qty: 5 },
 { count: 2, qty: 10 },
 { count: 3, qty: 15 }
];

	Invoke the reduceFunction2 with myTestObjects:

reduceFunction2('myKey', myTestObjects);

	Verify the reduceFunction2 returned a document with exactly the
count and the qty field:

{ "count" : 6, "qty" : 30 }

Ensure Insensitivity to the Order of Mapped Values

The reduce function takes a key and a values array as its
argument. You can test that the result of the reduce function does
not depend on the order of the elements in the values array.

	Define a sample values1 array and a sample values2 array
that only differ in the order of the array elements:

var values1 = [
 { count: 1, qty: 5 },
 { count: 2, qty: 10 },
 { count: 3, qty: 15 }
];

var values2 = [
 { count: 3, qty: 15 },
 { count: 1, qty: 5 },
 { count: 2, qty: 10 }
];

	Define a reduceFunction2 function that takes the arguments
keySKU and valuesCountObjects. valuesCountObjects is an array of
documents that contain two fields count and qty:

var reduceFunction2 = function(keySKU, valuesCountObjects) {
 reducedValue = { count: 0, qty: 0 };

 for (var idx = 0; idx < valuesCountObjects.length; idx++) {
 reducedValue.count += valuesCountObjects[idx].count;
 reducedValue.qty += valuesCountObjects[idx].qty;
 }

 return reducedValue;
 };

	Invoke the reduceFunction2 first with values1 and then with
values2:

reduceFunction2('myKey', values1);
reduceFunction2('myKey', values2);

	Verify the reduceFunction2 returned the same result:

{ "count" : 6, "qty" : 30 }

Ensure Reduce Function Idempotence

Because the map-reduce operation may call a reduce multiple times
for the same key, and won’t call a reduce for single instances
of a key in the working set, the reduce function must return a value of the
same type as the value emitted from the map function. You can test
that the reduce function process “reduced” values without
affecting the final value.

	Define a reduceFunction2 function that takes the arguments
keySKU and valuesCountObjects. valuesCountObjects is an array of
documents that contain two fields count and qty:

var reduceFunction2 = function(keySKU, valuesCountObjects) {
 reducedValue = { count: 0, qty: 0 };

 for (var idx = 0; idx < valuesCountObjects.length; idx++) {
 reducedValue.count += valuesCountObjects[idx].count;
 reducedValue.qty += valuesCountObjects[idx].qty;
 }

 return reducedValue;
 };

	Define a sample key:

var myKey = 'myKey';

	Define a sample valuesIdempotent array that contains an element that is a
call to the reduceFunction2 function:

var valuesIdempotent = [
 { count: 1, qty: 5 },
 { count: 2, qty: 10 },
 reduceFunction2(myKey, [{ count:3, qty: 15 }])
];

	Define a sample values1 array that combines the values passed to
reduceFunction2:

var values1 = [
 { count: 1, qty: 5 },
 { count: 2, qty: 10 },
 { count: 3, qty: 15 }
];

	Invoke the reduceFunction2 first with myKey and
valuesIdempotent and then with myKey and values1:

reduceFunction2(myKey, valuesIdempotent);
reduceFunction2(myKey, values1);

	Verify the reduceFunction2 returned the same result:

{ "count" : 6, "qty" : 30 }

Aggregation Reference

	Aggregation Commands Comparison

	A comparison of group, mapReduce and
aggregate that explores the strengths and limitations
of each aggregation modality.

	Aggregation Framework Operators

	Aggregation pipeline operations have a collection of operators
available to define and manipulate documents in pipeline stages.

	SQL to Aggregation Mapping Chart

	An overview common aggregation operations in SQL and MongoDB using
the aggregation pipeline and operators in MongoDB and common SQL
statements.

	Aggregation Interfaces

	The data aggregation interfaces document the invocation format and
output for MongoDB’s aggregation commands and methods.

	Aggregation Commands Comparison

	SQL to Aggregation Mapping Chart

	Aggregation Interfaces

Aggregation Commands Comparison

The following table provides a brief overview of the features of the
MongoDB aggregation commands.

	
	aggregate
	mapReduce
	group

	Description
	
New in version 2.2.

Designed with specific goals of improving performance and
usability for aggregation tasks.

Uses a “pipeline” approach where objects are transformed as they
pass through a series of pipeline operators such as
$group, $match, and $sort.

See Aggregation Framework Operators for more information
on the pipeline operators.

	Implements the Map-Reduce aggregation for processing large data sets.
	Provides grouping functionality.

Is slower than the aggregate command and has less
functionality than the mapReduce command.

	Key Features
	Pipeline operators can be repeated as needed.

Pipeline operators need not produce one output document for every
input document.

Can also generate new documents or filter out documents.

	In addition to grouping operations, can perform complex
aggregation tasks as well as perform incremental aggregation on
continuously growing datasets.

See Map-Reduce Examples and
Perform Incremental Map-Reduce.

	Can either group by existing fields or with a custom keyf
JavaScript function, can group by calculated fields.

See group for information and example using the
keyf function.

	Flexibility
	Limited to the operators and expressions supported by the
aggregation pipeline.

However, can add computed fields, create new virtual sub-objects,
and extract sub-fields into the top-level of results by using the
$project pipeline operator.

See $project for more information as well as
Aggregation Framework Operators for more information on all
the available pipeline operators.

	Custom map, reduce and finalize JavaScript
functions offer flexibility to aggregation logic.

See mapReduce for details and restrictions
on the functions.

	Custom reduce and finalize JavaScript functions offer
flexibility to grouping logic.

See group for details and restrictions on these
functions.

	Output Results
	Returns results in various options (inline as a document that
contains the result set, a cursor to the result set) or stores
the results in a collection.

The result is subject to the BSON Document size limit if returned inline as a
document that contains the result set.

Changed in version 2.5.3: Can return results as a cursor or store the results to a
collection.

	Returns results in various options (inline, new collection, merge,
replace, reduce). See mapReduce for details on the
output options.

Changed in version 2.2: Provides much better support for sharded map-reduce output than
previous versions.

	Returns results inline as an array of grouped items.

The result set must fit within the maximum BSON document
size limit.

Changed in version 2.2: The returned array can contain at most 20,000 elements; i.e.
at most 20,000 unique groupings. Previous versions had a limit
of 10,000 elements.

	Sharding
	Supports non-sharded and sharded input collections.
	Supports non-sharded and sharded input collections.
	Does not support sharded collection.

	Notes
	
	Prior to 2.4, JavaScript code executed in a single thread.
	Prior to 2.4, JavaScript code executed in a single thread.

	More Information
	See Aggregation Pipeline and aggregate.
	See Map-Reduce and mapReduce.
	See group.

SQL to Aggregation Mapping Chart

The aggregation pipeline allows
MongoDB to provide native aggregation capabilities that corresponds to
many common data aggregation operations in SQL. If you’re new to
MongoDB you might want to consider the Frequently Asked Questions section for a
selection of common questions.

The following table provides an overview of common SQL aggregation
terms, functions, and concepts and the corresponding MongoDB
aggregation operators:

	SQL Terms, Functions, and Concepts
	MongoDB Aggregation Operators

	WHERE
	$match

	GROUP BY
	$group

	HAVING
	$match

	SELECT
	$project

	ORDER BY
	$sort

	LIMIT
	$limit

	SUM()
	$sum

	COUNT()
	$sum

	join
	No direct corresponding operator;
however, the $unwind operator
allows for somewhat similar functionality,
but with fields embedded within the document.

Examples

The following table presents a quick reference of SQL aggregation
statements and the corresponding MongoDB statements. The examples in
the table assume the following conditions:

	The SQL examples assume two tables, orders and
order_lineitem that join by the order_lineitem.order_id and
the orders.id columns.

	The MongoDB examples assume one collection orders that contain
documents of the following prototype:

{
 cust_id: "abc123",
 ord_date: ISODate("2012-11-02T17:04:11.102Z"),
 status: 'A',
 price: 50,
 items: [{ sku: "xxx", qty: 25, price: 1 },
 { sku: "yyy", qty: 25, price: 1 }]
}

	The MongoDB statements prefix the names of the fields from the
documents in the collection orders with a
$ character when they appear as operands to the aggregation
operations.

	SQL Example
	MongoDB Example
	Description

	SELECT COUNT(*) AS count
FROM orders

	db.orders.aggregate([
 { $group: { _id: null,
 count: { $sum: 1 } } }
])

	Count all records
from orders

	SELECT SUM(price) AS total
FROM orders

	db.orders.aggregate([
 { $group: { _id: null,
 total: { $sum: "$price" } } }
])

	Sum the price field
from orders

	SELECT cust_id,
 SUM(price) AS total
FROM orders
GROUP BY cust_id

	db.orders.aggregate([
 { $group: { _id: "$cust_id",
 total: { $sum: "$price" } } }
])

	For each unique cust_id,
sum the price field.

	SELECT cust_id,
 SUM(price) AS total
FROM orders
GROUP BY cust_id
ORDER BY total

	db.orders.aggregate([
 { $group: { _id: "$cust_id",
 total: { $sum: "$price" } } },
 { $sort: { total: 1 } }
])

	For each unique cust_id,
sum the price field,
results sorted by sum.

	SELECT cust_id,
 ord_date,
 SUM(price) AS total
FROM orders
GROUP BY cust_id, ord_date

	db.orders.aggregate([
 { $group: { _id: { cust_id: "$cust_id",
 ord_date: "$ord_date" },
 total: { $sum: "$price" } } }
])

	For each unique
cust_id, ord_date grouping,
sum the price field.

	SELECT cust_id, count(*)
FROM orders
GROUP BY cust_id
HAVING count(*) > 1

	db.orders.aggregate([
 { $group: { _id: "$cust_id",
 count: { $sum: 1 } } },
 { $match: { count: { $gt: 1 } } }
])

	For cust_id with multiple records,
return the cust_id and
the corresponding record count.

	SELECT cust_id,
 ord_date,
 SUM(price) AS total
FROM orders
GROUP BY cust_id, ord_date
HAVING total > 250

	db.orders.aggregate([
 { $group: { _id: { cust_id: "$cust_id",
 ord_date: "$ord_date" },
 total: { $sum: "$price" } } },
 { $match: { total: { $gt: 250 } } }
])

	For each unique cust_id, ord_date
grouping, sum the price field
and return only where the
sum is greater than 250.

	SELECT cust_id,
 SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id

	db.orders.aggregate([
 { $match: { status: 'A' } },
 { $group: { _id: "$cust_id",
 total: { $sum: "$price" } } }
])

	For each unique cust_id
with status A,
sum the price field.

	SELECT cust_id,
 SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250

	db.orders.aggregate([
 { $match: { status: 'A' } },
 { $group: { _id: "$cust_id",
 total: { $sum: "$price" } } },
 { $match: { total: { $gt: 250 } } }
])

	For each unique cust_id
with status A,
sum the price field and return
only where the
sum is greater than 250.

	SELECT cust_id,
 SUM(li.qty) as qty
FROM orders o,
 order_lineitem li
WHERE li.order_id = o.id
GROUP BY cust_id

	db.orders.aggregate([
 { $unwind: "$items" },
 { $group: { _id: "$cust_id",
 qty: { $sum: "$items.qty" } } }
])

	For each unique cust_id,
sum the corresponding
line item qty fields
associated with the
orders.

	SELECT COUNT(*)
FROM (SELECT cust_id, ord_date
 FROM orders
 GROUP BY cust_id, ord_date) as DerivedTable

	db.orders.aggregate([
 { $group: { _id: { cust_id: "$cust_id",
 ord_date: "$ord_date" } } },
 { $group: { _id: null, count: { $sum: 1 } } }
])

	Count the number of distinct
cust_id, ord_date groupings.

Aggregation Interfaces

Aggregation Commands

	Name
	Description

	aggregate
	Performs aggregation tasks such as group using the aggregation framework.

	count
	Counts the number of documents in a collection.

	distinct
	Displays the distinct values found for a specified key in a collection.

	group
	Groups documents in a collection by the specified key and performs simple aggregation.

	mapReduce
	Performs map-reduce aggregation for large data sets.

Aggregation Methods

	Name
	Description

	db.collection.aggregate()
	Provides access to the aggregation pipeline.

	db.collection.group()
	Groups documents in a collection by the specified key and performs
simple aggregation.

	db.collection.mapReduce()
	Performs map-reduce aggregation for large
data sets.

Indexes

Indexes provide high performance read operations for frequently used
queries.

This section introduces indexes in MongoDB, describes the types and
configuration options for indexes, and describes special types of
indexing MongoDB supports. The section also provides tutorials
detailing procedures and operational concerns, and providing
information on how applications may use indexes.

	Index Introduction

	An introduction to indexes in MongoDB.

	Index Concepts

	The core documentation of indexes in MongoDB, including geospatial
and text indexes.

	Index Types

	MongoDB provides different types of indexes for different purposes and
different types of content.

	Index Properties

	The properties you can specify when building indexes.

	Index Creation

	The options available when creating indexes.

	Indexing Tutorials

	Examples of operations involving indexes, including index creation
and querying indexes.

	Indexing Reference

	Reference material for indexes in MongoDB.

	Index Introduction

	Index Concepts
	Index Types
	Single Field Indexes

	Compound Indexes

	Multikey Indexes

	Geospatial Indexes and Queries
	2dsphere Indexes

	2d Indexes

	Haystack Indexes

	2d Index Internals

	Text Indexes

	Hashed Index

	Index Properties
	TTL Indexes

	Unique Indexes

	Sparse Indexes

	Index Creation

	Indexing Tutorials
	Index Creation Tutorials
	Create an Index

	Create a Compound Index

	Create a Unique Index

	Create a Sparse Index

	Create a Hashed Index

	Build Indexes on Replica Sets

	Build Indexes in the Background

	Build Old Style Indexes

	Index Management Tutorials
	Remove Indexes

	Rebuild Indexes

	Manage In-Progress Index Creation

	Return a List of All Indexes

	Measure Index Use

	Geospatial Index Tutorials
	Create a 2dsphere Index

	Query a 2dsphere Index

	Create a 2d Index

	Query a 2d Index

	Create a Haystack Index

	Query a Haystack Index

	Calculate Distance Using Spherical Geometry

	Text Search Tutorials
	Enable Text Search

	Create a text Index

	Search String Content for Text

	Specify a Language for Text Index

	Create text Index with Long Name

	Control Search Results with Weights

	Limit the Number of Entries Scanned

	Create text Index to Cover Queries

	Indexing Strategies
	Create Indexes to Support Your Queries

	Use Indexes to Sort Query Results

	Ensure Indexes Fit in RAM

	Create Queries that Ensure Selectivity

	Indexing Reference

Geospatial Indexes and Queries

MongoDB offers a number of indexes and query mechanisms to handle
geospatial information. This section introduces MongoDB’s geospatial
features. For complete examples of geospatial queries in MongoDB, see
Geospatial Index Tutorials.

Surfaces

Before storing your location data and writing queries, you must decide
the type of surface to use to perform calculations. The type you choose
affects how you store data, what type of index to build, and the syntax
of your queries.

MongoDB offers two surface types:

Spherical

To calculate geometry over an Earth-like sphere, store your
location data on a spherical surface and use 2dsphere index.

Store your location data as GeoJSON objects with this
coordinate-axis order: longitude, latitude. The coordinate
reference system for GeoJSON uses the WGS84 datum.

Flat

To calculate distances on a Euclidean plane, store your location data
as legacy coordinate pairs and use a 2d index.

Location Data

If you choose spherical surface calculations, you store location data
as either:

GeoJSON Objects

Queries on GeoJSON objects always calculate on a sphere. The
default coordinate reference system for GeoJSON uses the WGS84
datum.

New in version 2.4: Support for GeoJSON storage and queries is new in version
2.4. Prior to version 2.4, all geospatial data used coordinate
pairs.

MongoDB supports the following GeoJSON objects:

	Point

	LineString

	Polygon

Legacy Coordinate Pairs

MongoDB supports spherical surface calculations on legacy
coordinate pairs by converting the data to the GeoJSON Point type.

If you choose flat surface calculations, you can store data only as
legacy coordinate pairs.

Query Operations

MongoDB’s geospatial query operators let you query for:

Inclusion

MongoDB can query for locations contained entirely within a
specified polygon. Inclusion queries use the $geoWithin
operator.

Intersection

MongoDB can query for locations that intersect with a specified
geometry. These queries apply only to data on a spherical
surface. These queries use the $geoIntersects operator.

Proximity

MongoDB can query for the points nearest to another
point. Proximity queries use the $near operator. The
$near operator requires a 2d or 2dsphere index.

Geospatial Indexes

MongoDB provides the following geospatial index types to support the
geospatial queries.

2dsphere

2dsphere indexes support:

	Calculations on a sphere

	Both GeoJSON objects and legacy coordinate pairs

	A compound index with scalar index fields (i.e. ascending or
descending) as a prefix or suffix of the 2dsphere index field

New in version 2.4: 2dsphere indexes are not available before version 2.4.

See also

Query a 2dsphere Index

2d

2d indexes support:

	Calculations using flat geometry

	Legacy coordinate pairs (i.e., geospatial points on a flat
coordinate system)

	A compound index with only one additional field, as a suffix of the
2d index field

See also

Query a 2d Index

Geospatial Indexes and Sharding

You cannot use a geospatial index as the shard key index.

You can create and maintain a geospatial index on
a sharded collection if using different fields as the shard key.

Queries using $near are not supported for sharded
collections. Use geoNear instead. You also can query for
geospatial data using $geoWithin.

Additional Resources

The following pages provide complete documentation for geospatial
indexes and queries:

	2dsphere Indexes

	A 2dsphere index supports queries that calculate geometries on an
earth-like sphere. The index supports data stored as both GeoJSON
objects and as legacy coordinate pairs.

	2d Indexes

	The 2d index supports data stored as legacy coordinate pairs and is
intended for use in MongoDB 2.2 and earlier.

	Haystack Indexes

	A haystack index is a special index optimized to return results over
small areas. For queries that use spherical geometry, a 2dsphere
index is a better option than a haystack index.

	2d Index Internals

	Provides a more in-depth explanation of the internals of
geospatial indexes. This material is not necessary for normal
operations but may be useful for troubleshooting and for further
understanding.

	2dsphere Indexes

	2d Indexes

	Haystack Indexes

	2d Index Internals

See also

Geospatial Query Compatibility

Indexing Tutorials

Indexes allow MongoDB to process and fulfill queries quickly by creating
small and efficient representations of the documents in a collection.

The documents in this section outline specific tasks related to
building and maintaining indexes for data in MongoDB collections and
discusses strategies and practical approaches. For a conceptual
overview of MongoDB indexing, see the Index Concepts document.

	Index Creation Tutorials

	Create and configure different types of indexes for different purposes.

	Index Management Tutorials

	Monitor and assess index performance and rebuild indexes as needed.

	Geospatial Index Tutorials

	Create indexes that support data stored as GeoJSON objects
and legacy coordinate pairs.

	Text Search Tutorials

	Build and configure indexes that support full-text searches.

	Indexing Strategies

	The factors that affect index performance and practical approaches to
indexing in MongoDB

	Index Creation Tutorials
	Create an Index

	Create a Compound Index

	Create a Unique Index

	Create a Sparse Index

	Create a Hashed Index

	Build Indexes on Replica Sets

	Build Indexes in the Background

	Build Old Style Indexes

	Index Management Tutorials
	Remove Indexes

	Rebuild Indexes

	Manage In-Progress Index Creation

	Return a List of All Indexes

	Measure Index Use

	Geospatial Index Tutorials
	Create a 2dsphere Index

	Query a 2dsphere Index

	Create a 2d Index

	Query a 2d Index

	Create a Haystack Index

	Query a Haystack Index

	Calculate Distance Using Spherical Geometry

	Text Search Tutorials
	Enable Text Search

	Create a text Index

	Search String Content for Text

	Specify a Language for Text Index

	Create text Index with Long Name

	Control Search Results with Weights

	Limit the Number of Entries Scanned

	Create text Index to Cover Queries

	Indexing Strategies
	Create Indexes to Support Your Queries

	Use Indexes to Sort Query Results

	Ensure Indexes Fit in RAM

	Create Queries that Ensure Selectivity

Index Creation Tutorials

Instructions for creating and configuring indexes in MongoDB and
building indexes on replica sets and sharded clusters.

	Create an Index

	Build an index for any field on a collection.

	Create a Compound Index

	Build an index of multiple fields on a collection.

	Create a Unique Index

	Build an index that enforces unique values for the indexed field or
fields.

	Create a Sparse Index

	Build an index that omits references to documents that do not
include the indexed field. This saves space when indexing
fields that are present in only some documents.

	Create a Hashed Index

	Compute a hash of the value of a field in a collection and index
the hashed value. These indexes permit equality queries and may
be suitable shard keys for some collections.

	Build Indexes on Replica Sets

	To build indexes on a replica set, you build the indexes separately
on the primary and the secondaries, as described here.

	Build Indexes in the Background

	Background index construction allows read and write operations to
continue while building the index, but take longer to complete and
result in a larger index.

	Build Old Style Indexes

	A {v : 0} index is necessary if you need to roll
back from MongoDB version 2.0 (or later) to MongoDB version 1.8.

	Create an Index

	Create a Compound Index

	Create a Unique Index

	Create a Sparse Index

	Create a Hashed Index

	Build Indexes on Replica Sets

	Build Indexes in the Background

	Build Old Style Indexes

Create an Index

Indexes allow MongoDB to process and fulfill queries quickly by
creating small and efficient representations of the documents in a
collection. MongoDB creates an index on the _id field of
every collection by default, but allows users to create indexes for
any collection using on any field in a document.

This tutorial describes how to create an index on a single
field. MongoDB also supports compound indexes, which are indexes on multiple fields. See
Create a Compound Index for instructions on building
compound indexes.

Create an Index on a Single Field

To create an index, use ensureIndex() or a similar
method from your driver [http://api.mongodb.org/]. For example
the following creates an index on the phone-number field
of the people collection:

db.people.ensureIndex({ "phone-number": 1 })

ensureIndex() only creates an
index if an index of the same specification does not already exist.

All indexes support and optimize the performance for queries that select
on this field. For queries that cannot use an index, MongoDB must scan
all documents in a collection for documents that match the query.

Tip

The value of the field in the index specification describes the
kind of index for that field. For example, a value of 1 specifies an index
that orders items in ascending order. A value of -1 specifies
an index that orders items in descending order.

Examples

If you create an index on the user_id field in the records,
this index is, the index will support the following query:

db.records.find({ user_id: 2 })

However, the following query, on the profile_url field is not
supported by this index:

db.records.find({ profile_url: 2 })

Additional Considerations

If your collection holds a large amount of data, and your application
needs to be able to access the data while building the index, consider
building the index in the background, as described in
Background Construction. To build indexes on replica sets,
see the Build Indexes on Replica Sets section for more
information.

Note

To build or rebuild indexes for a replica set see
Build Indexes on Replica Sets.

Some drivers may specify indexes, using NumberLong(1) rather than
1 as the specification. This does not have any affect on the
resulting index.

See also

Create a Compound Index,
Indexing Tutorials and Index Concepts for more
information.

Create a Compound Index

Indexes allow MongoDB to process and fulfill queries quickly by
creating small and efficient representations of the documents in a
collection. MongoDB supports indexes that include content on a
single field, as well as compound indexes
that include content from multiple fields. Continue reading for
instructions and examples of building a compound index.

Build a Compound Index

To create a compound index use an
operation that resembles the following prototype:

db.collection.ensureIndex({ a: 1, b: 1, c: 1 })

Example

The following operation will create an index on the
item, category, and price fields of the products
collection:

db.products.ensureIndex({ item: 1, category: 1, price: 1 })

Additional Considerations

If your collection holds a large amount of data, and your application
needs to be able to access the data while building the index, consider
building the index in the background, as described in
Background Construction. To build indexes on replica sets,
see the Build Indexes on Replica Sets section for more
information.

Note

To build or rebuild indexes for a replica set see
Build Indexes on Replica Sets.

Some drivers may specify indexes, using NumberLong(1) rather than
1 as the specification. This does not have any affect on the
resulting index.

Tip

The value of the field in the index specification describes the
kind of index for that field. For example, a value of 1 specifies an index
that orders items in ascending order. A value of -1 specifies
an index that orders items in descending order.

See also

Create an Index, Indexing Tutorials
and Index Concepts for more information.

Create a Unique Index

MongoDB allows you to specify a unique constraint on an index. These constraints prevent
applications from inserting documents that have
duplicate values for the inserted fields. Additionally, if you want to
create an index on a collection that has existing data that might have
duplicate values for the indexed field, you may chose combine unique
enforcement with duplicate dropping.

Unique Indexes

To create a unique indexes, consider the
following prototype:

db.collection.ensureIndex({ a: 1 }, { unique: true })

For example, you may want to create a unique index on the "tax-id":
of the accounts collection to prevent storing multiple account
records for the same legal entity:

db.accounts.ensureIndex({ "tax-id": 1 }, { unique: true })

The _id index is a unique index. In some
situations you may consider using _id field itself for this kind
of data rather than using a unique index on another field.

In many situations you will want to combine the unique constraint
with the sparse option. When MongoDB indexes a field, if a
document does not have a value for a field, the index entry for that
item will be null. Since unique indexes cannot have duplicate
values for a field, without the sparse option, MongoDB will reject
the second document and all subsequent documents without the indexed
field. Consider the following prototype.

db.collection.ensureIndex({ a: 1 }, { unique: true, sparse: true })

You can also enforce a unique constraint on compound indexes, as in the following prototype:

db.collection.ensureIndex({ a: 1, b: 1 }, { unique: true })

These indexes enforce uniqueness for the combination of index keys
and not for either key individually.

Drop Duplicates

To force the creation of a unique index
index on a collection with duplicate values in the field you are
indexing you can use the dropDups option. This will force MongoDB
to create a unique index by deleting documents with duplicate values
when building the index. Consider the following prototype invocation
of ensureIndex():

db.collection.ensureIndex({ a: 1 }, { unique: true, dropDups: true })

See the full documentation of duplicate dropping for more information.

Warning

Specifying { dropDups: true } may delete data from your
database. Use with extreme caution.

Refer to the ensureIndex()
documentation for additional index creation options.

Create a Sparse Index

Sparse indexes are like non-sparse indexes, except that they omit
references to documents that do not include the indexed field. For
fields that are only present in some documents sparse indexes may
provide a significant space savings. See Sparse Indexes for
more information about sparse indexes and their use.

See also

Index Concepts and Indexing Tutorials
for more information.

Prototype

To create a sparse index on a field, use an
operation that resembles the following prototype:

db.collection.ensureIndex({ a: 1 }, { sparse: true })

Example

The following operation, creates a sparse index on the users
collection that only includes a document in the index if
the twitter_name field exists in a document.

db.users.ensureIndex({ twitter_name: 1 }, { sparse: true })

The index excludes all documents that do not include the
twitter_name field.

Considerations

Note

Sparse indexes can affect the results returned by the query,
particularly with respect to sorts on fields not included in the
index. See the sparse index section for
more information.

Create a Hashed Index

New in version 2.4.

Hashed indexes compute a hash of the value
of a field in a collection and index the hashed value. These indexes
permit equality queries and may be suitable shard keys for some
collections.

Tip

MongoDB automatically computes the hashes when resolving queries using
hashed indexes. Applications do not need to compute hashes.

See

Hashed Shard Keys for more information about hashed
indexes in sharded clusters, as well as Index Concepts and
Indexing Tutorials for more information about indexes.

Procedure

To create a hashed index, specify
hashed as the value of the index key, as in the following
example:

Example

Specify a hashed index on _id

db.collection.ensureIndex({ _id: "hashed" })

Considerations

MongoDB supports hashed indexes of any single field. The hashing
function collapses sub-documents and computes the hash for the entire
value, but does not support multi-key (i.e. arrays) indexes.

You may not create compound indexes that have hashed index fields.

Build Indexes on Replica Sets

Background index creation operations become foreground indexing operations
on secondary members of replica sets. The foreground index
building process blocks all replication and read operations on the
secondaries while they build the index.

Secondaries will begin building indexes after the
primary finishes building the index. In sharded clusters, the mongos will send ensureIndex() to the primary members of the replica
set for each shard, which then replicate to the secondaries after the
primary finishes building the index.

To minimize the impact of building an index on your replica set, use
the following procedure to build indexes on secondaries:

See

Indexing Tutorials and Index Concepts for
more information.

Considerations

Warning

Ensure that your oplog is large enough to permit the
indexing or re-indexing operation to complete without falling
too far behind to catch up. See the oplog sizing documentation for additional
information.

Note

This procedure does take one member out of the replica set at a
time. However, this procedure will only affect one member of the
set at a time rather than all secondaries at the same time.

Procedure

Note

If you need to build an index in a sharded cluster, repeat
the following procedure for each replica set that provides each
shard.

Stop One Secondary

Stop the mongod process on one secondary. Restart the
mongod process without the --replSet
option and running on a different port. [1] This
instance is now in “standalone” mode.

For example, if your mongod normally runs with on the
default port of 27017 with the --replSet option you would use the following invocation:

mongod --port 47017

	[1]	By running the mongod on a different
port, you ensure that the other members of the replica set and all
clients will not contact the member while you are building the
index.

Build the Index

Create the new index using the ensureIndex()
in the mongo shell, or comparable method in your
driver. This operation will create or rebuild the index on this
mongod instance

For example, to create an ascending index on the username field of
the records collection, use the following mongo shell
operation:

db.records.ensureIndex({ username: 1 })

See also

Create an Index and
Create a Compound Index for more information.

Restart the Program mongod

When the index build completes, start the mongod instance
with the --replSet option on its usual port:

mongod --port 27017 --replSet rs0

Modify the port number (e.g. 27017) or the replica set name
(e.g. rs0) as needed.

Allow replication to catch up on this member.

Build Indexes on all Secondaries

For each secondary in the set, build an index according to the
following steps:

	Stop One Secondary

	Build the Index

	Restart the Program mongod

Build the Index on the Primary

To build an index on the primary you can either:

	Build the index in the background on the primary.

	Step down the primary using the method:rs.stepDown() method in
the mongo shell to cause the current primary to become a
secondary graceful and allow the set to elect another member as
primary.

Then repeat the index building procedure, listed below, to build the
index on the primary:

	Stop One Secondary

	Build the Index

	Restart the Program mongod

Building the index on the background, takes longer than the foreground
index build and results in a less compact index structure. Additionally,
the background index build may impact write performance on the
primary. However, building the index in the background allows the set to
be continuously up for write operations during while MongoDB builds the
index.

Build Indexes in the Background

By default, MongoDB builds indexes in the foreground and prevent all
read and write operations to the database while the index
builds. Also, no operation that requires a read or write lock on all
databases (e.g. listDatabases) can occur during a
foreground index build.

Background index construction allows
read and write operations to continue while building the index.

Note

Background index builds take longer to complete and result
in a larger index.

After the index finishes building, MongoDB treats indexes built in the
background the same as any other index.

See also

Index Concepts and Indexing Tutorials
for more information.

Procedure

To create an index in the background, add the background argument
to the ensureIndex() operation, as in the
following index:

db.collection.ensureIndex({ a: 1 }, { background: true })

Consider the section on background index construction for more information about these indexes
and their implications.

Build Old Style Indexes

Important

Use this procedure only if you must have indexes that are compatible
with a version of MongoDB earlier than 2.0.

MongoDB version 2.0 introduced the {v:1} index format. MongoDB
versions 2.0 and later support both the {v:1} format and the
earlier {v:0} format.

MongoDB versions prior to 2.0, however, support only the {v:0}
format. If you need to roll back MongoDB to a version prior to 2.0,
you must drop and re-create your indexes.

To build pre-2.0 indexes, use the dropIndexes() and ensureIndex() methods. You cannot simply reindex
the collection. When you reindex on versions that only support
{v:0} indexes, the v fields in the index definition still hold
values of 1, even though the indexes would now use the {v:0}
format. If you were to upgrade again to version 2.0 or later, these
indexes would not work.

Example

Suppose you rolled back from MongoDB 2.0 to MongoDB 1.8, and suppose
you had the following index on the items collection:

{ "v" : 1, "key" : { "name" : 1 }, "ns" : "mydb.items", "name" : "name_1" }

The v field tells you the index is a {v:1} index, which
is incompatible with version 1.8.

To drop the index, issue the following command:

db.items.dropIndex({ name : 1 })

To recreate the index as a {v:0} index, issue the following
command:

db.foo.ensureIndex({ name : 1 } , { v : 0 })

See also

Index Performance Enhancements.

Index Management Tutorials

Instructions for managing indexes and assessing index performance and
use.

	Remove Indexes

	Drop an index from a collection.

	Rebuild Indexes

	In a single operation, drop all indexes on a collection and then
rebuild them.

	Manage In-Progress Index Creation

	Check the status of indexing progress, or terminate an ongoing index
build.

	Return a List of All Indexes

	Obtain a list of all indexes on a collection or of all indexes
on all collections in a database.

	Measure Index Use

	Study query operations and observe index use for your database.

	Remove Indexes

	Rebuild Indexes

	Manage In-Progress Index Creation

	Return a List of All Indexes

	Measure Index Use

Remove Indexes

To remove an index from a collection use the
dropIndex() method and the following
procedure. If you simply need to rebuild indexes you can use the
process described in the Rebuild Indexes
document.

See also

Indexing Tutorials and Index Concepts
for more information about indexes and indexing operations in
MongoDB.

Operations

To remove an index, use the db.collection.dropIndex() method,
as in the following example:

db.accounts.dropIndex({ "tax-id": 1 })

This will remove the index on the "tax-id" field in the accounts
collection. The shell provides the following document after completing
the operation:

{ "nIndexesWas" : 3, "ok" : 1 }

Where the value of nIndexesWas reflects the number of indexes
before removing this index. You can also use the
db.collection.dropIndexes() to remove all indexes, except
for the _id index from a collection.

These shell helpers provide wrappers around the
dropIndexes database command. Your client
library may have a different or additional
interface for these operations.

Rebuild Indexes

If you need to rebuild indexes for a collection you can use the
db.collection.reIndex() method to rebuild all indexes on a
collection in a single operation. This operation drops all indexes,
including the _id index, and then rebuilds all
indexes.

See also

Index Concepts and Indexing Tutorials.

Process

The operation takes the following form:

db.accounts.reIndex()

MongoDB will return the following document when the operation
completes:

{
 "nIndexesWas" : 2,
 "msg" : "indexes dropped for collection",
 "nIndexes" : 2,
 "indexes" : [
 {
 "key" : {
 "_id" : 1,
 "tax-id" : 1
 },
 "ns" : "records.accounts",
 "name" : "_id_"
 }
],
 "ok" : 1
}

This shell helper provides a wrapper around the reIndex
database command. Your client library
may have a different or additional interface for this operation.

Additional Considerations

Note

To build or rebuild indexes for a replica set see
Build Indexes on Replica Sets.

Manage In-Progress Index Creation

To see the status of the indexing processes, you can use the
db.currentOp() method in the mongo shell. The value
of the query field and the msg field will indicate if the
operation is an index build. The msg field also indicates the
percent of the build that is complete.

To terminate an ongoing index build, use the
db.killOp() method in the mongo shell.

For more information see db.currentOp().

Changed in version 2.4: Before MongoDB 2.4, you could only terminate background index
builds. After 2.4, you can terminate any index build, including
foreground index builds.

Return a List of All Indexes

When performing maintenance you may want to check which indexes exist
on a collection. Every index on a collection has a corresponding
document in the system.indexes collection, and you can use standard
queries (i.e. find()) to list the indexes, or
in the mongo shell, the
getIndexes() method to return a list of the
indexes on a collection, as in the following examples.

See also

Index Concepts and Indexing Tutorials
for more information about indexes in MongoDB and common index
management operations.

List all Indexes on a Collection

To return a list of all indexes on a collection, use the
db.collection.getIndexes() method or a similar
method for your driver [http://api.mongodb.org/].

For example, to view all indexes on the people collection:

db.people.getIndexes()

List all Indexes for a Database

To return a list of all indexes on all collections in a database, use
the following operation in the mongo shell:

db.system.indexes.find()

See system.indexes for more
information about these documents.

Measure Index Use

Synopsis

Query performance is a good general indicator of index use;
however, for more precise insight into index use, MongoDB provides a
number of tools that allow you to study query operations and observe
index use for your database.

See also

Index Concepts and
Indexing Tutorials for more information.

Operations

Return Query Plan with explain()

Append the explain() method to any cursor
(e.g. query) to return a document with statistics about the query
process, including the index used, the number of documents scanned,
and the time the query takes to process in milliseconds.

Control Index Use with hint()

Append the hint() to any cursor (e.g.
query) with the index as the argument to force MongoDB
to use a specific index to fulfill the query. Consider the following
example:

db.people.find({ name: "John Doe", zipcode: { $gt: 63000 } } }).hint({ zipcode: 1 })

You can use hint() and explain() in conjunction with each other to compare the
effectiveness of a specific index. Specify the $natural operator
to the hint() method to prevent MongoDB from
using any index:

db.people.find({ name: "John Doe", zipcode: { $gt: 63000 } } }).hint({ $natural: 1 })

Instance Index Use Reporting

MongoDB provides a number of metrics of index use and operation that
you may want to consider when analyzing index use for your database:

	In the output of serverStatus:
	indexCounters

	scanned

	scanAndOrder

	In the output of collStats:
	totalIndexSize

	indexSizes

	In the output of dbStats:
	dbStats.indexes

	dbStats.indexSize

Geospatial Index Tutorials

Instructions for creating and querying 2d, 2dsphere, and
haystack indexes.

	Create a 2dsphere Index

	A 2dsphere index supports data stored as both GeoJSON objects and
as legacy coordinate pairs.

	Query a 2dsphere Index

	Search for locations within, near, or intersected by a GeoJSON
shape, or within a circle as defined by coordinate points on a
sphere.

	Create a 2d Index

	Create a 2d index to support queries on data stored as
legacy coordinate pairs.

	Query a 2d Index

	Search for locations using legacy coordinate pairs.

	Create a Haystack Index

	A haystack index is optimized to return results over small areas. For
queries that use spherical geometry, a 2dsphere index is a better
option.

	Query a Haystack Index

	Search based on location and non-location data within a small area.

	Calculate Distance Using Spherical Geometry

	Convert distances to radians and back again.

	Create a 2dsphere Index

	Query a 2dsphere Index

	Create a 2d Index

	Query a 2d Index

	Create a Haystack Index

	Query a Haystack Index

	Calculate Distance Using Spherical Geometry

Create a 2dsphere Index

To create a geospatial index for GeoJSON-formatted data, use the
ensureIndex() method and set the
value of the location field for your collection to 2dsphere. A
2dsphere index can be a compound index
and does not require the location field to be the first field indexed.

To create the index use the following syntax:

db.points.ensureIndex({ <location field> : "2dsphere" })

The following are four example commands for creating a 2dsphere index:

db.points.ensureIndex({ loc : "2dsphere" })
db.points.ensureIndex({ loc : "2dsphere" , type : 1 })
db.points.ensureIndex({ rating : 1 , loc : "2dsphere" })
db.points.ensureIndex({ loc : "2dsphere" , rating : 1 , category : -1 })

The first example creates a simple geospatial index on the location
field loc. The second example creates a compound index where the
second field contains non-location data. The third example creates an
index where the location field is not the primary field: the location
field does not have to be the first field in a 2dsphere index. The
fourth example creates a compound index with three fields. You can
include as many fields as you like in a 2dsphere index.

Query a 2dsphere Index

The following sections describe queries supported by the 2dsphere index.
For an overview of recommended geospatial queries, see
Geospatial Query Compatibility.

GeoJSON Objects Bounded by a Polygon

The $geoWithin operator queries for location data found
within a GeoJSON polygon. Your location
data must be stored in GeoJSON format. Use the following syntax:

db.<collection>.find({ <location field> :
 { $geoWithin :
 { $geometry :
 { type : "Polygon" ,
 coordinates : [<coordinates>]
 } } } })

The following example selects all points and shapes that
exist entirely within a GeoJSON polygon:

db.places.find({ loc :
 { $geoWithin :
 { $geometry :
 { type : "Polygon" ,
 coordinates : [[
 [0 , 0] ,
 [3 , 6] ,
 [6 , 1] ,
 [0 , 0]
]]
 } } } })

Intersections of GeoJSON Objects

New in version 2.4.

The $geoIntersects operator queries for locations that
intersect a specified GeoJSON object. A location intersects the object
if the intersection is non-empty. This includes documents that have a
shared edge.

The $geoIntersects operator uses the following syntax:

db.<collection>.find({ <location field> :
 { $geoIntersects :
 { $geometry :
 { type : "<GeoJSON object type>" ,
 coordinates : [<coordinates>]
 } } } })

The following example uses $geoIntersects to select all
indexed points and shapes that intersect with the polygon defined by the
coordinates array.

db.places.find({ loc :
 { $geoIntersects :
 { $geometry :
 { type : "Polygon" ,
 coordinates: [[
 [0 , 0] ,
 [3 , 6] ,
 [6 , 1] ,
 [0 , 0]
]]
 } } } })

Proximity to a GeoJSON Point

Proximity queries return the points closest to the defined point and
sorts the results by distance. A proximity query on GeoJSON data
requires a 2dsphere index.

To query for proximity to a GeoJSON point, use either the
$near operator or geoNear command. Distance
is in meters.

The $near uses the following syntax:

db.<collection>.find({ <location field> :
 { $near :
 { $geometry :
 { type : "Point" ,
 coordinates : [<longitude> , <latitude>] } ,
 $maxDistance : <distance in meters>
 } } })

For examples, see $near.

The geoNear command uses the following syntax:

db.runCommand({ geoNear: <collection>, near: [<x> , <y>] })

The geoNear command offers more options and returns more
information than does the $near operator. To run the
command, see geoNear.

Points within a Circle Defined on a Sphere

To select all grid coordinates in a “spherical cap” on a sphere, use
$geoWithin with the $centerSphere operator.
Specify an array that contains:

	The grid coordinates of the circle’s center point

	The circle’s radius measured in radians. To calculate radians, see
Calculate Distance Using Spherical Geometry.

Use the following syntax:

db.<collection>.find({ <location field> :
 { $geoWithin :
 { $centerSphere :
 [[<x>, <y>] , <radius>] }
 } })

The following example queries grid coordinates and returns all
documents within a 10 mile radius of longitude 88 W and latitude
30 N. The example converts the distance, 10 miles, to radians by
dividing by the approximate radius of the earth, 3959 miles:

db.places.find({ loc :
 { $geoWithin :
 { $centerSphere :
 [[88 , 30] , 10 / 3959]
 } } })

Create a 2d Index

To build a geospatial 2d index, use the ensureIndex() method and specify 2d. Use the
following syntax:

db.<collection>.ensureIndex({ <location field> : "2d" ,
 <additional field> : <value> } ,
 { <index-specification options> })

The 2d index uses the following optional index-specification
options:

{ min : <lower bound> , max : <upper bound> ,
 bits : <bit precision> }

Define Location Range for a 2d Index

By default, a 2d index assumes longitude and latitude and has boundaries
of -180 inclusive and 180 non-inclusive (i.e. [-180 , 180]). If
documents contain coordinate data outside of the specified range,
MongoDB returns an error.

Important

The default boundaries allow applications to insert
documents with invalid latitudes greater than 90 or less than -90.
The behavior of geospatial queries with such invalid points is not
defined.

On 2d indexes you can change the location range.

You can build a 2d geospatial index with a location range other than
the default. Use the min and max options when creating the
index. Use the following syntax:

db.collection.ensureIndex({ <location field> : "2d" } ,
 { min : <lower bound> , max : <upper bound> })

Define Location Precision for a 2d Index

By default, a 2d index on legacy coordinate pairs uses 26 bits of
precision, which is roughly equivalent to 2 feet or 60 centimeters of
precision using the default range of -180 to 180. Precision is measured
by the size in bits of the geohash values used to store location
data. You can configure geospatial indexes with up to 32 bits of
precision.

Index precision does not affect query accuracy. The actual grid coordinates
are always used in the final query processing. Advantages to lower
precision are a lower processing overhead for insert operations and use
of less space. An advantage to higher precision is that queries scan
smaller portions of the index to return results.

To configure a location precision other than the default, use the
bits option when creating the index. Use following syntax:

db.<collection>.ensureIndex({<location field> : "<index type>"} ,
 { bits : <bit precision> })

For information on the internals of geohash values, see
Calculation of Geohash Values for 2d Indexes.

Query a 2d Index

The following sections describe queries supported by the 2d index.
For an overview of recommended geospatial queries, see
Geospatial Query Compatibility.

Points within a Shape Defined on a Flat Surface

To select all legacy coordinate pairs found within a given shape on a flat
surface, use the $geoWithin operator along with a shape
operator. Use the following syntax:

db.<collection>.find({ <location field> :
 { $geoWithin :
 { $box|$polygon|$center : <coordinates>
 } } })

The following queries for documents within a rectangle defined by [0
, 0] at the bottom left corner and by [100 , 100] at the top
right corner.

db.places.find({ loc :
 { $geoWithin :
 { $box : [[0 , 0] ,
 [100 , 100]]
 } } })

The following queries for documents that are within the circle centered
on [-74 , 40.74] and with a radius of 10:

db.places.find({ loc: { $geoWithin :
 { $center : [[-74, 40.74] , 10]
 } } })

For syntax and examples for each shape, see the following:

	$box

	$polygon

	$center (defines a circle)

Points within a Circle Defined on a Sphere

MongoDB supports rudimentary spherical queries on flat 2d indexes for
legacy reasons. In general, spherical calculations should use a 2dsphere
index, as described in 2dsphere Indexes.

To query for legacy coordinate pairs in a “spherical cap” on a sphere,
use $geoWithin with the $centerSphere operator.
Specify an array that contains:

	The grid coordinates of the circle’s center point

	The circle’s radius measured in radians. To calculate radians, see
Calculate Distance Using Spherical Geometry.

Use the following syntax:

db.<collection>.find({ <location field> :
 { $geoWithin :
 { $centerSphere : [[<x>, <y>] , <radius>] }
 } })

The following example query returns all documents within a 10-mile
radius of longitude 88 W and latitude 30 N. The example converts
distance to radians by dividing distance by the approximate radius of
the earth, 3959 miles:

db.<collection>.find({ loc : { $geoWithin :
 { $centerSphere :
 [[88 , 30] , 10 / 3959]
 } } })

Proximity to a Point on a Flat Surface

Proximity queries return the 100 legacy coordinate pairs closest to the
defined point and sort the results by distance. Use either the
$near operator or geoNear command. Both require
a 2d index.

The $near operator uses the following syntax:

db.<collection>.find({ <location field> :
 { $near : [<x> , <y>]
 } })

For examples, see $near.

The geoNear command uses the following syntax:

db.runCommand({ geoNear: <collection>, near: [<x> , <y>] })

The geoNear command offers more options and returns more
information than does the $near operator. To run the
command, see geoNear.

Exact Matches on a Flat Surface

You can use the db.collection.find() method to query for an
exact match on a location. These queries use the following syntax:

db.<collection>.find({ <location field>: [<x> , <y>] })

This query will return any documents with the value of [<x> , <y>].

Create a Haystack Index

To build a haystack index, use the bucketSize option when creating
the index. A bucketSize of 5 creates an index that groups
location values that are within 5 units of the specified longitude and
latitude. The bucketSize also determines the granularity of the
index. You can tune the parameter to the distribution of your data so
that in general you search only very small regions. The areas defined by
buckets can overlap. A document can exist in multiple buckets.

A haystack index can reference two fields: the location field and a
second field. The second field is used for exact matches. Haystack
indexes return documents based on location and an exact match on a
single additional criterion. These indexes are not necessarily suited
to returning the closest documents to a particular location.

To build a haystack index, use the following syntax:

db.coll.ensureIndex({ <location field> : "geoHaystack" ,
 <additional field> : 1 } ,
 { bucketSize : <bucket value> })

Example

If you have a collection with documents that contain fields similar to
the following:

{ _id : 100, pos: { lng : 126.9, lat : 35.2 } , type : "restaurant"}
{ _id : 200, pos: { lng : 127.5, lat : 36.1 } , type : "restaurant"}
{ _id : 300, pos: { lng : 128.0, lat : 36.7 } , type : "national park"}

The following operations create a haystack index with buckets that
store keys within 1 unit of longitude or latitude.

db.places.ensureIndex({ pos : "geoHaystack", type : 1 } ,
 { bucketSize : 1 })

This index stores the document with an _id field that has the
value 200 in two different buckets:

	In a bucket that includes the document where the _id field has
a value of 100

	In a bucket that includes the document where the _id field has
a value of 300

To query using a haystack index you use the geoSearch
command. See Query a Haystack Index.

By default, queries that use a haystack index return 50 documents.

Query a Haystack Index

A haystack index is a special 2d geospatial index that is optimized
to return results over small areas. To create a haystack index see
Create a Haystack Index.

To query a haystack index, use the geoSearch command. You
must specify both the coordinates and the additional
field to geoSearch. For example, to return all documents
with the value restaurant in the type field near the example
point, the command would resemble:

db.runCommand({ geoSearch : "places" ,
 search : { type: "restaurant" } ,
 near : [-74, 40.74] ,
 maxDistance : 10 })

Note

Haystack indexes are not suited to queries for the complete list of
documents closest to a particular location. The closest documents
could be more distant compared to the bucket size.

Note

Spherical query operations
are not currently supported by haystack indexes.

The find() method and
geoNear command cannot access the haystack index.

Calculate Distance Using Spherical Geometry

Note

While basic queries using spherical distance are supported by
the 2d index, consider moving to a 2dsphere index if your
data is primarily longitude and latitude.

The 2d index supports queries that calculate distances on a
Euclidean plane (flat surface). The index also supports the following
query operators and command that calculate distances using spherical
geometry:

	$nearSphere

	$centerSphere

	$near

	geoNear command with the { spherical: true } option.

Important

These three queries use radians for distance. Other query
types do not.

For spherical query operators to function properly, you must convert
distances to radians, and convert from radians to the distances units
used by your application.

To convert:

	distance to radians: divide the distance by the radius of the
sphere (e.g. the Earth) in the same units as the distance
measurement.

	radians to distance: multiply the radian measure by the radius
of the sphere (e.g. the Earth) in the units system that you want to
convert the distance to.

The radius of the Earth is approximately 3,959 miles or
6,371 kilometers.

The following query would return documents from the places
collection within the circle described by the center [-74, 40.74]
with a radius of 100 miles:

db.places.find({ loc: { $geoWithin: { $centerSphere: [[-74, 40.74] ,
 100 / 3959] } } })

You may also use the distanceMultiplier option to the
geoNear to convert radians in the mongod
process, rather than in your application code. See distance
multiplier.

The following spherical query, returns all documents in the
collection places within 100 miles from the point [-74,
40.74].

db.runCommand({ geoNear: "places",
 near: [-74, 40.74],
 spherical: true
 })

The output of the above command would be:

{
 // [...]
 "results" : [
 {
 "dis" : 0.01853688938212826,
 "obj" : {
 "_id" : ObjectId(...)
 "loc" : [
 -73,
 40
]
 }
 }
],
 "stats" : {
 // [...]
 "avgDistance" : 0.01853688938212826,
 "maxDistance" : 0.01853714811400047
 },
 "ok" : 1
}

Warning

Spherical queries that wrap around the poles or at the transition
from -180 to 180 longitude raise an error.

Note

While the default Earth-like bounds for geospatial indexes are
between -180 inclusive, and 180, valid values for latitude
are between -90 and 90.

Distance Multiplier

The distanceMultiplier option of the geoNear command returns
distances only after multiplying the results by an assigned value. This allows
MongoDB to return converted values, and removes the requirement to
convert units in application logic.

Using distanceMultiplier in spherical queries provides results from
the geoNear command that do not need radian-to-distance
conversion. The following example uses distanceMultiplier in the
geoNear command with a spherical example:

db.runCommand({ geoNear: "places",
 near: [-74, 40.74],
 spherical: true,
 distanceMultiplier: 3959
 })

The output of the above operation would resemble the following:

{
 // [...]
 "results" : [
 {
 "dis" : 73.46525170413567,
 "obj" : {
 "_id" : ObjectId(...)
 "loc" : [
 -73,
 40
]
 }
 }
],
 "stats" : {
 // [...]
 "avgDistance" : 0.01853688938212826,
 "maxDistance" : 0.01853714811400047
 },
 "ok" : 1
}

Text Search Tutorials

Instructions for enabling MongoDB’s text search feature, and for
building and configuring text indexes.

	Enable Text Search

	You must explicitly enable text search in order to search string
content in collections.

	Create a text Index

	A text index allows searches on text strings in the index’s specified fields.

	Search String Content for Text

	Use queries to find strings of text within collections.

	Specify a Language for Text Index

	The specified language determines the list of stop words and the
rules for Text Search’s stemmer and tokenizer.

	Create text Index with Long Name

	Override the text index name limit for long index names.

	Control Search Results with Weights

	Give priority to certain search values by denoting the significance
of an indexed field relative to other indexed fields

	Limit the Number of Entries Scanned

	Search only those documents that match a set of filter conditions.

	Create text Index to Cover Queries

	Perform text searches that return results without the need to scan
documents.

	Enable Text Search

	Create a text Index

	Search String Content for Text

	Specify a Language for Text Index

	Create text Index with Long Name

	Control Search Results with Weights

	Limit the Number of Entries Scanned

	Create text Index to Cover Queries

Enable Text Search

New in version 2.4.

The text search is currently a
beta feature. As a beta feature:

	You need to explicitly enable the feature before creating a text
index or using the text command.

	To enable text search on replica sets and
sharded clusters, you need to
enable on each and every mongod for replica
sets and on each and every mongos for sharded clusters.

Warning

	Do not enable or use text search on production systems.

	Text indexes have significant storage requirements and performance
costs. See Storage Requirements and Performance Costs for more
information.

You can enable the text search feature at startup with the
textSearchEnabled parameter:

mongod --setParameter textSearchEnabled=true

You may prefer to set the textSearchEnabled parameter in the
configuration file.

Additionally, you can enable the feature in the mongo shell
with the setParameter command. This command does not
propagate from the primary to the secondaries. You must enable on
each and every mongod for replica sets.

Note

You must set the parameter every time you start the server. You may
prefer to add the parameter to the configuration files.

Create a text Index

You can create a text index on the field or fields whose value is a
string or an array of string elements. When creating a text index
on multiple fields, you can specify the individual fields or you can
wildcard specifier ($**).

Index Specific Fields

The following example creates a text index on the fields
subject and content:

db.collection.ensureIndex(
 {
 subject: "text",
 content: "text"
 }
)

This text index catalogs all string data in the subject field
and the content field, where the field value is either a string or
an array of string elements.

Index All Fields

To allow for text search on all fields with string content, use the
wildcard specifier ($**) to index all fields that contain string
content.

The following example indexes any string value in the data of every
field of every document in collection and names the index
TextIndex:

db.collection.ensureIndex(
 { "$**": "text" },
 { name: "TextIndex" }
)

Search String Content for Text

In 2.4, you can enable the text search feature to create text
indexes and issue text queries using the text.

The following tutorial offers various query patterns for using the text
search feature.

The examples in this tutorial use a collection quotes that has a
text index on the fields quote that contains a string and
related_quotes that contains an array of string elements.

Note

You cannot combine the text command, which requires a
special text index, with a query operator
that requires a different type of special index. For example you
cannot combine text with the $near operator.

Search for a Term

The following command searches for the word TOMORROW:

db.quotes.runCommand("text", { search: "TOMORROW" })

Because text command is case-insensitive, the text search
will match the following document in the quotes collection:

{
 "_id" : ObjectId("50ecef5f8abea0fda30ceab3"),
 "quote" : "tomorrow, and tomorrow, and tomorrow, creeps in this petty pace",
 "related_quotes" : [
 "is this a dagger which I see before me",
 "the handle toward my hand?"
],
 "src" : {
 "title" : "Macbeth",
 "from" : "Act V, Scene V"
 },
 "speaker" : "macbeth"
}

Match Any of the Search Terms

If the search string is a space-delimited text, text
command performs a logical OR search on each term and returns
documents that contains any of the terms.

For example, the search string "tomorrow largo" searches for the term
tomorrow OR the term largo:

db.quotes.runCommand("text", { search: "tomorrow largo" })

The command will match the following documents in the quotes
collection:

{
 "_id" : ObjectId("50ecef5f8abea0fda30ceab3"),
 "quote" : "tomorrow, and tomorrow, and tomorrow, creeps in this petty pace",
 "related_quotes" : [
 "is this a dagger which I see before me",
 "the handle toward my hand?"
],
 "src" : {
 "title" : "Macbeth",
 "from" : "Act V, Scene V"
 },
 "speaker" : "macbeth"
 }

 {
 "_id" : ObjectId("50ecf0cd8abea0fda30ceab4"),
 "quote" : "Es tan corto el amor y es tan largo el olvido.",
 "related_quotes" : [
 "Como para acercarla mi mirada la busca.",
 "Mi corazón la busca, y ella no está conmigo."
],
 "speaker" : "Pablo Neruda",
 "src" : {
 "title" : "Veinte poemas de amor y una canción desesperada",
 "from" : "Poema 20"
 }
 }

Match Phrases

To match the exact phrase that includes a space(s) as a single term,
escape the quotes.

For example, the following command searches for the exact phrase "and
tomorrow":

db.quotes.runCommand("text", { search: "\"and tomorrow\"" })

If the search string contains both phrases and individual terms, the
text command performs a compound logical AND of the
phrases with the compound logical OR of the single terms, including
the individual terms from each phrase.

For example, the following search string contains both individual terms
corto and largo as well as the phrase \"and tomorrow\":

db.quotes.runCommand("text", { search: "corto largo \"and tomorrow\"" })

The text command performs the equivalent to the following
logical operation, where the individual terms corto, largo, as
well as the term tomorrow from the phrase "and tomorrow", are
part of a logical OR expression:

(corto OR largo OR tomorrow) AND ("and tomorrow")

As such, the results for this search will include documents that only
contain the phrase "and tomorrow" as well as documents that contain
the phrase "and tomorrow" and the terms corto and/or largo.
Documents that contain the phrase "and tomorrow" as well as the
terms corto and largo will generally receive a higher score for
this search.

Match Some Words But Not Others

A negated term is a term that is prefixed by a minus sign -. If
you negate a term, the text command will exclude the
documents that contain those terms from the results.

Note

If the search text contains only negated terms, the
text command will not return any results.

The following example returns those documents that contain the term
tomorrow but not the term petty.

db.quotes.runCommand("text" , { search: "tomorrow -petty" })

Limit the Number of Matching Documents in the Result Set

Note

The result from the text command must fit within the
maximum BSON Document Size.

By default, the text command will return up to 100
matching documents, from highest to lowest scores. To override this
default limit, use the limit option in the text
command, as in the following example:

db.quotes.runCommand("text", { search: "tomorrow", limit: 2 })

The text command will return at most 2 of the
highest scoring results.

The limit can be any number as long as the result set fits within
the maximum BSON Document Size.

Specify Which Fields to Return in the Result Set

In the text command, use the project option to specify
the fields to include (1) or exclude (0) in the matching
documents.

Note

The _id field is always returned unless explicitly excluded in
the project document.

The following example returns only the _id field and the src
field in the matching documents:

db.quotes.runCommand("text", { search: "tomorrow",
 project: { "src": 1 } })

Search with Additional Query Conditions

The text command can also use the filter option to
specify additional query conditions.

The following example will return the documents that contain the term
tomorrow AND the speaker is macbeth:

db.quotes.runCommand("text", { search: "tomorrow",
 filter: { speaker : "macbeth" } })

See also

Limit the Number of Entries Scanned

Search for Text in Specific Languages

You can specify the language that determines the tokenization,
stemming, and removal of stop words, as in the following example:

db.quotes.runCommand("text", { search: "amor", language: "spanish" })

See Text Search Languages for a list of supported languages as
well as Specify a Language for Text Index for specifying
languages for the text index.

Text Search Output

The text command returns a document that contains the
result set.

See Output for information on the output.

Specify a Language for Text Index

This tutorial describes how to specify the default language
associated with the text index
and also how to create text indexes for collections that contain
documents in different languages.

Specify the Default Language for a text Index

The default language associated with the indexed data determines the
rules to parse word roots (i.e. stemming) and discard stop words
(i.e. frequently appearing words). The default language for the
indexed data is english.

To specify a different language, use the default_language option
when creating the text index. See Text Search Languages for
the languages available for default_language.

The following example creates a text index on the
content field and sets the default_language to
spanish:

db.collection.ensureIndex(
 { content : "text" },
 { default_language: "spanish" }
)

Create a text Index for a Collection in Multiple Languages

Specify the Index Language within the Document

If a collection contains documents that are in different languages,
include a field in the documents, or sub-documents, named language,
MongoDB will use the specified language for that document or
sub-document when building the text index.

Languages specified in a document override the default language for
the index for that document or sub-document. Languages specified in a
sub-document override the language specified in an enclosing document
or the default language for the index.

Changed in version 2.5.3: Support for language overrides within sub-documents in addition to
the existing support for per-document language overrides.

See Text Search Languages for a list of supported languages.

Example

The documents of this multi-language collection contain the
language field:

{
 _id: 1,
 language: "portuguese"
 original: "A sorte protege os audazes."
 translation: [
 {
 language: "english",
 quote: "Fortune favors the bold."
 },
 {
 language: "spanish",
 quote: "Suerte protege a los audaces."
 }
]
}
{
 _id: 2,
 language: "spanish",
 original: "Nada hay más surreal que la realidad.",
 translation: [
 {
 language: "english",
 quote: "There is nothing more surreal than reality."
 },
 {
 language: "french",
 quote: "Il n'ya rien de plus surréaliste que la réalité."
 }
]
}
{
 _id: 3,
 original: "is this a dagger which I see before me."
 translation: {
 language: "spanish",
 quote: "Es este un puñal que veo delante de mí."
 }
}

Given a text index on the quote field:

db.quotes.ensureIndex({ quote: "text" })

	For the documents and subdocuments that contain the language field, the text
index uses that language to parse word stems and other linguistic
characteristics.

	For documents that do not contain the language field, the index
uses the default language, which is English.

For example, the Spanish word que is a stop word. So the
following text command would not match any document:

db.quotes.runCommand("text", { search: "que", language: "spanish" })

Use any Field to Specify the Language for a Document

To use a field with a name other than language, include
the language_override option when creating the index.

For example, give the following command to use idioma as the field
name instead of language:

db.quotes.ensureIndex({ quote : "text" },
 { language_override: "idioma" })

Any document of a multi-language collection may specify a language with
the idioma field:

{ _id: 1, idioma: "portuguese", quote: "A sorte protege os audazes" }
{ _id: 2, idioma: "spanish", quote: "Nada hay más surreal que la realidad." }
{ _id: 3, idioma: "english", quote: "is this a dagger which I see before me" }

Create text Index with Long Name

The default name for the index consists of each indexed field name
concatenated with _text. For example, the following command creates
a text index on the fields content, users.comments, and
users.profiles:

db.collection.ensureIndex(
 {
 content: "text",
 "users.comments": "text",
 "users.profiles": "text"
 }
)

The default name for the index is:

"content_text_users.comments_text_users.profiles_text"

To avoid creating an index with a name that exceeds the index
name length limit, you can pass the name
option to the db.collection.ensureIndex() method:

db.collection.ensureIndex(
 {
 content: "text",
 "users.comments": "text",
 "users.profiles": "text"
 },
 {
 name: "MyTextIndex"
 }
)

Note

To drop the text index, use the index name. To get the name of
an index, use db.collection.getIndexes().

Control Search Results with Weights

This document describes how to create a text index with specified
weights for results fields.

By default, the text command returns matching documents
based on scores, from highest to lowest. For a text index, the
weight of an indexed field denotes the significance of the field
relative to the other indexed fields in terms of the score. The score
for a given word in a document is derived from the weighted sum of the
frequency for each of the indexed fields in that document.

The default weight is 1 for the indexed fields. To adjust the weights
for the indexed fields, include the weights option in the
db.collection.ensureIndex() method.

Warning

Choose the weights carefully in order to prevent the need to reindex.

A collection blog has the following documents:

{ _id: 1,
 content: "This morning I had a cup of coffee.",
 about: "beverage",
 keywords: ["coffee"]
}

{ _id: 2,
 content: "Who doesn't like cake?",
 about: "food",
 keywords: ["cake", "food", "dessert"]
}

To create a text index with different field weights for the
content field and the keywords field, include the weights
option to the ensureIndex() method. For
example, the following command creates an index on three fields and
assigns weights to two of the fields:

db.blog.ensureIndex(
 {
 content: "text",
 keywords: "text",
 about: "text"
 },
 {
 weights: {
 content: 10,
 keywords: 5,
 },
 name: "TextIndex"
 }
)

The text index has the following fields and weights:

	content has a weight of 10,

	keywords has a weight of 5, and

	about has the default weight of 1.

These weights denote the relative significance of the indexed fields to
each other. For instance, a term match in the content field has:

	2 times (i.e. 10:5) the impact as a term match in the
keywords field and

	10 times (i.e. 10:1) the impact as a term match in the
about field.

Limit the Number of Entries Scanned

This tutorial describes how to limit the text search to scan only those
documents with a field value.

The text command includes the filter option to further
restrict the results of a text search. For a filter that specifies
equality conditions, this tutorial demonstrates how to perform text
searches on only those documents that match the filter conditions,
as opposed to performing a text search first on all the documents and
then matching on the filter condition.

Consider a collection inventory that contains the following
documents:

{ _id: 1, dept: "tech", description: "a fun green computer" }
{ _id: 2, dept: "tech", description: "a wireless red mouse" }
{ _id: 3, dept: "kitchen", description: "a green placemat" }
{ _id: 4, dept: "kitchen", description: "a red peeler" }
{ _id: 5, dept: "food", description: "a green apple" }
{ _id: 6, dept: "food", description: "a red potato" }

A common use case is to perform text searches by individual
departments, such as:

db.inventory.runCommand("text", {
 search: "green",
 filter: { dept : "kitchen" }
 }
)

To limit the text search to scan only those documents within a specific
dept, create a compound index that specifies an
ascending/descending index key on the field dept and a text
index key on the field description:

db.inventory.ensureIndex(
 {
 dept: 1,
 description: "text"
 }
)

Important

	The ascending/descending index keys must be listed before, or
prefix, the text index keys.

	By prefixing the text index fields with ascending/descending
index fields, MongoDB will only index documents that have the
prefix fields.

	You cannot include multi-key index
fields or geospatial index
fields.

	The text command must include the filter
option that specifies an equality condition for the prefix
fields.

Then, the text search within a particular department will limit the
scan of indexed documents. For example, the following text
command scans only those documents with dept equal to kitchen:

db.inventory.runCommand("text", {
 search: "green",
 filter: { dept : "kitchen" }
 }
)

The returned result includes the statistics that shows that the command
scanned 1 document, as indicated by the nscanned field:

{

 "queryDebugString" : "green||||||",
 "language" : "english",
 "results" : [
 {
 "score" : 0.75,
 "obj" : {
 "_id" : 3,
 "dept" : "kitchen",
 "description" : "a green placemat"
 }
 }
],
 "stats" : {
 "nscanned" : 1,
 "nscannedObjects" : 0,
 "n" : 1,
 "nfound" : 1,
 "timeMicros" : 211
 },
 "ok" : 1
}

For more information on the result set, see Output.

Create text Index to Cover Queries

To create a text index that can cover queries:

	Append scalar index fields to a text index, as in the following
example which specifies an ascending index key on username:

db.collection.ensureIndex({ comments: "text",
 username: 1 })

Warning

You cannot include multi-key index
field or geospatial index field.

	Use the project option in the text to return only
the fields in the index, as in the following:

db.quotes.runCommand("text", { search: "tomorrow",
 project: { username: 1,
 _id: 0
 }
 }
)

Note

By default, the _id field is included in the result set. Since
the example index did not include the _id field, you must
explicitly exclude the field in the project document.

Indexing Strategies

The best indexes for your application must take a number
of factors into account, including the kinds of queries you expect,
the ratio of reads to writes, and the amount of free memory on your
system.

When developing your indexing strategy you should have a deep
understanding of your application’s queries. Before you build indexes,
map out the types of queries you will run so that you can build
indexes that reference those fields. Indexes come with a performance
cost, but are more than worth the cost for frequent queries on large
data set. Consider the relative frequency of each query in the
application and whether the query justifies an index.

The best overall strategy for designing indexes is to profile a
variety of index configurations with data sets similar to the ones
you’ll be running in production to see which configurations perform
best.Inspect the current indexes created for your collections to
ensure they are supporting your current and planned queries. If an
index is no longer used, drop the index.

MongoDB can only use one index to support any given
operation. However, each clause of an $or query may use a
different index.

The following documents introduce indexing strategies:

	Create Indexes to Support Your Queries

	An index supports a query when the index contains all the fields
scanned by the query. Creating indexes that supports queries results
in greatly increased query performance.

	Use Indexes to Sort Query Results

	To support efficient queries, use the strategies here when you specify
the sequential order and sort order of index fields.

	Ensure Indexes Fit in RAM

	When your index fits in RAM, the system can avoid reading the index
from disk and you get the fastest processing.

	Create Queries that Ensure Selectivity

	Selectivity is the ability of a query to narrow results using the
index. Selectivity allows MongoDB to use the index for a larger
portion of the work associated with fulfilling the query.

	Create Indexes to Support Your Queries

	Use Indexes to Sort Query Results

	Ensure Indexes Fit in RAM

	Create Queries that Ensure Selectivity

For a conceptual introduction to indexes in MongoDB see
Index Concepts.

Create Indexes to Support Your Queries

An index supports a query when the index contains all the fields scanned
by the query. The query scans the index and not the collection. Creating indexes
that supports queries results in greatly increased query performance.

This document describes strategies for creating indexes that support queries.

Create a Single-Key Index if All Queries Use the Same, Single Key

If you only ever query on a single key in a given collection, then you need
to create just one single-key index for that collection. For example, you
might create an index on category in the product collection:

db.products.ensureIndex({ "category": 1 })

Create Compound Indexes to Support Several Different Queries

If you sometimes query on only one key and at other times query on that
key combined with a second key, then creating a compound index is more
efficient than creating a single-key index. MongoDB will use the
compound index for both queries. For example, you might create an index
on both category and item.

db.products.ensureIndex({ "category": 1, "item": 1 })

This allows you both options. You can query on just category, and
you also can query on category combined with item.
A single compound index on multiple fields
can support all the queries that search a “prefix” subset of those fields.

Note

With the exception of queries that use the $or
operator, a query does not use multiple indexes. A query uses only one
index.

Example

The following index on a collection:

{ x: 1, y: 1, z: 1 }

Can support queries that the following indexes support:

{ x: 1 }
{ x: 1, y: 1 }

There are some situations where the prefix indexes may offer better
query performance: for example if z is a large array.

The { x: 1, y: 1, z: 1 } index can also support many of the same
queries as the following index:

{ x: 1, z: 1 }

Also, { x: 1, z: 1 } has an additional use. Given the following
query:

db.collection.find({ x: 5 }).sort({ z: 1})

The { x: 1, z: 1 } index supports both the query and the sort
operation, while the { x: 1, y: 1, z: 1 } index only supports
the query. For more information on sorting, see
Use Indexes to Sort Query Results.

Create Indexes that Support Covered Queries

A covered query is a query in which:

	all the fields in the query
are part of an index, and

	all the fields returned in the results are in the same index.

Because the index “covers” the query, MongoDB can both match the
query conditions and return
the results using only the index; MongoDB does not need to look at the
documents, only the index, to fulfill the query. An index can also
cover an aggregation pipeline operation on unsharded
collections.

Querying only the index can be much faster than querying documents
outside of the index. Index keys are typically smaller than the
documents they catalog, and indexes are typically available in RAM or
located sequentially on disk.

MongoDB automatically uses an index that covers a query when possible.
To ensure that an index can cover a query, create an index that
includes all the fields listed in the query document and in the query result. You can
specify the fields to return in the query results with a
projection document. By default, MongoDB includes
the _id field in the query result. So, if the index does not
include the _id field, then you must exclude the _id field
(i.e. _id: 0) from the query results.

Example

Given collection users with an index on the fields user and
status, as created by the following option:

db.users.ensureIndex({ status: 1, user: 1 })

Then, this index will cover the following query which selects on
the status field and returns only the user field:

db.users.find({ status: "A" }, { user: 1, _id: 0 })

In the operation, the projection document explicitly specifies
_id: 0 to exclude the _id field from the result since the
index is only on the status and the user fields.

If the projection document does not specify the exclusion of the
_id field, the query returns the _id field. The following
query is not covered by the index on the status and the
user fields because with the projection document { user: 1
}, the query returns both the user field and the _id field:

db.users.find({ status: "A" }, { user: 1 })

An index cannot cover a query if:

	any of the indexed fields in any of the documents in the collection
includes an array. If an indexed field is an array, the index becomes
a multi-key index index and cannot
support a covered query.

	any of the indexed fields are fields in subdocuments. To index fields
in subdocuments, use dot notation. For example, consider
a collection users with documents of the following form:

{ _id: 1, user: { login: "tester" } }

The collection has the following indexes:

{ user: 1 }

{ "user.login": 1 }

The { user: 1 } index covers the following query:

db.users.find({ user: { login: "tester" } }, { user: 1, _id: 0 })

However, the { "user.login": 1 } index does not cover the
following query:

db.users.find({ "user.login": "tester" }, { "user.login": 1, _id: 0 })

The query, however, does use the { "user.login": 1 } index to
find matching documents.

To determine whether a query is a covered query, use the
explain() method. If the explain()
output displays true for the indexOnly field, the
query is covered by an index, and MongoDB queries only that index to
match the query and return the results.

For more information see Measure Index Use.

Use Indexes to Sort Query Results

In MongoDB sort operations that sort documents based on an indexed
field provide the greatest performance. Indexes in MongoDB, as in
other databases, have an order: as a result, using an index to access
documents returns in the same order as the index.

To sort on multiple fields, create a compound index. With compound indexes, the results can be in
the sorted order of either the full index or an index prefix. An index
prefix is a subset of a compound index; the subset consists of one or
more fields at the start of the index, in order. For example, given an
index { a:1, b: 1, c: 1, d: 1 }, the following subsets are index
prefixes:

{ a: 1 }
{ a: 1, b: 1 }
{ a: 1, b: 1, c: 1 }

For more information on sorting by index prefixes, see
Sort Subset Starts at the Index Beginning.

If the query includes equality match conditions on an index prefix,
you can sort on a subset of the index that starts after or overlaps with
the prefix. For example, given an index { a: 1, b: 1, c: 1, d: 1 },
if the query condition includes equality match conditions on a and
b, you can specify a sort on the subsets { c: 1 } or { c: 1,
d: 1 }:

db.collection.find({ a: 5, b: 3 }).sort({ c: 1 })
db.collection.find({ a: 5, b: 3 }).sort({ c: 1, d: 1 })

In these operations, the equality match and the sort documents together
cover the index prefixes { a: 1, b: 1, c: 1 } and { a: 1, b: 1,
c: 1, d: 1 } respectively.

You can also specify a sort order that includes the prefix; however,
since the query condition specifies equality matches on these fields,
they are constant in the resulting documents and do not contribute to
the sort order:

db.collection.find({ a: 5, b: 3 }).sort({ a: 1, b: 1, c: 1 })
db.collection.find({ a: 5, b: 3 }).sort({ a: 1, b: 1, c: 1, d: 1 })

For more information on sorting by index subsets that are not prefixes,
see Sort Subset Does Not Start at the Index Beginning.

Note

For in-memory sorts that do not use an index, the sort() operation is significantly slower. The
sort() operation will abort when it uses 32
megabytes of memory.

Sort With a Subset of Compound Index

If the sort document contains a subset of the compound index fields,
the subset can determine whether MongoDB can use the index efficiently
to both retrieve and sort the query results. If MongoDB can efficiently
use the index to both retrieve and sort the query results, the output
from the explain() will display
scanAndOrder as false or 0. If MongoDB can
only use the index for retrieving documents that meet the query
criteria, MongoDB must manually sort the resulting documents without
the use of the index. For in-memory sort operations,
explain() will display scanAndOrder
as true or 1.

Sort Subset Starts at the Index Beginning

If the sort document is a subset of a compound index and starts from
the beginning of the index, MongoDB can use the index to both retrieve
and sort the query results.

For example, the collection collection has the following index:

{ a: 1, b: 1, c: 1, d: 1 }

The following operations include a sort with a subset of the index.
Because the sort subset starts at beginning of the index, the
operations can use the index for both the query retrieval and sort:

db.collection.find().sort({ a:1 })
db.collection.find().sort({ a:1, b:1 })
db.collection.find().sort({ a:1, b:1, c:1 })

db.collection.find({ a: 4 }).sort({ a: 1, b: 1 })
db.collection.find({ a: { $gt: 4 } }).sort({ a: 1, b: 1 })

db.collection.find({ b: 5 }).sort({ a: 1, b: 1 })
db.collection.find({ b: { $gt:5 }, c: { $gt: 1 } }).sort({ a: 1, b: 1 })

The last two operations include query conditions on the field b but
does not include a query condition on the field a:

db.collection.find({ b: 5 }).sort({ a: 1, b: 1 })
db.collection.find({ b: { $gt:5 }, c: { $gt: 1 } }).sort({ a: 1, b: 1 })

Consider the case where the collection has the index { b: 1 } in
addition to the { a: 1, b: 1, c: 1, d: 1 } index. Because of the
query condition on b, it is not immediately obvious which index
MongoDB may select as the “best” index. To explicitly specify the index
to use, see hint().

Sort Subset Does Not Start at the Index Beginning

The sort document can be a subset of a compound index that does not
start from the beginning of the index. For instance, { c: 1 } is a
subset of the index { a: 1, b: 1, c: 1, d: 1 } that omits the
preceding index fields a and b. MongoDB can use the index
efficiently if the query document includes all the preceding
fields of the index, in this case a and b, in equality
conditions. In other words, the equality conditions in the query
document and the subset in the sort document contiguously cover a
prefix of the index.

For example, the collection collection has the following index:

{ a: 1, b: 1, c: 1, d: 1 }

Then following operations can use the index efficiently:

db.collection.find({ a: 5 }).sort({ b: 1, c: 1 })
db.collection.find({ a: 5, c: 4, b: 3 }).sort({ d: 1 })

	In the first operation, the query document { a: 5 } with the sort
document { b: 1, c: 1 } cover the prefix { a:1 , b: 1, c: 1 }
of the index.

	In the second operation, the query document { a: 5, c: 4, b: 3 }
with the sort document { d: 1 } covers the full index.

Only the index fields preceding the sort subset must have the equality
conditions in the query document. The other index fields may have other
conditions. The following operations can efficiently use the index
since the equality conditions in the query document and the subset in
the sort document contiguously cover a prefix of the index:

db.collection.find({ a: 5, b: 3 }).sort({ c: 1 })
db.collection.find({ a: 5, b: 3, c: { $lt: 4 } }).sort({ c: 1 })

The following operations specify a sort document of { c: 1 }, but
the query documents do not contain equality matches on the
preceding index fields a and b:

db.collection.find({ a: { $gt: 2 } }).sort({ c: 1 })
db.collection.find({ c: 5 }).sort({ c: 1 })

These operations will not efficiently use the index { a: 1, b: 1,
c: 1, d: 1 } and may not even use the index to retrieve the documents.

Ensure Indexes Fit in RAM

For the fastest processing, ensure that your indexes fit entirely in RAM so
that the system can avoid reading the index from disk.

To check the size of your indexes, use the
db.collection.totalIndexSize() helper, which returns data in
bytes:

> db.collection.totalIndexSize()
4294976499

The above example shows an index size of almost 4.3 gigabytes. To ensure
this index fits in RAM, you must not only have more than that much RAM
available but also must have RAM available for the rest of the
working set. Also remember:

If you have and use multiple collections, you must consider the size
of all indexes on all collections. The indexes and the working set must be able to
fit in memory at the same time.

There are some limited cases where indexes do not need
to fit in memory. See Indexes that Hold Only Recent Values in RAM.

See also

collStats and db.collection.stats()

Indexes that Hold Only Recent Values in RAM

Indexes do not have to fit entirely into RAM in all cases. If the
value of the indexed field increments with every insert, and most queries
select recently added documents; then MongoDB only needs to keep the
parts of the index that hold the most recent or “right-most” values in
RAM. This allows for efficient index use for read and write
operations and minimize the amount of RAM required to support the
index.

Create Queries that Ensure Selectivity

Selectivity is the ability of a query to narrow results using the index.
Effective indexes are more selective and allow MongoDB to use the index
for a larger portion of the work associated with fulfilling the query.

To ensure selectivity,
write queries that limit the number of possible documents with the
indexed field. Write queries that are appropriately selective relative
to your indexed data.

Example

Suppose you have a field called status where the possible values
are new and processed. If you add an index on status
you’ve created a low-selectivity index. The index will
be of little help in locating records.

A better strategy, depending on your queries, would be to create a
compound index that includes the
low-selectivity field and another field. For example, you could
create a compound index on status and created_at.

Another option, again depending on your use case, might be to use
separate collections, one for each status.

Example

Consider an index { a : 1 } (i.e. an index on the key a
sorted in ascending order) on a collection where a has three
values evenly distributed across the collection:

{ _id: ObjectId(), a: 1, b: "ab" }
{ _id: ObjectId(), a: 1, b: "cd" }
{ _id: ObjectId(), a: 1, b: "ef" }
{ _id: ObjectId(), a: 2, b: "jk" }
{ _id: ObjectId(), a: 2, b: "lm" }
{ _id: ObjectId(), a: 2, b: "no" }
{ _id: ObjectId(), a: 3, b: "pq" }
{ _id: ObjectId(), a: 3, b: "rs" }
{ _id: ObjectId(), a: 3, b: "tv" }

If you query for { a: 2, b: "no" } MongoDB must scan 3
documents in the collection to return the one
matching result. Similarly, a query for { a: { $gt: 1}, b: "tv" }
must scan 6 documents, also to return one result.

Consider the same index on a collection where a has nine values
evenly distributed across the collection:

{ _id: ObjectId(), a: 1, b: "ab" }
{ _id: ObjectId(), a: 2, b: "cd" }
{ _id: ObjectId(), a: 3, b: "ef" }
{ _id: ObjectId(), a: 4, b: "jk" }
{ _id: ObjectId(), a: 5, b: "lm" }
{ _id: ObjectId(), a: 6, b: "no" }
{ _id: ObjectId(), a: 7, b: "pq" }
{ _id: ObjectId(), a: 8, b: "rs" }
{ _id: ObjectId(), a: 9, b: "tv" }

If you query for { a: 2, b: "cd" }, MongoDB must scan only one
document to fulfill the query. The index and query are more selective
because the values of a are evenly distributed and the query
can select a specific document using the index.

However, although the index on a is more selective, a query such
as { a: { $gt: 5 }, b: "tv" } would still need to scan 4
documents.

If overall selectivity is low, and if MongoDB must read a number of
documents to return results, then some queries may perform faster
without indexes. To determine performance, see
Measure Index Use.

Indexing Reference

Indexing Methods in the mongo Shell

	Name
	Description

	db.collection.createIndex()
	Builds an index on a collection. Use db.collection.ensureIndex().

	db.collection.dropIndex()
	Removes a specified index on a collection.

	db.collection.dropIndexes()
	Removes all indexes on a collection.

	db.collection.ensureIndex()
	Creates an index if it does not currently exist. If the index exists ensureIndex() does nothing.

	db.collection.getIndexes()
	Returns an array of documents that describe the existing indexes on a collection.

	db.collection.getIndexStats()
	Renders a human-readable view of the data collected by indexStats which reflects B-tree utilization.

	db.collection.indexStats()
	Renders a human-readable view of the data collected by indexStats which reflects B-tree utilization.

	db.collection.reIndex()
	Rebuilds all existing indexes on a collection.

	db.collection.totalIndexSize()
	Reports the total size used by the indexes on a collection. Provides a wrapper around the totalIndexSize field of the collStats output.

	cursor.explain()
	Reports on the query execution plan, including index use, for a cursor.

	cursor.hint()
	Forces MongoDB to use a specific index for a query.

	cursor.max()
	Specifies an exclusive upper index bound for a cursor. For use with cursor.hint()

	cursor.min()
	Specifies an inclusive lower index bound for a cursor. For use with cursor.hint()

	cursor.snapshot()
	Forces the cursor to use the index on the _id field. Ensures that the cursor returns each document, with regards to the value of the _id field, only once.

Indexing Database Commands

	Name
	Description

	dropIndexes
	Removes indexes from a collection.

	compact
	Defragments a collection and rebuilds the indexes.

	reIndex
	Rebuilds all indexes on a collection.

	validate
	Internal command that scans for a collection’s data and indexes for correctness.

	indexStats
	Experimental command that collects and aggregates statistics on all indexes.

	geoNear
	Performs a geospatial query that returns the documents closest to a given point.

	geoSearch
	Performs a geospatial query that uses MongoDB’s haystack index functionality.

	geoWalk
	An internal command to support geospatial queries.

	checkShardingIndex
	Internal command that validates index on shard key.

Geospatial Query Selectors

	Name
	Description

	$geoWithin
	Selects geometries within a bounding GeoJSON geometry.

	$geoIntersects
	Selects geometries that intersect with a GeoJSON geometry.

	$near
	Returns geospatial objects in proximity to a point.

	$nearSphere
	Returns geospatial objects in proximity to a point on a sphere.

Indexing Query Modifiers

	Name
	Description

	$explain
	Forces MongoDB to report on query execution plans. See explain().

	$hint
	Forces MongoDB to use a specific index. See hint()

	$max
	Specifies a minimum exclusive upper limit for the index to use in a query. See max().

	$min
	Specifies a minimum inclusive lower limit for the index to use in a query. See min().

	$returnKey
	Forces the cursor to only return fields included in the index.

	$snapshot
	Forces the query to use the index on the _id field. See snapshot().

Replication

A replica set in MongoDB is a group of mongod processes
that maintain the same data set. Replica sets provide redundancy and
high availability, and are the basis for all production deployments.
This section introduces replication in MongoDB as well as the
components and architecture of replica sets. The section also provides
tutorials for common tasks related to replica sets.

	Replication Introduction

	An introduction to replica sets, their behavior, operation, and use.

	Replication Concepts

	The core documentation of replica set operations, configurations, architectures and behaviors.

	Replica Set Members

	Introduces the components of replica sets.

	Replica Set Deployment Architectures

	Introduces architectural considerations related to
replica sets deployment planning.

	Replica Set High Availability

	Presents the details of the automatic failover and recovery process
with replica sets.

	Replica Set Read and Write Semantics

	Presents the semantics for targeting read and write operations to
the replica set, with an awareness of location and set
configuration.

	Replica Set Tutorials

	Tutorials for common tasks related to the use and maintenance of replica sets.

	Replication Reference

	Reference for functions and operations related to replica sets.

	Replication Introduction

	Replication Concepts
	Replica Set Members
	Replica Set Primary

	Replica Set Secondary Members
	Priority 0 Replica Set Members

	Hidden Replica Set Members

	Delayed Replica Set Members

	Replica Set Arbiter

	Replica Set Deployment Architectures
	Three Member Replica Sets

	Replica Sets with Four or More Members

	Geographically Distributed Replica Sets

	Replica Set High Availability
	Replica Set Elections

	Rollbacks During Replica Set Failover

	Replica Set Read and Write Semantics
	Write Concern for Replica Sets

	Read Preference

	Read Preference Processes

	Replication Processes
	Replica Set Oplog

	Replica Set Data Synchronization

	Master Slave Replication

	Replica Set Tutorials
	Replica Set Deployment Tutorials
	Deploy a Replica Set

	Deploy a Replica Set for Testing and Development

	Deploy a Geographically Redundant Replica Set

	Add an Arbiter to Replica Set

	Convert a Standalone to a Replica Set

	Add Members to a Replica Set

	Remove Members from Replica Set

	Replace a Replica Set Member

	Member Configuration Tutorials
	Adjust Priority for Replica Set Member

	Prevent Secondary from Becoming Primary

	Configure a Hidden Replica Set Member

	Configure a Delayed Replica Set Member

	Configure Non-Voting Replica Set Member

	Convert a Secondary to an Arbiter

	Replica Set Maintenance Tutorials
	Change the Size of the Oplog

	Force a Member to Become Primary

	Resync a Member of a Replica Set

	Configure Replica Set Tag Sets

	Reconfigure a Replica Set with Unavailable Members

	Manage Chained Replication

	Change Hostnames in a Replica Set

	Configure a Secondary’s Sync Target

	Troubleshoot Replica Sets

	Replication Reference
	Replica Set Commands

	Replica Set Configuration

	The local Database

	Replica Set Member States

	Read Preference Reference

Replica Set Read and Write Semantics

From the perspective of a client application, whether a MongoDB
instance is running as a single server (i.e. “standalone”) or a
replica set is transparent.

By default, in MongoDB, read operations to a replica set return results
from the primary and are
consistent with the last write operation.

Users may configure read preference on a per-connection basis
to prefer that the read operations return on the secondary
members. If clients configure the read preference to permit
secondary reads, read operations cannot return from secondary
members that have not replicated more recent updates or
operations. When reading from a secondary, a query may return data that
reflects a previous state.

This behavior is sometimes characterized as eventual
consistency because the secondary member’s state will eventually
reflect the primary’s state and MongoDB cannot guarantee strict
consistency for read operations from secondary members.

To guarantee consistency for reads from secondary members, you can
configure the client and driver to ensure that write
operations succeed on all members before completing successfully. See
Write Concern for more information. Additionally, such
configuration can help prevent Rollbacks During Replica Set Failover
during a failover.

Note

Sharded clusters where the shards are also
replica sets provide the same operational semantics with
regards to write and read operations.

	Write Concern for Replica Sets

	Write concern is the guarantee an application requires from
MongoDB to consider a write operation successful.

	Read Preference

	Applications specify read preference to control how drivers direct
read operations to members of the replica set.

	Read Preference Processes

	With replica sets, read operations may have additional semantics and behavior.

	Write Concern for Replica Sets

	Read Preference

	Read Preference Processes

Replica Set Tutorials

The administration of replica sets includes the
initial deployment of the set, adding and removing members to a set,
and configuring the operational parameters and properties of the
set. Administrators generally need not intervene in failover or
replication processes as MongoDB automates these functions. In the
exceptional situations that require manual interventions, the
tutorials in these sections describe processes such as resyncing a
member. The tutorials in this section form the basis for all replica
set administration.

	Replica Set Deployment Tutorials

	Instructions for deploying replica sets, as well as
adding and removing members from an existing replica set.

	Deploy a Replica Set

	Configure a three-member replica set for either a
production system.

	Convert a Standalone to a Replica Set

	Convert an existing standalone mongod instance into a
three-member replica set.

	Add Members to a Replica Set

	Add a new member to an existing replica set.

	Remove Members from Replica Set

	Remove a member from a replica set.

	Member Configuration Tutorials

	Tutorials that describe the process for configuring replica set
members.

	Adjust Priority for Replica Set Member

	Change the precedence given to a replica set members in an
election for primary.

	Prevent Secondary from Becoming Primary

	Make a secondary member ineligible for election as primary.

	Configure a Hidden Replica Set Member

	Configure a secondary member to be invisible to applications in
order to support significantly different usage, such as a dedicated
backups.

	Replica Set Maintenance Tutorials

	Procedures and tasks for common operations on active replica
set deployments.

	Change the Size of the Oplog

	Increase the size of the oplog which logs operations.
In most cases, the default oplog size is sufficient.

	Resync a Member of a Replica Set

	Sync the data on a member. Either perform initial sync on a new member
or resync the data on an existing member that has fallen too far
behind to catch up by way of normal replication.

	Change the Size of the Oplog

	Increase the size of the oplog which logs operations.
In most cases, the default oplog size is sufficient.

	Force a Member to Become Primary

	Force a replica set member to become primary.

	Change Hostnames in a Replica Set

	Update the replica set configuration to reflect changes in members’
hostnames.

	Troubleshoot Replica Sets

	Describes common issues and operational challenges for
replica sets. For additional diagnostic information, see
FAQ: MongoDB Diagnostics.

	Replica Set Deployment Tutorials
	Deploy a Replica Set

	Deploy a Replica Set for Testing and Development

	Deploy a Geographically Redundant Replica Set

	Add an Arbiter to Replica Set

	Convert a Standalone to a Replica Set

	Add Members to a Replica Set

	Remove Members from Replica Set

	Replace a Replica Set Member

	Member Configuration Tutorials
	Adjust Priority for Replica Set Member

	Prevent Secondary from Becoming Primary

	Configure a Hidden Replica Set Member

	Configure a Delayed Replica Set Member

	Configure Non-Voting Replica Set Member

	Convert a Secondary to an Arbiter

	Replica Set Maintenance Tutorials
	Change the Size of the Oplog

	Force a Member to Become Primary

	Resync a Member of a Replica Set

	Configure Replica Set Tag Sets

	Reconfigure a Replica Set with Unavailable Members

	Manage Chained Replication

	Change Hostnames in a Replica Set

	Configure a Secondary’s Sync Target

	Troubleshoot Replica Sets

Replica Set Deployment Tutorials

The following tutorials provide information in deploying replica sets.

	Deploy a Replica Set

	Configure a three-member replica set for either a
production system.

	Deploy a Replica Set for Testing and Development

	Configure a three-member replica set for either a
development and testing systems.

	Deploy a Geographically Redundant Replica Set

	Create a geographically redundant replica set to
protect against location-centered availability limitations
(e.g. network and power interruptions).

	Add an Arbiter to Replica Set

	Add an arbiter give a replica set an odd number of voting
members to prevent election ties.

	Convert a Standalone to a Replica Set

	Convert an existing standalone mongod instance into a
three-member replica set.

	Add Members to a Replica Set

	Add a new member to an existing replica set.

	Remove Members from Replica Set

	Remove a member from a replica set.

	Replace a Replica Set Member

	Update the replica set configuration when the hostname of a member’s
corresponding mongod instance has changed.

	Deploy a Replica Set

	Deploy a Replica Set for Testing and Development

	Deploy a Geographically Redundant Replica Set

	Add an Arbiter to Replica Set

	Convert a Standalone to a Replica Set

	Add Members to a Replica Set

	Remove Members from Replica Set

	Replace a Replica Set Member

Deploy a Replica Set

This tutorial describes how to create a three-member
replica set from three existing mongod instances.

If you wish to deploy a replica set from a single MongoDB
instance, see Convert a Standalone to a Replica Set. For
more information on replica set deployments, see the
Replication and Replica Set Deployment Architectures documentation.

Overview

Three member replica sets provide enough
redundancy to survive most network partitions and other system
failures. These sets also have sufficient capacity for many distributed
read operations. Replica sets should always have an odd number of
members. This ensures that elections will proceed smoothly. For more about
designing replica sets, see the Replication overview.

The basic procedure is to start the mongod instances that
will become members of the replica set, configure the
replica set itself, and then add the mongod instances to it.

Requirements

For production deployments, you should maintain as much separation between
members as possible by hosting the mongod
instances on separate machines. When using virtual machines for
production deployments, you should place each mongod
instance on a separate host server serviced by redundant power circuits
and redundant network paths.

Before you can deploy a replica set, you must install MongoDB on
each system that will be part of your replica set.
If you have not already installed MongoDB, see the installation tutorials.

Before creating your replica set, you should verify that your network
configuration allows all possible connections between each member. For
a successful replica set deployment, every member must be able to
connect to every other member. For instructions on how to check
your connection, see Test Connections Between all Members.

Procedure

	Each member of the replica set resides on its own machine and all of
the MongoDB processes bind to port 27017 (the
standard MongoDB port).

	Each member of the replica set must be accessible by way of
resolvable DNS or hostnames, as in the following scheme:

	mongodb0.example.net

	mongodb1.example.net

	mongodb2.example.net

	mongodbn.example.net

You will need to either configure your DNS names appropriately,
or set up your systems’ /etc/hosts file to reflect this configuration.

	Ensure that network traffic can pass between all members in the
network securely and efficiently. Consider the following:

	Establish a virtual private network. Ensure that your network
topology routes all traffic between members within a single
site over the local area network.

	Configure authentication using auth and
keyFile, so that only servers and processes with
authentication can connect to the replica set.

	Configure networking and firewall rules so that only traffic
(incoming and outgoing packets) on the default MongoDB port (e.g.
27017) from within your deployment is permitted.

For more information on security and firewalls, see Inter-Process Authentication.

	You must specify the run time configuration on each system in a
configuration file stored
in /etc/mongodb.conf or a related location. Do not specify the
set’s configuration in the mongo shell.

Use the following configuration for each of your MongoDB instances.
You should set values that are appropriate for your systems, as needed:

port = 27017

bind_ip = 10.8.0.10

dbpath = /srv/mongodb/

fork = true

replSet = rs0

The dbpath indicates where you want mongod to
store data files. The dbpath must exist before you start
mongod. If it does not exist, create the directory and
ensure mongod has permission to read and write data to this
path. For more information on permissions, see the security
operations documentation.

Modifying bind_ip ensures that mongod will only
listen for connections from applications on the configured address.

For more information about the run time options used above and other
configuration options, see
Configuration File Options.

To deploy a production replica set:

	Start a mongod instance on each system that will be part
of your replica set. Specify the same replica set name on each
instance. For additional mongod configuration options
specific to replica sets, see Replication Options.

Important

If your application connects to more than one replica set, each set
should have a distinct name. Some drivers group replica set
connections by replica set name.

If you use a configuration file, then start each mongod
instance with a command that resembles the following:

mongod --config /etc/mongodb.conf

Change /etc/mongodb.conf to the location of your configuration
file.

Note

You will likely want to use and configure a
control script to manage this process in production
deployments. Control scripts are beyond the scope of this document.

	Open a mongo shell connected to one of the hosts by
issuing the following command:

mongo

	Use rs.initiate() to initiate a replica set consisting of
the current member and using the default configuration, as follows:

rs.initiate()

	Display the current replica configuration:

rs.conf()

The replica set configuration object resembles the following

{
 "_id" : "rs0",
 "version" : 4,
 "members" : [
 {
 "_id" : 1,
 "host" : "mongodb0.example.net:27017"
 }
]
}

	In the mongo shell connected to the primary, add
the remaining members to the replica set using rs.add() in
the mongo shell on the current primary (in this example,
mongodb0.example.net). The commands should resemble the
following:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

When complete, you should have a fully functional replica set.
The new replica set will elect a primary.

Check the status of your replica set at any time with the
rs.status() operation.

See also

The documentation of the following shell functions for
more information:

	rs.initiate()

	rs.conf()

	rs.reconfig()

	rs.add()

Refer to Replica Set Read and Write Semantics
for a detailed explanation of read and write semantics in MongoDB.

Deploy a Replica Set for Testing and Development

Note

This tutorial provides instructions for deploying a replica
set in a development or test environment. For a production
deployment, refer to the Deploy a Replica Set
tutorial.

This tutorial describes how to create a three-member
replica set from three existing mongod instances.

If you wish to deploy a replica set from a single MongoDB
instance, see Convert a Standalone to a Replica Set. For
more information on replica set deployments, see the
Replication and Replica Set Deployment Architectures documentation.

Overview

Three member replica sets provide enough
redundancy to survive most network partitions and other system
failures. These sets also have sufficient capacity for many distributed
read operations. Replica sets should always have an odd number of
members. This ensures that elections will proceed smoothly. For more about
designing replica sets, see the Replication overview.

The basic procedure is to start the mongod instances that
will become members of the replica set, configure the
replica set itself, and then add the mongod instances to it.

Requirements

For test and development systems, you can run your mongod
instances on a local system, or within a virtual instance.

Before you can deploy a replica set, you must install MongoDB on
each system that will be part of your replica set.
If you have not already installed MongoDB, see the installation tutorials.

Before creating your replica set, you should verify that your network
configuration allows all possible connections between each member. For
a successful replica set deployment, every member must be able to
connect to every other member. For instructions on how to check
your connection, see Test Connections Between all Members.

Procedure

Important

These instructions should only be used for test or
development deployments.

The examples in this procedure create a new replica set named rs0.

Important

If your application connects to more than one replica set, each set
should have a distinct name. Some drivers group replica set
connections by replica set name.

You will begin by starting three mongod instances as
members of a replica set named rs0.

	Create the necessary data directories for each member by issuing a
command similar to the following:

mkdir -p /srv/mongodb/rs0-0 /srv/mongodb/rs0-1 /srv/mongodb/rs0-2

This will create directories called “rs0-0”, “rs0-1”, and “rs0-2”, which
will contain the instances’ database files.

	Start your mongod instances in their own shell windows by issuing the following
commands:

First member:

mongod --port 27017 --dbpath /srv/mongodb/rs0-0 --replSet rs0 --smallfiles --oplogSize 128

Second member:

mongod --port 27018 --dbpath /srv/mongodb/rs0-1 --replSet rs0 --smallfiles --oplogSize 128

Third member:

mongod --port 27019 --dbpath /srv/mongodb/rs0-2 --replSet rs0 --smallfiles --oplogSize 128

This starts each instance as a member of a replica set named
rs0, each running on a distinct port, and specifies the path to
your data directory with the --dbpath setting.
If you are already using the suggested ports, select different ports.

The --smallfiles and
--oplogSize settings reduce the disk
space that each mongod instance uses. This is ideal for testing and
development deployments as it prevents overloading your machine.
For more information on these and other configuration
options, see Configuration File Options.

	Connect to one of your mongod instances through the
mongo shell. You will need to indicate which instance by
specifying its port number. For the sake of simplicity and clarity,
you may want to choose the first one, as in the following command;

mongo --port 27017

	In the mongo shell, use rs.initiate() to
initiate the replica set. You can create a replica set
configuration object in the mongo shell environment, as
in the following example:

rsconf = {
 _id: "rs0",
 members: [
 {
 _id: 0,
 host: "<hostname>:27017"
 }
]
 }

replacing <hostname> with your system’s hostname,
and then pass the rsconf file to rs.initiate() as
follows:

rs.initiate(rsconf)

	Display the current replica configuration
by issuing the following command:

rs.conf()

The replica set configuration object resembles the following

{
 "_id" : "rs0",
 "version" : 4,
 "members" : [
 {
 "_id" : 1,
 "host" : "localhost:27017"
 }
]
}

	In the mongo shell connected to the primary, add
the second and third mongod instances to the replica set
using the rs.add() method. Replace <hostname> with
your system’s hostname in the following examples:

rs.add("<hostname>:27018")
rs.add("<hostname>:27019")

When complete, you should have a fully functional replica set.
The new replica set will elect a primary.

Check the status of your replica set at any time with the
rs.status() operation.

See also

The documentation of the following shell functions for
more information:

	rs.initiate()

	rs.conf()

	rs.reconfig()

	rs.add()

You may also consider the simple setup script [https://github.com/mongodb/mongo-snippets/blob/master/replication/simple-setup.py]
as an example of a basic automatically-configured replica set.

Refer to Replica Set Read and Write Semantics
for a detailed explanation of read and write semantics in MongoDB.

Deploy a Geographically Redundant Replica Set

This tutorial outlines the process for deploying a replica set with members
in multiple locations. The tutorial addresses three-member sets,
four-member sets, and sets with more than four members.

For appropriate background, see Replication and
Replica Set Deployment Architectures. For related
tutorials, see Deploy a Replica Set and
Add Members to a Replica Set.

Overview

While replica sets provide basic protection
against single-instance failure, replica sets whose members are all
located in a single facility are susceptible to errors in that
facility. Power outages, network interruptions, and natural disasters
are all issues that can affect replica sets whose members are colocated.
To protect against these classes of failures, deploy a
replica set with one or more members in a geographically distinct
facility or data center to provide redundancy.

Requirements

In general, the requirements for any geographically redundant replica
set are as follows:

	Ensure that a majority of the voting members are within a primary facility,
“Site A”. This includes priority 0 members and arbiters. Deploy other members in
secondary facilities, “Site B”, “Site C”, etc., to provide additional copies
of the data. See Determine the Distribution of Members for more information
on the voting requirements for geographically redundant replica sets.

	If you deploy a replica set with an even number of members, deploy
an arbiter on Site A. The arbiter must
be on site A to keep the majority there.

For instance, for a three-member replica set you need two instances in a
Site A, and one member in a secondary
facility, Site B. Site A should be the same facility or
very close to your primary application infrastructure
(i.e. application servers, caching layer, users, etc.)

A four-member replica set should have at least two members in Site A,
with the remaining members in one or more secondary sites, as well as a
single arbiter in Site A.

For all configurations in this tutorial, deploy each replica set member
on a separate system. Although you may deploy more than one replica set member on a
single system, doing so reduces the redundancy and capacity
of the replica set. Such deployments are typically for testing
purposes and beyond the scope of this tutorial.

This tutorial assumes you have installed MongoDB on each system that
will be part of your replica set. If you have not already installed
MongoDB, see the installation tutorials.

Procedures

General Considerations

	Each member of the replica set resides on its own machine and all of
the MongoDB processes bind to port 27017 (the
standard MongoDB port).

	Each member of the replica set must be accessible by way of
resolvable DNS or hostnames, as in the following scheme:

	mongodb0.example.net

	mongodb1.example.net

	mongodb2.example.net

	mongodbn.example.net

You will need to either configure your DNS names appropriately,
or set up your systems’ /etc/hosts file to reflect this configuration.

	Ensure that network traffic can pass between all members in the
network securely and efficiently. Consider the following:

	Establish a virtual private network. Ensure that your network
topology routes all traffic between members within a single
site over the local area network.

	Configure authentication using auth and
keyFile, so that only servers and processes with
authentication can connect to the replica set.

	Configure networking and firewall rules so that only traffic
(incoming and outgoing packets) on the default MongoDB port (e.g.
27017) from within your deployment is permitted.

For more information on security and firewalls, see Inter-Process Authentication.

	You must specify the run time configuration on each system in a
configuration file stored
in /etc/mongodb.conf or a related location. Do not specify the
set’s configuration in the mongo shell.

Use the following configuration for each of your MongoDB instances.
You should set values that are appropriate for your systems, as needed:

port = 27017

bind_ip = 10.8.0.10

dbpath = /srv/mongodb/

fork = true

replSet = rs0

The dbpath indicates where you want mongod to
store data files. The dbpath must exist before you start
mongod. If it does not exist, create the directory and
ensure mongod has permission to read and write data to this
path. For more information on permissions, see the security
operations documentation.

Modifying bind_ip ensures that mongod will only
listen for connections from applications on the configured address.

For more information about the run time options used above and other
configuration options, see
Configuration File Options.

Deploy a Geographically Redundant Three-Member Replica Set

[image: Diagram of a 3 member replica set distributed across two data centers. Replica set includes a priority 0 member.]Diagram of a 3 member replica set distributed across two data centers. Replica set includes a priority 0 member.

	Start a mongod instance on each system that will be part
of your replica set. Specify the same replica set name on each
instance. For additional mongod configuration options
specific to replica sets, see Replication Options.

Important

If your application connects to more than one replica set, each set
should have a distinct name. Some drivers group replica set
connections by replica set name.

If you use a configuration file, then start each mongod
instance with a command that resembles the following:

mongod --config /etc/mongodb.conf

Change /etc/mongodb.conf to the location of your configuration
file.

Note

You will likely want to use and configure a
control script to manage this process in production
deployments. Control scripts are beyond the scope of this document.

	Open a mongo shell connected to one of the hosts by
issuing the following command:

mongo

	Use rs.initiate() to initiate a replica set consisting of
the current member and using the default configuration, as follows:

rs.initiate()

	Display the current replica configuration:

rs.conf()

The replica set configuration object resembles the following

{
 "_id" : "rs0",
 "version" : 4,
 "members" : [
 {
 "_id" : 1,
 "host" : "mongodb0.example.net:27017"
 }
]
}

	In the mongo shell connected to the primary, add
the remaining members to the replica set using rs.add() in
the mongo shell on the current primary (in this example,
mongodb0.example.net). The commands should resemble the
following:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")

When complete, you should have a fully functional replica set.
The new replica set will elect a primary.

	Make sure that you have configured the member located in Site B
(in this example, mongodb2.example.net) as a priority 0 member:

	Issue the following command to determine the
members array position for the member:

rs.conf()

	In the members array, save the
position of the member whose priority you wish to change. The example in
the next step assumes this value is 2, for the third item
in the list. You must record array position, not _id, as these
ordinals will be different if you remove a member.

	In the mongo shell connected to the replica set’s
primary, issue a command sequence similar to the following:

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

When the operations return, mongodb2.example.net has a priority
of 0. It cannot become primary.

Note

The rs.reconfig() shell method can force the current
primary to step down, causing an election. When the primary steps
down, all clients will disconnect. This is the intended behavior.
While most elections complete within a minute, always make sure
any replica configuration changes occur during scheduled
maintenance periods.

After these commands return, you have a geographically redundant
three-member replica set.

Check the status of your replica set at any time with the
rs.status() operation.

See also

The documentation of the following shell functions for
more information:

	rs.initiate()

	rs.conf()

	rs.reconfig()

	rs.add()

Refer to Replica Set Read and Write Semantics
for a detailed explanation of read and write semantics in MongoDB.

Deploy a Geographically Redundant Four-Member Replica Set

A geographically redundant four-member deployment has two additional
considerations:

	One host (e.g. mongodb3.example.net) must be an arbiter.
This host can run on a system that is also used for an application server
or on the same machine as another MongoDB process.

	You must decide how to distribute your systems. There are three
possible architectures for the four-member replica set:

	Three members in Site A, one priority 0 member
in Site B, and an arbiter in Site A.

	Two members in Site A, two priority 0 members in Site B, and an
arbiter in Site A.

	Two members in Site A, one priority 0 member in Site B, one
priority 0 member in Site C, and an arbiter in site A.

In most cases, the first architecture is preferable because it is the
least complex.

To deploy a geographically redundant four-member set:

	Start a mongod instance on each system that will be part
of your replica set. Specify the same replica set name on each
instance. For additional mongod configuration options
specific to replica sets, see Replication Options.

Important

If your application connects to more than one replica set, each set
should have a distinct name. Some drivers group replica set
connections by replica set name.

If you use a configuration file, then start each mongod
instance with a command that resembles the following:

mongod --config /etc/mongodb.conf

Change /etc/mongodb.conf to the location of your configuration
file.

Note

You will likely want to use and configure a
control script to manage this process in production
deployments. Control scripts are beyond the scope of this document.

	Open a mongo shell connected to one of the hosts by
issuing the following command:

mongo

	Use rs.initiate() to initiate a replica set consisting of
the current member and using the default configuration, as follows:

rs.initiate()

	Display the current replica configuration:

rs.conf()

The replica set configuration object resembles the following

{
 "_id" : "rs0",
 "version" : 4,
 "members" : [
 {
 "_id" : 1,
 "host" : "mongodb0.example.net:27017"
 }
]
}

	Add the remaining members to the replica set using
rs.add() in a mongo shell connected to the
current primary. The commands should resemble the following:

rs.add("mongodb1.example.net")
rs.add("mongodb2.example.net")
rs.add("mongodb3.example.net")

When complete, you should have a fully functional replica set.
The new replica set will elect a primary.

	In the same shell session, issue the following command to add the
arbiter (e.g. mongodb4.example.net):

rs.addArb("mongodb4.example.net")

	Make sure that you have configured each member located outside of Site A
(e.g. mongodb3.example.net) as a priority 0 member:

	Issue the following command to determine the
members array position for the member:

rs.conf()

	In the members array, save the
position of the member whose priority you wish to change. The example in
the next step assumes this value is 2, for the third item
in the list. You must record array position, not _id, as these
ordinals will be different if you remove a member.

	In the mongo shell connected to the replica set’s
primary, issue a command sequence similar to the following:

cfg = rs.conf()
cfg.members[2].priority = 0
rs.reconfig(cfg)

When the operations return, mongodb2.example.net has a priority
of 0. It cannot become primary.

Note

The rs.reconfig() shell method can force the current
primary to step down, causing an election. When the primary steps
down, all clients will disconnect. This is the intended behavior.
While most elections complete within a minute, always make sure
any replica configuration changes occur during scheduled
maintenance periods.

After these commands return, you have a geographically redundant
four-member replica set.

Check the status of your replica set at any time with the
rs.status() operation.

See also

The documentation of the following shell functions for
more information:

	rs.initiate()

	rs.conf()

	rs.reconfig()

	rs.add()

Refer to Replica Set Read and Write Semantics
for a detailed explanation of read and write semantics in MongoDB.

Deploy a Geographically Redundant Set with More than Four Members

The above procedures detail the steps necessary for deploying a
geographically redundant replica set. Larger replica set deployments
follow the same steps, but have additional considerations:

	Never deploy more than seven voting members.

	If you have an even number of members, use the procedure for a
four-member set).
Ensure that a single facility, “Site A”, always has a majority of
the members by deploying the arbiter in that site. For
example, if a set has six members, deploy at least three voting
members in addition to the arbiter in Site A, and the remaining
members in alternate sites.

	If you have an odd number of members, use the procedure for a
three-member set.
Ensure that a single facility, “Site A” always has a majority of the
members of the set. For example, if a set has five members, deploy
three members within Site A and two members in other facilities.

	If you have a majority of the members of the set outside of Site A
and the network partitions to prevent communication between sites,
the current primary in Site A will step down, even if none of the
members outside of Site A are eligible to become primary.

Add an Arbiter to Replica Set

Arbiters are mongod instances that are part of
replica set but do not hold data. Arbiters participate in
elections in order to break ties.
If a replica set has an even number of members, add an arbiter.

Arbiters have minimal resource requirements and do not require
dedicated hardware. You can deploy an arbiter on an application
server, monitoring host.

Important

Do not run an arbiter on the same system as a member of the replica
set.

Add an Arbiter

	Create a data directory (e.g. dbpath) for the
arbiter. The mongod instance uses the directory for
configuration data. The directory will not hold the data set. For
example, create the /data/arb directory:

mkdir /data/arb

	Start the arbiter. Specify the data directory and the replica set
name. The following, starts an arbiter using the /data/arb
dbpath for the rs replica set:

mongod --port 30000 --dbpath /data/arb --replSet rs

	Connect to the primary and add the arbiter to the replica set. Use
the rs.addArb() method, as in the following example:

rs.addArb("m1.example.net:30000")

This operation adds the arbiter running on port 30000 on the
m1.example.net host.

Convert a Standalone to a Replica Set

	Procedure
	Expand the Replica Set

	Sharding Considerations

This tutorial describes the process for converting a
standalone mongod instance into a three-member
replica set. Use standalone instances for testing and
development, but always use replica sets in production. To install a
standalone instance, see the installation tutorials.

To deploy a replica set without using a pre-existing mongod
instance, see Deploy a Replica Set.

Procedure

	Shut down the standalone mongod instance.

	Restart the instance. Use the --replSet
option to specify the name of the new replica set.

For example, the following command starts a standalone instance as a
member of a new replica set named rs0. The command uses the
standalone’s existing database path of /srv/mongodb/db0:

mongod --port 27017 --dbpath /srv/mongodb/db0 --replSet rs0

Important

If your application connects to more than one replica set, each set
should have a distinct name. Some drivers group replica set
connections by replica set name.

For more information on configuration options, see
Configuration File Options and the mongod
manual page.

	Connect to the mongod instance.

	Use rs.initiate() to initiate the new replica set:

rs.initiate()

The replica set is now operational.

To view the replica set configuration, use rs.conf(). To
check the status of the replica set, use rs.status().

Expand the Replica Set

Add additional replica set members by doing the following:

	On two distinct systems, start two new standalone mongod
instances. For information on starting a standalone instance, see
the installation tutorial specific
to your environment.

	On your connection to the original mongod instance (the
former standalone instance), issue a command in the following form
for each new instance to add to the replica set:

rs.add("<hostname><:port>")

Replace <hostname> and <port> with the resolvable hostname
and port of the mongod instance to add to the set. For
more information on adding a host to a replica set, see
Add Members to a Replica Set.

Sharding Considerations

If the new replica set is part of a sharded cluster, change
the shard host information in the config database by doing
the following:

	Connect to one of the sharded cluster’s mongos
instances and issue a command in the following form:

db.getSiblingDB("config").shards.save({_id: "<name>", host: "<replica-set>/<member,><member,><...>" })

Replace <name> with the name of the shard. Replace
<replica-set> with the name of the replica set. Replace
<member,><member,><> with the list of the members of the
replica set.

	Restart all mongos instances. If possible, restart all
components of the replica sets (i.e., all mongos and
all shard mongod instances).

Add Members to a Replica Set

Overview

This tutorial explains how to add an additional member to an existing
replica set. For background on replication deployment patterns,
see the Replica Set Deployment Architectures document.

Maximum Voting Members

A replica set can have a maximum of seven voting members. To add a member to a replica set
that already has seven votes, you must either add the member as a
non-voting member or remove a
vote from an existing member.

Control Scripts

In production deployments you can configure a control script
to manage member processes.

Existing Members

You can use these procedures to add new members to an existing
set. You can also use the same procedure to “re-add” a removed
member. If the removed member’s data is still relatively recent, it
can recover and catch up easily.

Data Files

If you have a backup or snapshot of an existing member, you can move
the data files (e.g. the dbpath directory) to a new system
and use them to quickly initiate a new member. The files must be:

	A consistent copy of the database from a member of the same replica
set. See Backup and Restore with Filesystem Snapshots
document for more information.

Important

Always use filesystem snapshots to create a copy of a
member of the existing replica set. Do not use
mongodump and mongorestore to seed a new
replica set member.

	More recent than the oldest operation in the primary’s oplog. The new member must be able to become
current by applying operations from the primary’s oplog.

Requirements

	An active replica set.

	A new MongoDB system capable of supporting your data set, accessible by
the active replica set through the network.

Otherwise, use the MongoDB installation tutorial and the Deploy a Replica Set
tutorials.

Procedures

Prepare the Data Directory

Before adding a new member to an existing replica set, prepare
the new member’s data directory using one of the
following strategies:

	Make sure the new member’s data directory does not contain data. The
new member will copy the data from an existing member.

If the new member is in a recovering state, it must exit and
become a secondary before MongoDB
can copy all data as part of the replication process. This process
takes time but does not require administrator intervention.

	Manually copy the data directory from an existing member. The new
member becomes a secondary member and will catch up to the current
state of the replica set. Copying the data over may shorten the
amount of time for the new member to become current.

Ensure that you can copy the data directory to the new member and
begin replication within the window allowed by the oplog. Otherwise, the new instance will have
to perform an initial sync, which completely resynchronizes the
data, as described in Resync a Member of a Replica Set.

Use rs.printReplicationInfo() to check the current state
of replica set members with regards to the oplog.

For background on replication deployment patterns, see the
Replica Set Deployment Architectures document.

Add a Member to an Existing Replica Set

	Start the new mongod instance. Specify the data directory
and the replica set name. The following example specifies the
/srv/mongodb/db0 data directory and the rs0 replica set:

mongod --dbpath /srv/mongodb/db0 --replSet rs0

Take note of the host name and port information for the new
mongod instance.

For more information on configuration options, see the
mongod manual page.

Optional

You can specify the data directory and replica set in the
mongo.conf configuration file, and start the
mongod with the following command:

mongod --config /etc/mongodb.conf

	Connect to the replica set’s primary.

You can only add members while connected to the primary. If you do
not know which member is the primary, log into any member of the
replica set and issue the db.isMaster() command.

	Use rs.add() to add the new member to the replica set. For
example, to add a member at host mongodb3.example.net, issue the
following command:

rs.add("mongodb3.example.net")

You can include the port number, depending on your setup:

rs.add("mongodb3.example.net:27017")

	Verify that the member is now part of the replica set. Call the
rs.conf() method, which displays the replica set
configuration:

rs.conf()

To view replica set status, issue the rs.status() method.
For a description of the status fields, see
replSetGetStatus.

Configure and Add a Member

You can add a member to a replica set by passing to the
rs.add() method a members
document. The document must be in the form of a
local.system.replset.members document. These documents define
a replica set member in the same form as the replica set
configuration document.

Important

Specify a value for the _id field of the
members document. MongoDB does not
automatically populate the _id field in this case. Finally, the
members document must declare the
host value. All other fields are optional.

Example

To add a member with the following configuration:

	an _id of 1.

	a hostname and port number of
mongodb3.example.net:27017.

	a priority value
within the replica set of 0.

	a configuration as hidden,

Issue the following:

rs.add({_id: 1, host: "mongodb3.example.net:27017", priority: 0, hidden: true})

Remove Members from Replica Set

To remove a member of a replica set use either of the
following procedures.

Remove a Member Using rs.remove()

	Shut down the mongod instance for the member you wish to
remove. To shut down the instance, connect using the
mongo shell and the db.shutdownServer()
method.

	Connect to the replica set’s current primary. To determine
the current primary, use db.isMaster() while connected to
any member of the replica set.

	Use rs.remove() in either of the following forms to
remove the member:

rs.remove("mongod3.example.net:27017")
rs.remove("mongod3.example.net")

MongoDB disconnects the shell briefly as the replica set elects a
new primary. The shell then automatically reconnects. The
shell displays a DBClientCursor::init call() failed error even
though the command succeeds.

Remove a Member Using rs.reconfig()

To remove a member you can manually edit the replica set
configuration document, as described
here.

	Shut down the mongod instance for the member you wish to
remove. To shut down the instance, connect using the
mongo shell and the db.shutdownServer()
method.

	Connect to the replica set’s current primary. To determine
the current primary, use db.isMaster() while connected to
any member of the replica set.

	Issue the rs.conf() method to view the current
configuration document and determine the position in the
members array of the member to remove:

Example

mongod_C.example.net is in position 2 of the
following configuration file:

{
 "_id" : "rs",
 "version" : 7,
 "members" : [
 {
 "_id" : 0,
 "host" : "mongod_A.example.net:27017"
 },
 {
 "_id" : 1,
 "host" : "mongod_B.example.net:27017"
 },
 {
 "_id" : 2,
 "host" : "mongod_C.example.net:27017"
 }
]
}

	Assign the current configuration document to the variable cfg:

cfg = rs.conf()

	Modify the cfg object to remove the member.

Example

To remove mongod_C.example.net:27017 use the following
JavaScript operation:

cfg.members.splice(2,1)

	Overwrite the replica set configuration document with the new
configuration by issuing the following:

rs.reconfig(cfg)

As a result of rs.reconfig() the shell will disconnect
while the replica set renegotiates which member is primary. The
shell displays a DBClientCursor::init call() failed error even
though the command succeeds, and will automatically reconnected.

	To confirm the new configuration, issue rs.conf().

For the example above the output would be:

{
 "_id" : "rs",
 "version" : 8,
 "members" : [
 {
 "_id" : 0,
 "host" : "mongod_A.example.net:27017"
 },
 {
 "_id" : 1,
 "host" : "mongod_B.example.net:27017"
 }
]
}

Replace a Replica Set Member

If you need to change the hostname of a replica set member without
changing the configuration of that member or the set, you can use the
operation outlined in this tutorial. For example if you must
re-provision systems or rename hosts, you can use this pattern to
minimize the scope of that change.

Operation

To change the hostname for a replica set member modify the
host field. The value of
_id field will not change
when you reconfigure the set.

See Replica Set Configuration and
rs.reconfig() for more information.

Note

Any replica set configuration change can trigger the current
primary to step down, which forces an election. During the election, the current shell
session and clients connected to this replica set disconnect,
which produces an error even when the operation succeeds.

Example

To change the hostname to mongo2.example.net for the replica set
member configured at members[0], issue the following sequence of
commands:

cfg = rs.conf()
cfg.members[0].host = "mongo2.example.net"
rs.reconfig(cfg)

Member Configuration Tutorials

The following tutorials provide information in configuring replica set
members to support specific operations, such as to provide dedicated
backups, to support reporting, or to act as a cold standby.

	Adjust Priority for Replica Set Member

	Change the precedence given to a replica set members in an
election for primary.

	Prevent Secondary from Becoming Primary

	Make a secondary member ineligible for election as primary.

	Configure a Hidden Replica Set Member

	Configure a secondary member to be invisible to applications in
order to support significantly different usage, such as a dedicated
backups.

	Configure a Delayed Replica Set Member

	Configure a secondary member to keep a delayed copy of the data set in
order to provide a rolling backup.

	Configure Non-Voting Replica Set Member

	Create a secondary member that keeps a copy of the data set but does
not vote in an election.

	Convert a Secondary to an Arbiter

	Convert a secondary to an arbiter.

	Adjust Priority for Replica Set Member

	Prevent Secondary from Becoming Primary

	Configure a Hidden Replica Set Member

	Configure a Delayed Replica Set Member

	Configure Non-Voting Replica Set Member

	Convert a Secondary to an Arbiter

Adjust Priority for Replica Set Member

To change the value of the
priority in the replica set
configuration, use the following sequence of commands in the
mongo shell:

cfg = rs.conf()
cfg.members[0].priority = 0.5
cfg.members[1].priority = 2
cfg.members[2].priority = 2
rs.reconfig(cfg)

The first operation uses rs.conf() to set the local variable
cfg to the contents of the current replica set configuration, which
is a document. The next three operations change the
priority value in the cfg
document for the first three members configured in the members array. The final operation calls
rs.reconfig() with the argument of cfg to initialize the
new configuration.

When updating the replica configuration object, access the replica set
members in the members array with the
array index. The array index begins with 0. Do not confuse
this index value with the value of the
_id field in each document in
the members array.

If a member has priority set
to 0, it is ineligible to become primary and will not seek
election. Hidden members,
delayed members, and
arbiters all have
priority set to 0.

All members have a priority
equal to 1 by default.

The value of priority can be
any floating point (i.e. decimal) number between 0 and 1000.
Priorities are only used to determine the preference in election. The
priority value is used only in relation to other members. With the
exception of members with a priority of 0, the absolute value of
the priority value is
irrelevant.

Replica sets will preferentially elect and maintain the primary status
of the member with the highest
priority setting.

Warning

Replica set reconfiguration can force the current primary to step
down, leading to an election for primary in the replica
set. Elections cause the current primary to close all open
client connections.

Perform routine replica set reconfiguration during scheduled
maintenance windows.

See also

The Replica Reconfiguration Usage example revolves around
changing the priorities of the members
of a replica set.

Prevent Secondary from Becoming Primary

To prevent a secondary member from ever becoming a
primary in a failover, assign the secondary a priority
of 0, as described here. You can set this “secondary-only mode” for
any member of the replica set, except the current primary. For a
detailed description of secondary-only members and their purposes, see
Priority 0 Replica Set Members.

To configure a member as secondary-only, set its
priority value to 0 in
the members document in its replica set
configuration. Any member with a
priority equal to 0 will
never seek election and cannot become
primary in any situation.

{
 "_id" : <num>,
 "host" : <hostname:port>,
 "priority" : 0
}

MongoDB does not permit the current primary to have a priority
of 0. To prevent the current primary from again becoming a primary,
you must first step down the current primary using
rs.stepDown(), and then you must reconfigure the replica
set with rs.conf() and
rs.reconfig().

Example

As an example of modifying member priorities, assume a four-member
replica set. Use the following sequence of operations to modify member
priorities in the mongo shell connected to the primary.
Identify each member by its array index in the
members array:

cfg = rs.conf()
cfg.members[0].priority = 2
cfg.members[1].priority = 1
cfg.members[2].priority = 0.5
cfg.members[3].priority = 0
rs.reconfig(cfg)

The sequence of operations reconfigures the set with the following
priority settings:

	Member at 0 has a priority of 2 so that it becomes primary under
most circumstances.

	Member at 1 has a priority of 1, which is the default value.
Member 1 becomes primary if no member with a higher priority is
eligible.

	Member at 2 has a priority of 0.5, which makes it less likely to
become primary than other members but doesn’t prohibit the
possibility.

	Member at 3 has a priority of 0.
Member at 3 cannot become the primary member under any
circumstances.

When updating the replica configuration object, access the replica set
members in the members array with the
array index. The array index begins with 0. Do not confuse
this index value with the value of the
_id field in each document in
the members array.

Warning

	The rs.reconfig() shell method can force the current
primary to step down, which causes an election. When the primary steps down, the
mongod closes all client connections. While this
typically takes 10-20 seconds, try to make these changes during
scheduled maintenance periods.

	To successfully reconfigure a replica set, a majority of the
members must be accessible. If your replica set has an even number
of members, add an arbiter to ensure that members can
quickly obtain a majority of votes in an election for primary.

Related Documents

	priority

	Adjust Priority for Replica Set Member

	Replica Set Reconfiguration

	Replica Set Elections

Configure a Hidden Replica Set Member

Hidden members are part of a replica set but cannot become
primary and are invisible to client applications. Hidden members
do, however, vote in elections. For a
detailed description of hidden members and their purposes, see
Hidden Replica Set Members.

If the chainingAllowed setting
allows secondary members to sync from other secondaries, MongoDB by
default prefers non-hidden members over hidden members when selecting
a sync target. MongoDB will only choose hidden members as a last
resort. If you want a secondary to sync from a hidden member, use the
replSetSyncFrom database command to override the default
sync target. See the documentation for replSetSyncFrom
before using the command.

See also

Manage Chained Replication

To configure a secondary member as hidden, set its
priority value to 0 and
set its hidden value to
true
in its member configuration:

{
 "_id" : <num>
 "host" : <hostname:port>,
 "priority" : 0,
 "hidden" : true
}

Example

The following example hides the secondary member currently at the index
0 in the members array. To configure
a hidden member, use the following sequence of operations in a
mongo shell connected to the primary, specifying the member
to configure by its array index in the
members array:

cfg = rs.conf()
cfg.members[0].priority = 0
cfg.members[0].hidden = true
rs.reconfig(cfg)

After re-configuring the set, this secondary member has a priority of
0 so that it cannot become primary and is hidden. The other members
in the set will not advertise the hidden member in the
isMaster or db.isMaster() output.

When updating the replica configuration object, access the replica set
members in the members array with the
array index. The array index begins with 0. Do not confuse
this index value with the value of the
_id field in each document in
the members array.

Warning

	The rs.reconfig() shell method can force the current
primary to step down, which causes an election. When the primary steps down, the
mongod closes all client connections. While this
typically takes 10-20 seconds, try to make these changes during
scheduled maintenance periods.

	To successfully reconfigure a replica set, a majority of the
members must be accessible. If your replica set has an even number
of members, add an arbiter to ensure that members can
quickly obtain a majority of votes in an election for primary.

Changed in version 2.0: For sharded clusters running with replica
sets before 2.0, if you reconfigured a member as hidden, you had
to restart mongos to prevent queries from reaching the
hidden member.

Related Documents

	Replica Set Reconfiguration

	Replica Set Elections

	Read Preference

Configure a Delayed Replica Set Member

To configure a delayed secondary member, set its
priority value to 0, its
hidden value to true, and
its slaveDelay value to the
number of seconds to delay.

Important

The length of the secondary
slaveDelay must
fit within the window of the oplog. If the oplog is shorter than
the slaveDelay
window, the delayed member cannot successfully replicate
operations.

When you configure a delayed member, the delay
applies both to replication and to the member’s oplog. For
details on delayed members and their uses, see
Delayed Replica Set Members.

Example

The following example sets a 1-hour delay on a secondary member
currently at the index 0 in the
members array. To set the delay, issue
the following sequence of operations in a mongo shell
connected to the primary:

cfg = rs.conf()
cfg.members[0].priority = 0
cfg.members[0].hidden = true
cfg.members[0].slaveDelay = 3600
rs.reconfig(cfg)

After the replica set reconfigures, the delayed secondary member cannot
become primary and is hidden from applications. The
slaveDelay value delays both
replication and the member’s oplog by 3600 seconds (1 hour).

When updating the replica configuration object, access the replica set
members in the members array with the
array index. The array index begins with 0. Do not confuse
this index value with the value of the
_id field in each document in
the members array.

Warning

	The rs.reconfig() shell method can force the current
primary to step down, which causes an election. When the primary steps down, the
mongod closes all client connections. While this
typically takes 10-20 seconds, try to make these changes during
scheduled maintenance periods.

	To successfully reconfigure a replica set, a majority of the
members must be accessible. If your replica set has an even number
of members, add an arbiter to ensure that members can
quickly obtain a majority of votes in an election for primary.

Related Documents

	slaveDelay

	Replica Set Reconfiguration

	Oplog Size

	Change the Size of the Oplog tutorial

	Replica Set Elections

Configure Non-Voting Replica Set Member

Non-voting members allow you to add additional members for read
distribution beyond the maximum seven voting members. To configure a
member as non-voting, set its
votes value to 0.

Example

To disable the ability to vote in elections for the fourth, fifth, and
sixth replica set members, use the following command sequence in the
mongo shell connected to the primary. You identify each
replica set member by its array index in the
members array:

cfg = rs.conf()
cfg.members[3].votes = 0
cfg.members[4].votes = 0
cfg.members[5].votes = 0
rs.reconfig(cfg)

This sequence gives 0 votes to the fourth, fifth, and sixth members
of the set according to the order of the
members array in the output of
rs.conf(). This setting allows the set to elect these members
as primary but does not allow them to vote in elections. Place
voting members so that your designated primary or primaries can reach a
majority of votes in the event of a network partition.

When updating the replica configuration object, access the replica set
members in the members array with the
array index. The array index begins with 0. Do not confuse
this index value with the value of the
_id field in each document in
the members array.

Warning

	The rs.reconfig() shell method can force the current
primary to step down, which causes an election. When the primary steps down, the
mongod closes all client connections. While this
typically takes 10-20 seconds, try to make these changes during
scheduled maintenance periods.

	To successfully reconfigure a replica set, a majority of the
members must be accessible. If your replica set has an even number
of members, add an arbiter to ensure that members can
quickly obtain a majority of votes in an election for primary.

In general and when possible, all members should have only 1 vote. This
prevents intermittent ties, deadlocks, or the wrong members from
becoming primary. Use priority
to control which members are more likely to become primary.

Related Documents

	votes

	Replica Set Reconfiguration

	Replica Set Elections

Convert a Secondary to an Arbiter

	Convert Secondary to Arbiter and Reuse the Port Number

	Convert Secondary to Arbiter Running on a New Port Number

If you have a secondary in a replica set that no
longer needs to hold data but that needs to remain in the set to
ensure that the set can elect a primary, you may convert the secondary to an
arbiter using either procedure in this
tutorial. Both procedures are operationally equivalent:

	You may operate the arbiter on the same port as the former secondary.
In this procedure, you must shut down the secondary and remove its
data before restarting and reconfiguring it as an arbiter.

For this procedure, see Convert Secondary to Arbiter and Reuse the Port Number.

	Run the arbiter on a new port. In this procedure, you can reconfigure
the server as an arbiter before shutting down the instance running as
a secondary.

For this procedure, see Convert Secondary to Arbiter Running on a New Port Number.

Convert Secondary to Arbiter and Reuse the Port Number

	If your application is connecting directly to the secondary,
modify the application so that MongoDB queries don’t reach
the secondary.

	Shut down the secondary.

	Remove the secondary from the replica set by calling
the rs.remove() method. Perform this operation while connected to the current
primary in the mongo shell:

rs.remove("<hostname><:port>")

	Verify that the replica set no longer includes the secondary by
calling the rs.conf() method in the mongo shell:

rs.conf()

	Move the secondary’s data directory to an archive folder. For example:

mv /data/db /data/db-old

Optional

You may remove the data instead.

	Create a new, empty data directory to point to when restarting the
mongod instance. You can reuse the previous name. For
example:

mkdir /data/db

	Restart the mongod instance for the secondary, specifying
the port number, the empty data directory, and the replica set. You
can use the same port number you used before. Issue a command similar
to the following:

mongod --port 27021 --dbpath /data/db --replSet rs

	In the mongo shell convert the secondary to an arbiter
using the rs.addArb() method:

rs.addArb("<hostname><:port>")

	Verify the arbiter belongs to the replica set by calling the
rs.conf() method in the mongo shell.

rs.conf()

The arbiter member should include the following:

"arbiterOnly" : true

Convert Secondary to Arbiter Running on a New Port Number

	If your application is connecting directly to the secondary
or has a connection string referencing the secondary,
modify the application so that MongoDB queries don’t reach
the secondary.

	Create a new, empty data directory to be used with the new port
number. For example:

mkdir /data/db-temp

	Start a new mongod instance on the new port number,
specifying the new data directory and the existing replica
set. Issue a command similar to the following:

mongod --port 27021 --dbpath /data/db-temp --replSet rs

	In the mongo shell connected to the current primary,
convert the new mongod instance to an arbiter using the rs.addArb()
method:

rs.addArb("<hostname><:port>")

	Verify the arbiter has been added to the replica set by calling the
rs.conf() method in the mongo shell.

rs.conf()

The arbiter member should include the following:

"arbiterOnly" : true

	Shut down the secondary.

	Remove the secondary from the replica set by calling
the rs.remove() method in the mongo shell:

rs.remove("<hostname><:port>")

	Verify that the replica set no longer includes the old secondary by
calling the rs.conf() method in the mongo shell:

rs.conf()

	Move the secondary’s data directory to an archive folder. For example:

mv /data/db /data/db-old

Optional

You may remove the data instead.

Replica Set Maintenance Tutorials

The following tutorials provide information in maintaining existing
replica sets.

	Change the Size of the Oplog

	Increase the size of the oplog which logs operations.
In most cases, the default oplog size is sufficient.

	Force a Member to Become Primary

	Force a replica set member to become primary.

	Resync a Member of a Replica Set

	Sync the data on a member. Either perform initial sync on a new member
or resync the data on an existing member that has fallen too far
behind to catch up by way of normal replication.

	Configure Replica Set Tag Sets

	Assign tags to replica set members for use in targeting read and
write operations to specific members.

	Reconfigure a Replica Set with Unavailable Members

	Reconfigure a replica set when a majority of replica set members
are down or unreachable.

	Manage Chained Replication

	Disable or enable chained replication. Chained replication occurs
when a secondary replicates from another secondary instead of the
primary.

	Change Hostnames in a Replica Set

	Update the replica set configuration to reflect changes in members’
hostnames.

	Configure a Secondary’s Sync Target

	Specify the member that a secondary member synchronizes from.

	Change the Size of the Oplog

	Force a Member to Become Primary

	Resync a Member of a Replica Set

	Configure Replica Set Tag Sets

	Reconfigure a Replica Set with Unavailable Members

	Manage Chained Replication

	Change Hostnames in a Replica Set

	Configure a Secondary’s Sync Target

Change the Size of the Oplog

The oplog exists internally as a capped collection, so
you cannot modify its size in the course of normal operations. In most
cases the default oplog size is an
acceptable size; however, in some situations you may need a larger or
smaller oplog. For example, you might need to change the oplog size
if your applications perform large numbers of multi-updates or
deletes in short periods of time.

This tutorial describes how to resize the oplog. For a detailed
explanation of oplog sizing, see Oplog Size. For
details how oplog size affects delayed members and affects replication lag, see
Delayed Replica Set Members.

Overview

To change the size of the oplog, you must perform maintenance on each
member of the replica set in turn. The procedure requires: stopping
the mongod instance and starting as a standalone instance,
modifying the oplog size, and restarting the member.

Important

Always start rolling replica set maintenance with the
secondaries, and finish with the maintenance on primary member.

Procedure

	Restart the member in standalone mode.

Tip

Always use rs.stepDown() to force the primary to
become a secondary, before stopping the server. This facilitates
a more efficient election process.

	Recreate the oplog with the new size and with an old oplog entry as
a seed.

	Restart the mongod instance as a member of the replica
set.

Restart a Secondary in Standalone Mode on a Different Port

Shut down the mongod instance for one of the non-primary
members of your replica set. For example, to shut down, use the
db.shutdownServer() method:

db.shutdownServer()

Restart this mongod as a standalone instance
running on a different port and without
the --replSet parameter. Use a command
similar to the following:

mongod --port 37017 --dbpath /srv/mongodb

Create a Backup of the Oplog (Optional)

Optionally, backup the existing oplog on the standalone instance, as
in the following example:

mongodump --db local --collection 'oplog.rs' --port 37017

Recreate the Oplog with a New Size and a Seed Entry

Save the last entry from the oplog. For example, connect to the instance
using the mongo shell, and enter the following command to
switch to the local database:

use local

In mongo shell scripts you can use the following operation
to set the db object:

db = db.getSiblingDB('local')

Use the db.collection.save() method and a sort on
reverse natural order to find the last entry and save it
to a temporary collection:

db.temp.save(db.oplog.rs.find({ }, { ts: 1, h: 1 }).sort({$natural : -1}).limit(1).next())

To see this oplog entry, use the following operation:

db.temp.find()

Remove the Existing Oplog Collection

Drop the old oplog.rs collection in the local database. Use
the following command:

db = db.getSiblingDB('local')
db.oplog.rs.drop()

This returns true in the shell.

Create a New Oplog

Use the create command to create a new oplog of a
different size. Specify the size argument in bytes. A value of
2 * 1024 * 1024 * 1024 will create a new oplog that’s 2 gigabytes:

db.runCommand({ create: "oplog.rs", capped: true, size: (2 * 1024 * 1024 * 1024) })

Upon success, this command returns the following status:

{ "ok" : 1 }

Insert the Last Entry of the Old Oplog into the New Oplog

Insert the previously saved last entry from the old oplog into the
new oplog. For example:

db.oplog.rs.save(db.temp.findOne())

To confirm the entry is in the new oplog, use the following operation:

db.oplog.rs.find()

Restart the Member

Restart the mongod as a member of the replica set on its
usual port. For example:

db.shutdownServer()
mongod --replSet rs0 --dbpath /srv/mongodb

The replica set member will recover and “catch up” before it is
eligible for election to primary.

Repeat Process for all Members that may become Primary

Repeat this procedure for all members you want to change the size of
the oplog. Repeat the procedure for the primary as part of the
following step.

Change the Size of the Oplog on the Primary

To finish the rolling maintenance operation, step down the primary with the
rs.stepDown() method and repeat the oplog resizing procedure
above.

Force a Member to Become Primary

Synopsis

You can force a replica set member to become primary
by giving it a higher
priority value than any other
member in the set.

Optionally, you also can force a member never to become primary by
setting its priority value to
0, which means the member can never seek election as primary. For more information, see
Priority 0 Replica Set Members.

Procedures

Force a Member to be Primary by Setting its Priority High

Changed in version 2.0.

For more information on priorities, see
priority.

This procedure assumes your current primary is
m1.example.net and that you’d like to instead make m3.example.net primary.
The procedure also assumes you have a three-member replica set with the
configuration below. For more information on configurations, see Replica Set
Configuration Use.

This procedure assumes this configuration:

{
 "_id" : "rs",
 "version" : 7,
 "members" : [
 {
 "_id" : 0,
 "host" : "m1.example.net:27017"
 },
 {
 "_id" : 1,
 "host" : "m2.example.net:27017"
 },
 {
 "_id" : 2,
 "host" : "m3.example.net:27017"
 }
]
}

	In the mongo shell, use the following sequence of operations
to make m3.example.net the primary:

cfg = rs.conf()
cfg.members[0].priority = 0.5
cfg.members[1].priority = 0.5
cfg.members[2].priority = 1
rs.reconfig(cfg)

This sets m3.example.net to have a higher
local.system.replset.members[n].priority value than the other mongod
instances.

The following sequence of events occur:

	m3.example.net and m2.example.net sync with
m1.example.net (typically within 10 seconds).

	m1.example.net sees that it no longer has highest priority and,
in most cases, steps down. m1.example.net does not step down
if m3.example.net‘s sync is far behind. In that case,
m1.example.net waits until m3.example.net is within 10
seconds of its optime and then steps down. This minimizes the
amount of time with no primary following failover.

	The step down forces on election in which m3.example.net
becomes primary based on its priority setting.

	Optionally, if m3.example.net is more than 10 seconds behind
m1.example.net‘s optime, and if you don’t need to have a primary
designated within 10 seconds, you can force m1.example.net to
step down by running:

db.adminCommand({replSetStepDown: 86400, force: 1})

This prevents m1.example.net from being primary for 86,400
seconds (24 hours), even if there is no other member that can become primary.
When m3.example.net catches up with m1.example.net it will
become primary.

If you later want to make m1.example.net
primary again while it waits for m3.example.net to catch up,
issue the following command to make m1.example.net seek election
again:

rs.freeze()

The rs.freeze() provides a wrapper around the
replSetFreeze database command.

Force a Member to be Primary Using Database Commands

Changed in version 1.8.

Consider a replica set with the following members:

	mdb0.example.net - the current primary.

	mdb1.example.net - a secondary.

	mdb2.example.net - a secondary .

To force a member to become primary use the following procedure:

	In a mongo shell, run rs.status() to ensure your replica
set is running as expected.

	In a mongo shell connected to the mongod
instance running on mdb2.example.net, freeze
mdb2.example.net so that it does not attempt to become primary
for 120 seconds.

rs.freeze(120)

	In a mongo shell connected the mongod running
on mdb0.example.net, step down this instance that the
mongod is not eligible to become primary for 120
seconds:

rs.stepDown(120)

mdb1.example.net becomes primary.

Note

During the transition, there is a short window where
the set does not have a primary.

For more information, consider the rs.freeze() and
rs.stepDown() methods that wrap the
replSetFreeze and replSetStepDown commands.

Resync a Member of a Replica Set

A replica set member becomes “stale” when its replication
process falls so far behind that the primary overwrites oplog
entries the member has not yet replicated. The member cannot catch up
and becomes “stale.” When this occurs, you must completely
resynchronize the member by removing its data and performing an
initial sync.

This tutorial addressed both resyncing a stale member and to creating a
new member using seed data from another member. When syncing a member,
choose a time when the system has the bandwidth to move a large amount
of data. Schedule the synchronization during a time of low usage or
during a maintenance window.

MongoDB provides two options for performing an initial sync:

	Restart the mongod with an empty data directory and let
MongoDB’s normal initial syncing feature restore the data. This
is the more simple option but may take longer to replace the data.

See Automatically Sync a Member.

	Restart the machine with a copy of a recent data directory from
another member in the replica set. This procedure can replace
the data more quickly but requires more manual steps.

See Sync by Copying Data Files from Another Member.

Automatically Sync a Member

This procedure relies on MongoDB’s regular process for initial
sync. This will store the current data on
the member. For an overview of MongoDB initial sync process, see the
Replication Processes section.

To sync or resync a member:

	If the member is an existing member, do the following:

	Stop the member’s mongod instance.
To ensure a clean shutdown, use the db.shutdownServer()
method from the mongo shell or on Linux systems, the
mongod --shutdown option.

	Delete all data and sub-directories from the member’s data
directory. By removing the data dbpath, MongoDB will
perform a complete resync. Consider making a backup first.

	Start the mongod instance on the member. For example:

mongod --dbpath /data/db/ --replSet rsProduction

At this point, the mongod will perform an initial
sync. The length of the initial sync may process depends on the
size of the database and network connection between members of the
replica set.

Initial sync operations can impact the other members of the set and
create additional traffic to the primary and can only occur if
another member of the set is accessible and up to date.

Sync by Copying Data Files from Another Member

This approach “seeds” a new or stale member using the data files from
an existing member of the replica set. The data files must be
sufficiently recent to allow the new member to catch up with the
oplog. Otherwise the member would need to perform an initial
sync.

Copy the Data Files

You can capture the data files as either a snapshot or a direct copy.
However, in most cases you cannot copy data files from a running
mongod instance to another because the data files will change
during the file copy operation.

Important

If copying data files, you must copy the content of the local
database.

You cannot use a mongodump backup to for the data files,
only a snapshot backup. For approaches to capture a consistent
snapshot of a running mongod instance, see the
Backup Strategies for MongoDB Systems documentation.

Sync the Member

After you have copied the data files from the “seed” source, start the
mongod instance and allow it to apply all operations from
the oplog until it reflects the current state of the replica set.

Configure Replica Set Tag Sets

	Differences Between Read Preferences and Write Concerns

	Add Tag Sets to a Replica Set

	Custom Multi-Datacenter Write Concerns

	Configure Tag Sets for Functional Segregation of Read and Write Operations

Tag sets let you customize write concern and read
preferences for a replica set. MongoDB
stores tag sets in the replica set configuration object, which is the
document returned by rs.conf(), in the members[n].tags sub-document.

This section introduces the configuration of tag sets. For an
overview on tag sets and their use, see
Replica Set Write Concern and
Tag Sets.

Differences Between Read Preferences and Write Concerns

Custom read preferences and write concerns evaluate tags sets in
different ways:

	Read preferences consider the value of a tag when selecting a
member to read from.

	Write concerns do not use the value of a tag to select a member
except to consider whether or not the value is unique.

For example, a tag set for a read operation may resemble the following
document:

{ "disk": "ssd", "use": "reporting" }

To fulfill such a read operation, a member would need to have both of these tags.
Any of the following tag sets would satisfy this requirement:

{ "disk": "ssd", "use": "reporting" }
{ "disk": "ssd", "use": "reporting", "rack": "a" }
{ "disk": "ssd", "use": "reporting", "rack": "d" }
{ "disk": "ssd", "use": "reporting", "mem": "r"}

The following tag sets would not be able to fulfill this query:

{ "disk": "ssd" }
{ "use": "reporting" }
{ "disk": "ssd", "use": "production" }
{ "disk": "ssd", "use": "production", "rack": "k" }
{ "disk": "spinning", "use": "reporting", "mem": "32" }

Add Tag Sets to a Replica Set

Given the following replica set configuration:

{
 "_id" : "rs0",
 "version" : 1,
 "members" : [
 {
 "_id" : 0,
 "host" : "mongodb0.example.net:27017"
 },
 {
 "_id" : 1,
 "host" : "mongodb1.example.net:27017"
 },
 {
 "_id" : 2,
 "host" : "mongodb2.example.net:27017"
 }
]
}

You could add tag sets to the members of this replica set
with the following command sequence in the mongo shell:

conf = rs.conf()
conf.members[0].tags = { "dc": "east", "use": "production" }
conf.members[1].tags = { "dc": "east", "use": "reporting" }
conf.members[2].tags = { "use": "production" }
rs.reconfig(conf)

After this operation the output of rs.conf() would
resemble the following:

{
 "_id" : "rs0",
 "version" : 2,
 "members" : [
 {
 "_id" : 0,
 "host" : "mongodb0.example.net:27017",
 "tags" : {
 "dc": "east",
 "use": "production"
 }
 },
 {
 "_id" : 1,
 "host" : "mongodb1.example.net:27017",
 "tags" : {
 "dc": "east",
 "use": "reporting"
 }
 },
 {
 "_id" : 2,
 "host" : "mongodb2.example.net:27017",
 "tags" : {
 "use": "production"
 }
 }
]
}

Important

In tag sets, all tag values must be strings.

Custom Multi-Datacenter Write Concerns

Given a five member replica set with members in two data centers:

	a facility VA tagged dc.va

	a facility GTO tagged dc.gto

Create a custom write concern to require confirmation from two
data centers using replica set tags, using the following sequence
of operations in the mongo shell:

	Create a replica set configuration JavaScript object conf:

conf = rs.conf()

	Add tags to the replica set members reflecting their locations:

conf.members[0].tags = { "dc.va": "rack1"}
conf.members[1].tags = { "dc.va": "rack2"}
conf.members[2].tags = { "dc.gto": "rack1"}
conf.members[3].tags = { "dc.gto": "rack2"}
conf.members[4].tags = { "dc.va": "rack1"}
rs.reconfig(conf)

	Create a custom
getLastErrorModes setting to
ensure that the write operation will propagate to at least one member
of each facility:

conf.settings = { getLastErrorModes: { MultipleDC : { "dc.va": 1, "dc.gto": 1}}

	Reconfigure the replica set using the modified conf configuration
object:

rs.reconfig(conf)

To ensure that a write operation propagates to at least one member of
the set in both data centers, use the MultipleDC write concern
mode as follows:

db.runCommand({ getLastError: 1, w: "MultipleDC" })

Alternatively, if you want to ensure that each write operation
propagates to at least 2 racks in each facility, reconfigure the
replica set as follows in the mongo shell:

	Create a replica set configuration object conf:

conf = rs.conf()

	Redefine the
getLastErrorModes value to
require two different values of both dc.va and dc.gto:

conf.settings = { getLastErrorModes: { MultipleDC : { "dc.va": 2, "dc.gto": 2}}

	Reconfigure the replica set using the modified conf configuration
object:

rs.reconfig(conf)

Now, the following write concern operation will only return after the
write operation propagates to at least two different racks in the
each facility:

db.runCommand({ getLastError: 1, w: "MultipleDC" })

Configure Tag Sets for Functional Segregation of Read and Write Operations

Given a replica set with tag sets that reflect:

	data center facility,

	physical rack location of instance, and

	storage system (i.e. disk) type.

Where each member of the set has a tag set that resembles one of the
following: [1]

{"dc.va": "rack1", disk:"ssd", ssd: "installed" }
{"dc.va": "rack2", disk:"raid"}
{"dc.gto": "rack1", disk:"ssd", ssd: "installed" }
{"dc.gto": "rack2", disk:"raid"}
{"dc.va": "rack1", disk:"ssd", ssd: "installed" }

To target a read operation to a member of the replica set with a
disk type of ssd, you could use the following tag set:

{ disk: "ssd" }

However, to create comparable write concern modes, you would specify a
different set of
getLastErrorModes
configuration. Consider the following sequence of operations in
the mongo shell:

	Create a replica set configuration object conf:

conf = rs.conf()

	Redefine the
getLastErrorModes value to
configure two write concern modes:

conf.settings = {
 "getLastErrorModes" : {
 "ssd" : {
 "ssd" : 1
 },
 "MultipleDC" : {
 "dc.va" : 1,
 "dc.gto" : 1
 }
 }
 }

	Reconfigure the replica set using the modified conf configuration
object:

rs.reconfig(conf)

Now you can specify the MultipleDC write concern mode, as in the
following operation, to ensure that a write operation propagates to
each data center.

db.runCommand({ getLastError: 1, w: "MultipleDC" })

Additionally, you can specify the ssd write concern mode to ensure that a write operation propagates
to at least one instance with an SSD.

	[1]	Since read preferences and write concerns
use the value of fields in tag sets differently, larger
deployments may have some redundancy.

Reconfigure a Replica Set with Unavailable Members

To reconfigure a replica set when a minority of
members are unavailable, use the rs.reconfig()
operation on
the current primary, following the example in the
Replica Set Reconfiguration Procedure.

This document provides the following options for re-configuring a
replica set when a majority of members are not accessible:

	Reconfigure by Forcing the Reconfiguration

	Reconfigure by Replacing the Replica Set

You may need to use one of these procedures, for example, in a
geographically distributed replica set, where no local group of
members can reach a majority. See Replica Set Elections for more
information on this situation.

Reconfigure by Forcing the Reconfiguration

Changed in version 2.0.

This procedure lets you recover while a majority of replica set
members are down or unreachable. You connect to any surviving member and
use the force option to the rs.reconfig() method.

The force option forces a new configuration onto the. Use this procedure only to
recover from catastrophic interruptions. Do not use force every
time you reconfigure. Also, do not use the force option in any automatic
scripts and do not use force when there is still a primary.

To force reconfiguration:

	Back up a surviving member.

	Connect to a surviving member and save the current configuration.
Consider the following example commands for saving the configuration:

cfg = rs.conf()

printjson(cfg)

	On the same member, remove the down and unreachable members of the
replica set from the members array by
setting the array equal to the surviving members alone. Consider the
following example, which uses the cfg variable created in the
previous step:

cfg.members = [cfg.members[0] , cfg.members[4] , cfg.members[7]]

	On the same member, reconfigure the set by using the
rs.reconfig() command with the force option set to
true:

rs.reconfig(cfg, {force : true})

This operation forces the secondary to use the new configuration. The
configuration is then propagated to all the surviving members listed
in the members array. The replica set then elects a new primary.

Note

When you use force : true, the version number in the replica
set configuration increases significantly, by tens or hundreds
of thousands. This is normal and designed to prevent set version
collisions if you accidentally force re-configurations on both
sides of a network partition and then the network partitioning
ends.

	If the failure or partition was only temporary, shut down or
decommission the removed members as soon as possible.

Reconfigure by Replacing the Replica Set

Use the following procedure only for versions of MongoDB prior to
version 2.0. If you’re running MongoDB 2.0 or later, use the above
procedure, Reconfigure by Forcing the Reconfiguration.

These procedures are for situations where a majority of the
replica set members are down or unreachable. If a majority is
running, then skip these procedures and instead use the
rs.reconfig() command according to the examples in
Example Reconfiguration Operations.

If you run a pre-2.0 version and a majority of your replica set is down,
you have the two options described here. Both involve replacing the
replica set.

Reconfigure by Turning Off Replication

This option replaces the replica set with a standalone server.

	Stop the surviving mongod instances. To ensure a clean shutdown, use
an existing control script or use the db.shutdownServer() method.

For example, to use the db.shutdownServer() method, connect
to the server using the mongo shell and issue the
following sequence of commands:

use admin
db.shutdownServer()

	Create a backup of the data directory (i.e. dbpath) of
the surviving members of the set.

Optional

If you have a backup of the database you may instead remove
this data.

	Restart one of the mongod instances without the
--replSet parameter.

The data is now accessible and provided by a single server that is
not a replica set member. Clients can use this server for both
reads and writes.

When possible, re-deploy a replica set to provide redundancy and to
protect your deployment from operational interruption.

Reconfigure by “Breaking the Mirror”

This option selects a surviving replica set member to be the
new primary and to “seed” a new replica set. In the following
procedure, the new primary is db0.example.net. MongoDB copies the
data from db0.example.net to all the other members.

	Stop the surviving mongod instances. To ensure a clean
shutdown, use an existing control script or use the
db.shutdownServer() method.

For example, to use the db.shutdownServer() method, connect
to the server using the mongo shell and issue the
following sequence of commands:

use admin
db.shutdownServer()

	Move the data directories (i.e. dbpath)
for all the members except db0.example.net, so that all the
members except db0.example.net have empty data directories. For
example:

mv /data/db /data/db-old

	Move the data files for local database (i.e. local.*) so
that db0.example.net has no local database. For example

mkdir /data/local-old
mv /data/db/local* /data/local-old/

	Start each member of the replica set normally.

	Connect to db0.example.net in a mongo shell and run rs.initiate()
to initiate the replica set.

	Add the other set members using rs.add(). For example, to
add a member running on db1.example.net at port 27017, issue
the following command:

rs.add("db1.example.net:27017")

MongoDB performs an initial sync on the added members by copying all
data from db0.example.net to the added members.

See also

Resync a Member of a Replica Set

Manage Chained Replication

Starting in version 2.0, MongoDB supports chained replication. A
chained replication occurs when a secondary member replicates
from another secondary member instead of from the primary. This
might be the case, for example, if a secondary selects its replication
target based on ping time and if the closest member is another
secondary.

Chained replication can reduce load on the primary. But chained
replication can also result in increased replication lag, depending on
the topology of the network.

New in version 2.2.2.

You can use the chainingAllowed
setting in Replica Set Configuration to disable chained
replication for situations where chained replication is causing lag.

MongoDB enables chained replication by default. This procedure
describes how to disable it and how to re-enable it.

Note

If chained replication is disabled, you still can use
replSetSyncFrom to specify that a secondary replicates
from another secondary. But that configuration will last only until the
secondary recalculates which member to sync from.

Disable Chained Replication

To disable chained replication, set the
chainingAllowed
field in Replica Set Configuration to false.

You can use the following sequence of commands to set
chainingAllowed to
false:

	Copy the configuration settings into the cfg object:

cfg = rs.config()

	Take note of whether the current configuration settings contain the
settings sub-document. If they do, skip this step.

Warning

To avoid data loss, skip this step if the configuration
settings contain the settings sub-document.

If the current configuration settings do not contain the
settings sub-document, create the sub-document by issuing the
following command:

cfg.settings = { }

	Issue the following sequence of commands to set
chainingAllowed to
false:

cfg.settings.chainingAllowed = false
rs.reconfig(cfg)

Re-enable Chained Replication

To re-enable chained replication, set
chainingAllowed to true.
You can use the following sequence of commands:

cfg = rs.config()
cfg.settings.chainingAllowed = true
rs.reconfig(cfg)

Change Hostnames in a Replica Set

	Overview

	Assumptions

	Change Hostnames while Maintaining Replica Set Availability

	Change All Hostnames at the Same Time

For most replica sets, the hostnames in the
host field never change.
However, if organizational needs change, you might need to migrate some
or all host names.

Note

Always use resolvable hostnames for the value of the
host field in the replica
set configuration to avoid confusion and complexity.

Overview

This document provides two separate procedures for changing the
hostnames in the host
field. Use either of the following approaches:

	Change hostnames without disrupting availability. This approach ensures your
applications will always be able to read and write data to the replica
set, but the approach can take a long time and may incur downtime at
the application layer.

If you use the first procedure, you must configure your applications
to connect to the replica set at both the old and new locations, which
often requires a restart and reconfiguration at the application layer
and which may affect the availability of your applications.
Re-configuring applications is beyond the scope of this document.

	Stop all members running on the old hostnames at once. This approach has a shorter
maintenance window, but the replica set will be unavailable during
the operation.

See also

Replica Set Reconfiguration Process,
Deploy a Replica Set, and
Add Members to a Replica Set.

Assumptions

Given a replica set with three members:

	database0.example.com:27017 (the primary)

	database1.example.com:27017

	database2.example.com:27017

And with the following rs.conf() output:

{
 "_id" : "rs",
 "version" : 3,
 "members" : [
 {
 "_id" : 0,
 "host" : "database0.example.com:27017"
 },
 {
 "_id" : 1,
 "host" : "database1.example.com:27017"
 },
 {
 "_id" : 2,
 "host" : "database2.example.com:27017"
 }
]
}

The following procedures change the members’ hostnames as follows:

	mongodb0.example.net:27017 (the primary)

	mongodb1.example.net:27017

	mongodb2.example.net:27017

Use the most appropriate procedure for your deployment.

Change Hostnames while Maintaining Replica Set Availability

This procedure uses the above assumptions.

	For each secondary in the replica set, perform the
following sequence of operations:

	Stop the secondary.

	Restart the secondary at the new location.

	Open a mongo shell connected to the replica set’s
primary. In our example, the primary runs on port 27017 so you
would issue the following command:

mongo --port 27017

	Use rs.reconfig() to update the replica set
configuration document with
the new hostname.

For example, the following sequence of commands updates the
hostname for the secondary at the array index 1 of the
members array (i.e. members[1]) in the replica set
configuration document:

cfg = rs.conf()
cfg.members[1].host = "mongodb1.example.net:27017"
rs.reconfig(cfg)

For more information on updating the configuration document, see
Example Reconfiguration Operations.

	Make sure your client applications are able to access the
set at the new location and that the secondary has a chance to
catch up with the other members of the set.

Repeat the above steps for each non-primary member of the set.

	Open a mongo shell connected to the primary and step
down the primary using the rs.stepDown() method:

rs.stepDown()

The replica set elects another member to the become primary.

	When the step down succeeds, shut down the old primary.

	Start the mongod instance that will become the new primary
in the new location.

	Connect to the current primary, which was just elected, and update
the replica set configuration document with the hostname of the node that
is to become the new primary.

For example, if the old primary was at position 0 and the new
primary’s hostname is mongodb0.example.net:27017, you would run:

cfg = rs.conf()
cfg.members[0].host = "mongodb0.example.net:27017"
rs.reconfig(cfg)

	Open a mongo shell connected to the new primary.

	To confirm the new configuration, call rs.conf() in the
mongo shell.

Your output should resemble:

{
 "_id" : "rs",
 "version" : 4,
 "members" : [
 {
 "_id" : 0,
 "host" : "mongodb0.example.net:27017"
 },
 {
 "_id" : 1,
 "host" : "mongodb1.example.net:27017"
 },
 {
 "_id" : 2,
 "host" : "mongodb2.example.net:27017"
 }
]
}

Change All Hostnames at the Same Time

This procedure uses the above assumptions.

	Stop all members in the replica set.

	Restart each member on a different port and without using the
--replSet run-time option. Changing
the port number during maintenance prevents clients from connecting
to this host while you perform maintenance. Use the member’s usual
--dbpath, which in this
example is /data/db1. Use a command that resembles the following:

mongod --dbpath /data/db1/ --port 37017

	For each member of the replica set, perform the following sequence
of operations:

	Open a mongo shell connected to the mongod
running on the new, temporary port. For example, for a member
running on a temporary port of 37017, you would issue this
command:

mongo --port 37017

	Edit the replica set configuration manually. The replica set
configuration is the only document in the system.replset
collection in the local database. Edit the replica set
configuration with the new hostnames and correct ports for all
the members of the replica set. Consider the following sequence of
commands to change the hostnames in a three-member set:

use local

cfg = db.system.replset.findOne({ "_id": "rs" })

cfg.members[0].host = "mongodb0.example.net:27017"

cfg.members[1].host = "mongodb1.example.net:27017"

cfg.members[2].host = "mongodb2.example.net:27017"

db.system.replset.update({ "_id": "rs" } , cfg)

	Stop the mongod process on the member.

	After re-configuring all members of the set, start each
mongod instance in the normal way: use the usual port
number and use the --replSet option. For
example:

mongod --dbpath /data/db1/ --port 27017 --replSet rs

	Connect to one of the mongod instances
using the mongo shell. For example:

mongo --port 27017

	To confirm the new configuration, call rs.conf() in the
mongo shell.

Your output should resemble:

{
 "_id" : "rs",
 "version" : 4,
 "members" : [
 {
 "_id" : 0,
 "host" : "mongodb0.example.net:27017"
 },
 {
 "_id" : 1,
 "host" : "mongodb1.example.net:27017"
 },
 {
 "_id" : 2,
 "host" : "mongodb2.example.net:27017"
 }
]
}

Configure a Secondary’s Sync Target

To override the default sync target selection logic, you may manually
configure a secondary member’s sync target for pulling
oplog entries temporarily. The following operations provide
access to this functionality:

	replSetSyncFrom command, or

	rs.syncFrom() helper in the mongo shell

Only modify the default sync logic as needed, and always exercise
caution. rs.syncFrom() will not affect an in-progress
initial sync operation. To affect the sync target for the initial sync, run
rs.syncFrom() operation before initial sync.

If you run rs.syncFrom() during initial sync, MongoDB
produces no error messages, but the sync target will not change until
after the initial sync operation.

Note

replSetSyncFrom and rs.syncFrom() provide a
temporary override of default behavior. mongod will revert
to the default sync behavior in the following situations:

	The mongod instance restarts.

	The connection between the mongod and the sync target
closes.

Changed in version 2.4: The sync target falls more than 30 seconds behind another member of
the replica set; the mongod will revert to the default
sync target.

Troubleshoot Replica Sets

This section describes common strategies for troubleshooting
replica set deployments.

Check Replica Set Status

To display the current state of the replica set and current state of
each member, run the rs.status() method in a mongo
shell connected to the replica set’s primary. For descriptions
of the information displayed by rs.status(), see
replSetGetStatus.

Note

The rs.status() method is a wrapper that runs the
replSetGetStatus database command.

Check the Replication Lag

Replication lag is a delay between an operation on the primary
and the application of that operation from the oplog to the
secondary. Replication lag can be a significant issue and can
seriously affect MongoDB replica set deployments. Excessive
replication lag makes “lagged” members ineligible to quickly become
primary and increases the possibility that distributed
read operations will be inconsistent.

To check the current length of replication lag:

	In a mongo shell connected to the primary, call the
rs.printSlaveReplicationInfo() method.

The returned document displays the syncedTo value for each member,
which shows you when each member last read from the oplog, as shown in the following
example:

source: m1.example.net:30001
 syncedTo: Tue Oct 02 2012 11:33:40 GMT-0400 (EDT)
 = 7475 secs ago (2.08hrs)
source: m2.example.net:30002
 syncedTo: Tue Oct 02 2012 11:33:40 GMT-0400 (EDT)
 = 7475 secs ago (2.08hrs)

Note

The rs.status() method is a wrapper around the
replSetGetStatus database command.

	Monitor the rate of replication by watching the oplog time in the
“replica” graph in the MongoDB Management Service [http://mms.mongodb.com/]. For more
information see the documentation for MMS [http://mms.mongodb.com/help/].

Possible causes of replication lag include:

	Network Latency

Check the network routes between the members of your set to ensure
that there is no packet loss or network routing issue.

Use tools including ping to test latency between set
members and traceroute to expose the routing of packets
network endpoints.

	Disk Throughput

If the file system and disk device on the secondary is
unable to flush data to disk as quickly as the primary, then
the secondary will have difficulty keeping state. Disk-related
issues are incredibly prevalent on multi-tenant systems, including
virtualized instances, and can be transient if the system accesses
disk devices over an IP network (as is the case with Amazon’s
EBS system.)

Use system-level tools to assess disk status, including
iostat or vmstat.

	Concurrency

In some cases, long-running operations on the primary can block
replication on secondaries. For best results, configure write
concern to require confirmation of replication to
secondaries, as described in replica set write concern. This prevents write operations from
returning if replication cannot keep up with the write load.

Use the database profiler to see if there are slow queries
or long-running operations that correspond to the incidences of lag.

	Appropriate Write Concern

If you are performing a large data ingestion or bulk load operation
that requires a large number of writes to the primary, particularly
with unacknowledged write concern, the secondaries will not be able to
read the oplog fast enough to keep up with changes.

To prevent this, require write acknowledgment or journaled
write concern after every 100,
1,000, or an another interval to provide an opportunity for
secondaries to catch up with the primary.

For more information see:

	Replica Acknowledge Write Concern

	Replica Set Write Concern

	Oplog Size

Test Connections Between all Members

All members of a replica set must be able to connect to every
other member of the set to support replication. Always verify
connections in both “directions.” Networking topologies and firewall
configurations prevent normal and required connectivity, which can
block replication.

Consider the following example of a bidirectional test of networking:

Example

Given a replica set with three members running on three separate
hosts:

	m1.example.net

	m2.example.net

	m3.example.net

	Test the connection from m1.example.net to the other hosts
with the following operation set m1.example.net:

mongo --host m2.example.net --port 27017

mongo --host m3.example.net --port 27017

	Test the connection from m2.example.net to the other two
hosts with the following operation set from m2.example.net,
as in:

mongo --host m1.example.net --port 27017

mongo --host m3.example.net --port 27017

You have now tested the connection between
m2.example.net and m1.example.net in both directions.

	Test the connection from m3.example.net to the other two
hosts with the following operation set from the
m3.example.net host, as in:

mongo --host m1.example.net --port 27017

mongo --host m2.example.net --port 27017

If any connection, in any direction fails, check your networking
and firewall configuration and reconfigure your environment to
allow these connections.

Socket Exceptions when Rebooting More than One Secondary

When you reboot members of a replica set, ensure that the set is able
to elect a primary during the maintenance. This means ensuring that a majority of
the set’s ‘votes are
available.

When a set’s active members can no longer form a majority, the set’s
primary steps down and becomes a secondary. The former
primary closes all open connections to client applications. Clients
attempting to write to the former primary receive socket exceptions
and Connection reset errors until the set can elect a primary.

Example

Given a three-member replica set where every member has
one vote, the set can elect a primary only as long as two members
can connect to each other. If two you reboot the two secondaries
once, the primary steps down and becomes a secondary. Until the at
least one secondary becomes available, the set has no primary and
cannot elect a new primary.

For more information on votes, see Replica Set Elections. For
related information on connection errors, see Does TCP keepalive time affect sharded clusters and replica sets?.

Check the Size of the Oplog

A larger oplog can give a replica set a greater tolerance for
lag, and make the set more resilient.

To check the size of the oplog for a given replica set member,
connect to the member in a mongo shell and run the
rs.printReplicationInfo() method.

The output displays the size of the oplog and the date ranges of the
operations contained in the oplog. In the following example, the oplog
is about 10MB and is able to fit about 26 hours (94400 seconds) of
operations:

configured oplog size: 10.10546875MB
log length start to end: 94400 (26.22hrs)
oplog first event time: Mon Mar 19 2012 13:50:38 GMT-0400 (EDT)
oplog last event time: Wed Oct 03 2012 14:59:10 GMT-0400 (EDT)
now: Wed Oct 03 2012 15:00:21 GMT-0400 (EDT)

The oplog should be long enough to hold all transactions for the
longest downtime you expect on a secondary. At a minimum, an oplog
should be able to hold minimum 24 hours of operations; however, many
users prefer to have 72 hours or even a week’s work of operations.

For more information on how oplog size affects operations, see:

	Oplog Size,

	Delayed Replica Set Members, and

	Check the Replication Lag.

Note

You normally want the oplog to be the same size on all
members. If you resize the oplog, resize it on all members.

To change oplog size, see the Change the Size of the Oplog
tutorial.

Oplog Entry Timestamp Error

Consider the following error in mongod output and logs:

replSet error fatal couldn't query the local local.oplog.rs collection. Terminating mongod after 30 seconds.
<timestamp> [rsStart] bad replSet oplog entry?

Often, an incorrectly typed value in the ts field in the last
oplog entry causes this error. The correct data type is
Timestamp.

Check the type of the ts value using the following two queries
against the oplog collection:

db = db.getSiblingDB("local")
db.oplog.rs.find().sort({$natural:-1}).limit(1)
db.oplog.rs.find({ts:{$type:17}}).sort({$natural:-1}).limit(1)

The first query returns the last document in the oplog, while the
second returns the last document in the oplog where the ts value
is a Timestamp. The $type operator allows you to select
BSON type 17, is the Timestamp data type.

If the queries don’t return the same document, then the last document in
the oplog has the wrong data type in the ts field.

Example

If the first query returns this as the last oplog entry:

{ "ts" : {t: 1347982456000, i: 1},
 "h" : NumberLong("8191276672478122996"),
 "op" : "n",
 "ns" : "",
 "o" : { "msg" : "Reconfig set", "version" : 4 } }

And the second query returns this as the last entry where ts
has the Timestamp type:

{ "ts" : Timestamp(1347982454000, 1),
 "h" : NumberLong("6188469075153256465"),
 "op" : "n",
 "ns" : "",
 "o" : { "msg" : "Reconfig set", "version" : 3 } }

Then the value for the ts field in the last oplog entry is of the
wrong data type.

To set the proper type for this value and resolve this issue,
use an update operation that resembles the following:

db.oplog.rs.update({ ts: { t:1347982456000, i:1 } },
 { $set: { ts: new Timestamp(1347982456000, 1)}})

Modify the timestamp values as needed based on your oplog entry. This
operation may take some period to complete because the update must
scan and pull the entire oplog into memory.

Duplicate Key Error on local.slaves

The duplicate key on local.slaves error, occurs when a
secondary or slave changes its hostname and the
primary or master tries to update its local.slaves
collection with the new name. The update fails because it contains the
same _id value as the document containing the previous hostname. The
error itself will resemble the following.

exception 11000 E11000 duplicate key error index: local.slaves.$_id_ dup key: { : ObjectId('<object ID>') } 0ms

This is a benign error and does not affect replication operations on
the secondary or slave.

To prevent the error from appearing, drop the local.slaves
collection from the primary or master, with the
following sequence of operations in the mongo shell:

use local
db.slaves.drop()

The next time a secondary or slave polls the
primary or master, the primary or master
recreates the local.slaves collection.

Replication Reference

Replication Methods in the mongo Shell

	Name
	Description

	rs.add()
	Adds a member to a replica set.

	rs.addArb()
	Adds an arbiter to a replica set.

	rs.conf()
	Returns the replica set configuration document.

	rs.freeze()
	Prevents the current member from seeking election as primary for a period of time.

	rs.help()
	Returns basic help text for replica set functions.

	rs.initiate()
	Initializes a new replica set.

	rs.printReplicationInfo()
	Prints a report of the status of the replica set from the perspective of the primary.

	rs.printSlaveReplicationInfo()
	Prints a report of the status of the replica set from the perspective of the secondary.

	rs.reconfig()
	Re-configures a replica set by applying a new replica set configuration object.

	rs.remove()
	Remove a member from a replica set.

	rs.slaveOk()
	Sets the slaveOk property for the current connection. Deprecated. Use readPref() and Mongo.setReadPref() to set read preference.

	rs.status()
	Returns a document with information about the state of the replica set.

	rs.stepDown()
	Causes the current primary to become a secondary which forces an election.

	rs.syncFrom()
	Sets the member that this replica set member will sync from, overriding the default sync target selection logic.

Replication Database Commands

	Name
	Description

	replSetFreeze
	Prevents the current member from seeking election as primary for a period of time.

	replSetGetStatus
	Returns a document that reports on the status of the replica set.

	replSetInitiate
	Initializes a new replica set.

	replSetMaintenance
	Enables or disables a maintenance mode, which puts a secondary node in a RECOVERING state.

	replSetReconfig
	Applies a new configuration to an existing replica set.

	replSetStepDown
	Forces the current primary to step down and become a secondary, forcing an election.

	replSetSyncFrom
	Explicitly override the default logic for selecting a member to replicate from.

	resync
	Forces a mongod to re-synchronize from the master. For master-slave replication only.

	applyOps
	Internal command that applies oplog entries to the current data set.

	isMaster
	Displays information about this member’s role in the replica set, including whether it is the master.

	getoptime
	Internal command to support replication, returns the optime.

Replica Set Reference Documentation

	Replica Set Commands

	A quick reference for all commands and
mongo shell methods that support replication.

	Replica Set Configuration

	Complete documentation of the replica set configuration
object returned by rs.conf().

	The local Database

	Complete documentation of the content of the local database that
mongod instances use to support replication.

	Replica Set Member States

	Reference for the replica set member states.

	Read Preference Reference

	Complete documentation of the five read preference modes that the
MongoDB drivers support.

	Replica Set Commands

	Replica Set Configuration

	The local Database

	Replica Set Member States

	Read Preference Reference

Replica Set Commands

This reference collects documentation for all JavaScript methods for the mongo shell that
support replica set functionality, as well as all
database commands related to
replication function.

See Replication, for a list of all replica set documentation.

JavaScript Methods

The following methods apply to replica sets. For a complete list of all
methods, see mongo Shell Methods.

	
rs.status()

	

	Returns:	A document with status information.

This output reflects the current status of the replica set, using
data derived from the heartbeat packets sent by the other members
of the replica set.

This method provides a wrapper around the
replSetGetStatus database command.

	
rs.printReplicationInfo()

	Returns a formatted report of the status of a:term:replica set
from the perspective of the primary member of the set. See the
replSetGetStatus for more information regarding
the contents of this output.

Note

The rs.printSlaveReplicationInfo() in the mongo shell does not return
JSON. Use rs.printSlaveReplicationInfo() for manual inspection, and
rs.status() in scripts.

	
rs.printSlaveReplicationInfo()

	Returns a formatted report of the status of a replica set
from the perspective of the secondary member of the set. See the
replSetGetStatus for more information regarding
the contents of this output.

Note

The rs.printSlaveReplicationInfo() in the mongo shell does not return
JSON. Use rs.printSlaveReplicationInfo() for manual inspection, and
rs.status() in scripts.

	
db.isMaster()

	

	Returns:	A document that describes the role of the
mongod instance.

If the mongod is a member of a replica set, then
the ismaster and secondary
fields report if the instance is the primary or if it is a
secondary member of the replica set.

See

isMaster for the complete documentation of
the output of db.isMaster().

Description

	
rs.initiate(configuration)

	Initiates a replica set. Optionally takes a configuration
argument in the form of a document that holds the
configuration of a replica set.

The rs.initiate() method has the following parameter:

	Parameter
	Type
	Description

	configuration
	document
	Optional. A document that specifies configuration settings for the new replica set. If a
configuration is not specified, MongoDB uses a default configuration.

	param document configuration:

		A document that specifies configuration settings for the new replica set. If a
configuration is not specified, MongoDB uses a default
configuration.

The rs.initiate() method provides a wrapper around the
“replSetInitiate” database command.

Replica Set Configuration

See Member Configuration Tutorials and
Replica Set Configuration for examples of replica set
configuration and invitation objects.

	
rs.conf()

	

	Returns:	a document that contains the current
replica set configuration document.

See Replica Set Configuration for more information on
the replica set configuration document.

	
rs.config()

	rs.config() is an alias of rs.conf().

Definition

	
rs.reconfig(configuration, force)

	Initializes a new replica set configuration. Disconnects the
shell briefly and forces a reconnection as the replica set
renegotiates which member will be primary. As a result, the
shell will display an error even if this command succeeds.

	Parameter
	Type
	Description

	configuration
	document
	A document that specifies the configuration of a replica set.

	force
	document
	Optional. “If set as { force: true }, this forces the replica set to
accept the new configuration even if a majority of the members are
not accessible. Use with caution, as this can lead to
term:rollback situations.”

	param document configuration:

		A document that specifies the configuration of a replica set.

	param document force:

		“If set as { force: true }, this forces the replica set to accept
the new configuration even if a majority of the members are not
accessible. Use with caution, as this can lead to term:rollback
situations.”

rs.reconfig() overwrites the existing replica set
configuration. Retrieve the current configuration object with
rs.conf(), modify the configuration as needed and then
use rs.reconfig() to submit the modified configuration
object.

rs.reconfig() provides a wrapper around the
“replSetReconfig” database command.

Examples

To reconfigure a replica set, use the following sequence of operations:

conf = rs.conf()

// modify conf to change configuration

rs.reconfig(conf)

If you want to force the reconfiguration if a majority of the set is not
connected to the current member, or you are issuing the command against a
secondary, use the following form:

conf = rs.conf()

// modify conf to change configuration

rs.reconfig(conf, { force: true })

Warning

Forcing a rs.reconfig() can lead to rollback
situations and other difficult to recover from situations. Exercise
caution when using this option.

See also

Replica Set Configuration and Replica Set Tutorials.

Definition

	
rs.add(host, arbiterOnly)

	Adds a member to a replica set.

	Parameter
	Type
	Description

	host
	string or document
	The new member to add to the replica set. If a string, specifies the
hostname and optionally the port number for the new member. If a
document, specifies a replica set members document, as found in the
members array. To view a replica set’s
members array, run rs.conf().

	arbiterOnly
	boolean
	Optional. Applies only if the <host> value is a string. If true, the
added host is an arbiter.”

	param string,document host:

		The new member to add to the replica set. If a string, specifies the
hostname and optionally the port number for the new member. If a
document, specifies a replica set members document, as found in
the members array. To view a replica
set’s members array, run rs.conf().

	param boolean arbiterOnly:

		Applies only if the <host> value is a string. If true, the added
host is an arbiter.”

You may specify new hosts in one of two ways:

	as a “hostname” with an optional port number to use the default
configuration as in the Add a Member to an Existing Replica Set example.

	as a configuration document, as in the
Configure and Add a Member example.

This function will disconnect the shell briefly and forces a
reconnection as the replica set renegotiates which member
will be primary. As a result, the shell will display an
error even if this command succeeds.

rs.add() provides a wrapper around some of the
functionality of the “replSetReconfig” database
command and the corresponding shell helper
rs.reconfig(). See the Replica Set Configuration
document for full documentation of all replica set configuration
options.

Example

To add a mongod accessible on the default port
27017 running on the host mongodb3.example.net, use the
following rs.add() invocation:

rs.add('mongodb3.example.net:27017')

If mongodb3.example.net is an arbiter, use the following form:

rs.add('mongodb3.example.net:27017', true)

To add mongodb3.example.net as a secondary-only member of set, use the
following form of rs.add():

rs.add({ "_id": 3, "host": "mongodbd3.example.net:27017", "priority": 0 })

Replace, 3 with the next unused _id value in the replica
set. See rs.conf() to see the existing _id values
in the replica set configuration document.

See the Replica Set Configuration and
Replica Set Tutorials documents for more
information.

Description

	
rs.addArb(host)

	Adds a new arbiter to an existing replica set.

The rs.addArb() method takes the following parameter:

	Parameter
	Type
	Description

	host
	string
	Specifies the hostname and optionally the port number of the arbiter
member to add to replica set.

	param string host:

		Specifies the hostname and optionally the port number of the arbiter
member to add to replica set.

This function briefly disconnects the shell and forces a reconnection
as the replica set renegotiates which member will be primary.
As a result, the shell displays an error even if this command
succeeds.

Description

	
rs.stepDown(seconds)

	Forces the current replica set member to step down as
primary and then attempt to avoid election as primary for
the designated number of seconds. Produces an error if the current
member is not the primary.

The rs.stepDown() method has the following parameter:

	Parameter
	Type
	Description

	seconds
	number
	Optional. The duration of time that the stepped-down member attempts to avoid
reelection as primary. If this parameter is not specified, the method
uses the default value of 60 seconds.

	param number seconds:

		The duration of time that the stepped-down member attempts to avoid
reelection as primary. If this parameter is not specified, the
method uses the default value of 60 seconds.

This function disconnects the shell briefly and forces a
reconnection as the replica set renegotiates which member
will be primary. As a result, the shell will display an
error even if this command succeeds.

rs.stepDown() provides a wrapper around the
database command replSetStepDown.

Description

	
rs.freeze(seconds)

	Makes the current replica set member ineligible to become
primary for the period specified.

The rs.freeze() method has the following parameter:

	Parameter
	Type
	Description

	seconds
	number
	The duration the member is ineligible to become primary.

	param number seconds:

		The duration the member is ineligible to become primary.

rs.freeze() provides a wrapper around the database
command replSetFreeze.

Definition

	
rs.remove(hostname)

	Removes the member described by the hostname parameter from the
current replica set. This function will disconnect the
shell briefly and forces a reconnection as the replica set
renegotiates which member will be primary. As a
result, the shell will display an error even if this command
succeeds.

The rs.remove() method has the following parameter:

	Parameter
	Type
	Description

	hostname
	string
	The hostname of a system in the replica set.

	param string hostname:

		The hostname of a system in the replica set.

Note

Before running the rs.remove() operation, you must shut
down the replica set member that you’re removing.

Changed in version 2.2: This procedure is no longer required when using
rs.remove(), but it remains good practice.

	
rs.slaveOk()

	Provides a shorthand for the following operation:

db.getMongo().setSlaveOk()

This allows the current connection to allow read operations to run
on secondary members. See the readPref() method for more fine-grained control over
read preference in the
mongo shell.

	
db.isMaster()

	

	Returns:	A document that describes the role of the
mongod instance.

If the mongod is a member of a replica set, then
the ismaster and secondary
fields report if the instance is the primary or if it is a
secondary member of the replica set.

See

isMaster for the complete documentation of
the output of db.isMaster().

	
rs.help()

	Returns a basic help text for all of the replication related shell functions.

	
rs.syncFrom()

	
New in version 2.2.

Provides a wrapper around the replSetSyncFrom, which
allows administrators to configure the member of a replica set that
the current member will pull data from. Specify the name of the
member you want to replicate from in the form of [hostname]:[port].

See replSetSyncFrom for more details.

Database Commands

The following commands apply to replica sets. For a complete list of all
commands, see Database Commands.

Definition

	
isMaster

	isMaster returns a document that describes the role of
the mongod instance.

If the instance is a member of a
replica set, then isMaster returns a subset of the
replica set configuration and status including whether or not the
instance is the primary of the replica set.

When sent to a mongod instance that is not a member of a
replica set, isMaster returns a subset of this
information.

MongoDB drivers and clients use
isMaster to determine the state of the replica set
members and to discover additional members of a replica
set.

The db.isMaster() method in the mongo shell
provides a wrapper around isMaster.

The command takes the following form:

{ isMaster: 1 }

See also

db.isMaster()

Output

All Instances

The following isMaster fields are common across all
roles:

	
isMaster.ismaster

	A boolean value that reports when this node is writable. If
true, then this instance is a primary in a
replica set, or a master in a master-slave
configuration, or a mongos instance, or a standalone
mongod.

This field will be false if the instance is a
secondary member of a replica set or if the member is an
arbiter of a replica set.

	
isMaster.maxBsonObjectSize

	The maximum permitted size of a BSON object in bytes for
this mongod process. If not provided, clients should
assume a max size of “16 * 1024 * 1024”.

	
isMaster.maxMessageSizeBytes

	
New in version 2.4.

The maximum permitted size of a BSON wire protocol message.
The default value is 48000000 bytes.

	
isMaster.localTime

	
New in version 2.2.

Returns the local server time in UTC. This value is an
ISO date.

	
isMaster.minWireVersion

	
New in version 2.5.0.

The earliest version of the wire protocol that this
mongod or mongos instance is capable of using
to communicate with clients.

Clients may use minWireVersion to help negotiate
compatibility with MongoDB.

	
isMaster.maxWireVersion

	
New in version 2.5.0.

The latest version of the wire protocol that this mongod
or mongos instance is capable of using to communicate
with clients.

Clients may use maxWireVersion to help negotiate
compatibility with MongoDB.

Sharded Instances

mongos instances add the following field to the
isMaster response document:

	
isMaster.msg

	Contains the value isdbgrid when isMaster
returns from a mongos instance.

Replica Sets

isMaster contains these fields when returned by a member
of a replica set:

	
isMaster.setName

	The name of the current :replica set.

	
isMaster.secondary

	A boolean value that, when true, indicates if the
mongod is a secondary member of a replica
set.

	
isMaster.hosts

	An array of strings in the format of "[hostname]:[port]" that
lists all members of the replica set that are neither
hidden, passive,
nor arbiters.

Drivers use this array and the isMaster.passives to determine
which members to read from.

	
isMaster.passives

	An array of strings in the format of "[hostname]:[port]"
listing all members of the replica set which have a
priority of 0.

This field only appears if there is at least one member with a
priority of 0.

Drivers use this array and the isMaster.hosts to determine
which members to read from.

	
isMaster.arbiters

	An array of strings in the format of "[hostname]:[port]"
listing all members of the replica set that are
arbiters.

This field only appears if there is at least one arbiter in the
replica set.

	
isMaster.primary

	A string in the format of "[hostname]:[port]" listing the
current primary member of the replica set.

	
isMaster.arbiterOnly

	A boolean value that , when true, indicates that the current
instance is an arbiter. The arbiterOnly
field is only present, if the instance is an arbiter.

	
isMaster.passive

	A boolean value that, when true, indicates that the current
instance is hidden. The
passive field is only present for hidden members.

	
isMaster.hidden

	A boolean value that, when true, indicates that the current
instance is hidden. The
hidden field is only present for hidden members.

	
isMaster.tags

	A document that lists any tags assigned to this member. This field
is only present if there are tags assigned to the member. See
Configure Replica Set Tag Sets for more
information.

	
isMaster.me

	The [hostname]:[port] of the member that returned
isMaster.

	
resync

	The resync command forces an out-of-date slave
mongod instance to re-synchronize itself. Note
that this command is relevant to master-slave replication only. It does
not apply to replica sets.

Warning

This command obtains a global write lock and will block other
operations until it has completed.

	
replSetFreeze

	The replSetFreeze command prevents a replica set
member from seeking election for the specified number of
seconds. Use this command in conjunction with the
replSetStepDown command to make a different node in
the replica set a primary.

The replSetFreeze command uses the following syntax:

{ replSetFreeze: <seconds> }

If you want to unfreeze a replica set member before the specified number
of seconds has elapsed, you can issue the command with a seconds
value of 0:

{ replSetFreeze: 0 }

Restarting the mongod process also unfreezes a replica
set member.

replSetFreeze is an administrative command, and you
must issue it against the admin database.

Definition

	
replSetGetStatus

	The replSetGetStatus command returns the status of the replica
set from the point of view of the current server. You must run the
command against the admin database. The command has the
following prototype format:

{ replSetGetStatus: 1 }

The value specified does not affect the output of the command. Data
provided by this command derives from data included in heartbeats
sent to the current instance by other members of the replica set.
Because of the frequency of heartbeats, these data can be several
seconds out of date.

You can also access this functionality through the
rs.status() helper in the mongo shell.

The mongod must have replication enabled and be a member
of a replica set for the for replSetGetStatus to return
successfully.

Output

	
replSetGetStatus.set

	The set value is the name of the replica set, configured in the
replSet setting. This is the same value as
_id in rs.conf().

	
replSetGetStatus.date

	The value of the date field is an ISODate of the
current time, according to the current server. Compare this to the
value of the lastHeartbeat to find the
operational lag between the current host and the other hosts in the
set.

	
replSetGetStatus.myState

	The value of
myState is an integer between 0 and
10 that represents the replica state of the current member.

	
replSetGetStatus.members

	The members field holds an array that contains a document for
every member in the replica set.

	
replSetGetStatus.members.name

	The name field holds the name of the server.

	
replSetGetStatus.members.self

	The self field is only included in the document for the
current mongod instance in the members array. It’s value is
true.

	
replSetGetStatus.members.errmsg

	This field contains the most recent error or status message
received from the member. This field may be empty (e.g. "") in
some cases.

	
replSetGetStatus.members.health

	The health value is only present for the other members of the
replica set (i.e. not the member that returns
rs.status.) This field conveys if the member is up (i.e.
1) or down (i.e. 0.)

	
replSetGetStatus.members.state

	The value of state is an
integer between 0 and 10 that represents the
replica state of the member.

	
replSetGetStatus.members.stateStr

	A string that describes state.

	
replSetGetStatus.members.uptime

	The uptime field holds a value
that reflects the number of seconds that this member has been
online.

This value does not appear for the member that returns the
rs.status() data.

	
replSetGetStatus.members.optime

	A document that contains information regarding the last operation
from the operation log that this member has applied.

	
replSetGetStatus.members.optime.t

	A 32-bit timestamp of the last operation applied to this member
of the replica set from the oplog.

	
replSetGetStatus.members.optime.i

	An incremented field, which reflects the number of operations
in since the last time stamp. This value only increases if
there is more than one operation per second.

	
replSetGetStatus.members.optimeDate

	An ISODate formatted date string that reflects the last
entry from the oplog that this member applied. If this
differs significantly from
lastHeartbeat this member is
either experiencing “replication lag” or there have not been any
new operations since the last update. Compare
members.optimeDate between all of the members of the set.

	
replSetGetStatus.members.lastHeartbeat

	The lastHeartbeat value provides an ISODate formatted
date of the last heartbeat received from this member. Compare this
value to the value of the date field to
track latency between these members.

This value does not appear for the member that returns the
rs.status() data.

	
replSetGetStatus.members.pingMS

	The pingMS represents the number of milliseconds (ms) that a
round-trip packet takes to travel between the remote member and
the local instance.

This value does not appear for the member that returns the
rs.status() data.

	
replSetGetStatus.syncingTo

	The syncingTo field is only present on the output of
rs.status() on secondary and recovering members,
and holds the hostname of the member from which this instance is
syncing.

	
replSetInitiate

	The replSetInitiate command initializes a new replica set. Use the
following syntax:

{ replSetInitiate : <config_document> }

The <config_document> is a document that specifies
the replica set’s configuration. For instance, here’s a config document
for creating a simple 3-member replica set:

{
 _id : <setname>,
 members : [
 {_id : 0, host : <host0>},
 {_id : 1, host : <host1>},
 {_id : 2, host : <host2>},
]
}

A typical way of running this command is to assign the config document to
a variable and then to pass the document to the
rs.initiate() helper:

config = {
 _id : "my_replica_set",
 members : [
 {_id : 0, host : "rs1.example.net:27017"},
 {_id : 1, host : "rs2.example.net:27017"},
 {_id : 2, host : "rs3.example.net", arbiterOnly: true},
]
}

rs.initiate(config)

Notice that omitting the port cause the host to use the default port
of 27017. Notice also that you can specify other options in the config
documents such as the arbiterOnly setting in this example.

See also

Replica Set Configuration,
Replica Set Tutorials, and Replica Set
Reconfiguration.

	
replSetMaintenance

	The replSetMaintenance admin command enables or disables the
maintenance mode for a secondary member of a replica
set.

The command has the following prototype form:

{ replSetMaintenance: <boolean> }

Consider the following behavior when running the
replSetMaintenance command:

	You cannot run the command on the Primary.

	You must run the command against the admin database.

	When enabled replSetMaintenance: true, the member enters the
RECOVERING state. While the secondary is RECOVERING:
	The member is not accessible for read operations.

	The member continues to sync its oplog from the Primary.

Important

On secondaries, the compact command forces
the secondary to enter RECOVERING state. This prevents
clients from reading during compaction. Once the operation
finishes, the secondary returns to SECONDARY state.

See Replica Set Member States for more information about
replica set member states. Refer to the “partial script for
automating step down and compaction [https://github.com/mongodb/mongo-snippets/blob/master/js/compact-example.js]” for an example of this
procedure.

	
replSetReconfig

	The replSetReconfig command modifies the configuration
of an existing replica set. You can use this command to add and
remove members, and to alter the options set on existing
members. Use the following syntax:

{ replSetReconfig: <new_config_document>, force: false }

You may also run the command using the shell’s rs.reconfig() method.

Be aware of the following replSetReconfig behaviors:

	You must issue this command against the admin database of the current
primary member of the replica set.

	You can optionally force the replica set to accept the new
configuration by specifying force: true. Use this option if
the current member is not primary or if a majority of the members
of the set are not accessible.

Warning

Forcing the replSetReconfig command can lead to a
rollback situation. Use with caution.

Use the force option to restore a replica set to new servers with
different hostnames. This works even if the set members already
have a copy of the data.

	A majority of the set’s members must be operational for the
changes to propagate properly.

	This command can cause downtime as the set renegotiates
primary-status. Typically this is 10-20 seconds, but could
be as long as a minute or more. Therefore, you should attempt
to reconfigure only during scheduled maintenance periods.

	In some cases, replSetReconfig forces the current
primary to step down, initiating an election for primary among
the members of the replica set. When this happens, the set will
drop all current connections.

Note

replSetReconfig obtains a special mutually
exclusive lock to prevent more than one
replSetReconfig operation from occurring at the same
time.

Description

	
replSetSyncFrom

	
New in version 2.2.

Explicitly configures
which host the current mongod pulls oplog
entries from. This operation is useful for testing different
patterns and in situations where a set member is not replicating from
the desired host.

The replSetSyncFrom command has the following form:

{ replSetSyncFrom: "hostname<:port>" }

The replSetSyncFrom command has the following field:

	Field
	Type
	Description

	replSetSyncFrom
	string
	The name and port number of the replica set member that this member
should replicate from. Use the [hostname]:[port] form.

	field string replSetSyncFrom:

		The name and port number of the replica set member that this member
should replicate from. Use the [hostname]:[port] form.

The Target Member

The member to replicate from must be a valid source for data in the
set. The member cannot be:

	The same as the mongod on which you run
replSetSyncFrom. In other words, a member cannot
replicate from itself.

	An arbiter, because arbiters do not hold data.

	A member that does not build indexes.

	An unreachable member.

	A mongod instance that is not a member of the same
replica set.

If you attempt to replicate from a member that is more than 10 seconds
behind the current member, mongod will log a
warning but will still replicate from the lagging member.

If you run replSetSyncFrom during initial sync, MongoDB
produces no error messages, but the sync target will not change
until after the initial sync operation.

Run from the mongo Shell

To run the command in the mongo shell, use the following
invocation:

db.adminCommand({ replSetSyncFrom: "hostname<:port>" })

You may also use the rs.syncFrom() helper in the
mongo shell in an operation with the following form:

rs.syncFrom("hostname<:port>")

Note

replSetSyncFrom and rs.syncFrom() provide a
temporary override of default behavior. mongod will revert
to the default sync behavior in the following situations:

	The mongod instance restarts.

	The connection between the mongod and the sync target
closes.

Changed in version 2.4: The sync target falls more than 30 seconds behind another member of
the replica set; the mongod will revert to the default
sync target.

Replica Set Configuration

Synopsis

This reference provides an overview of replica set
configuration options and settings.

Use rs.conf() in the mongo shell to retrieve this
configuration. Note that default values are not explicitly displayed.

Example Configuration Document

The following document provides a representation of a replica set
configuration document. Angle brackets (e.g. < and >) enclose
all optional fields.

{
 _id : <setname>,
 version: <int>,
 members: [
 {
 _id : <ordinal>,
 host : hostname<:port>,
 <arbiterOnly : <boolean>,>
 <buildIndexes : <boolean>,>
 <hidden : <boolean>,>
 <priority: <priority>,>
 <tags: { <document> },>
 <slaveDelay : <number>,>
 <votes : <number>>
 }
 , ...
],
 <settings: {
 <getLastErrorDefaults : <lasterrdefaults>,>
 <chainingAllowed : <boolean>,>
 <getLastErrorModes : <modes>>
 }>
}

Configuration Variables

	
local.system.replset._id

	Type: string

Value: <setname>

An _id field holding the name of the replica set. This reflects
the set name configured with replSet or
mongod --replSet.

	
local.system.replset.members

	Type: array

Contains an array holding an embedded document for each
member of the replica set. The members document contains a
number of fields that describe the configuration of each member of
the replica set.

The members field in the replica set
configuration document is a zero-indexed array.

	
local.system.replset.members[n]._id

	Type: ordinal

Provides the zero-indexed identifier of every member in the replica
set.

Note

When updating the replica configuration object, access the replica set
members in the members array with the
array index. The array index begins with 0. Do not confuse
this index value with the value of the
_id field in each document in
the members array.

	
local.system.replset.members[n].host

	Type: <hostname><:port>

Identifies the host name of the set member with a hostname and port
number. This name must be resolvable for every host in the replica
set.

Warning

host cannot hold a value that resolves to
localhost or the local interface unless all members of the
set are on hosts that resolve to localhost.

Note

New in version 2.5.3: mongod installed from official .deb and .rpm packages
have the bind_ip configuration set to 127.0.0.1 by
default.

	
local.system.replset.members[n].arbiterOnly

	Optional.

Type: boolean

Default: false

Identifies an arbiter. For arbiters, this value is true, and
is automatically configured by rs.addArb()”.

	
local.system.replset.members[n].buildIndexes

	Optional.

Type: boolean

Default: true

Determines whether the mongod builds indexes on this member. Do not set to false for instances that
receive queries from clients.

Omitting index creation, and thus this setting, may be useful,
if:

	You are only using this instance to perform backups using
mongodump,

	this instance will receive no queries, and

	index creation and maintenance overburdens the host
system.

If set to false, secondaries configured with this option do
build indexes on the _id field, to facilitate operations
required for replication.

Warning

You may only set this value when adding a member to a replica
set. You may not reconfigure a replica set to change the value of
the buildIndexes field
after adding the member to the set.

buildIndexes is only
valid when priority is 0 to prevent these members from
becoming primary. Make all instances that do not build
indexes hidden.

Other secondaries cannot replicate from a members where
buildIndexes is
false.

	
local.system.replset.members[n].hidden

	Optional.

Type: boolean

Default: false

When this value is true, the replica set hides this instance,
and does not include the member in the output of
db.isMaster() or isMaster. This
prevents read operations (i.e. queries) from ever reaching this
host by way of secondary read preference.

See also

Hidden Replica Set Members

	
local.system.replset.members[n].priority

	Optional.

Type: Number, between 0 and 100.0 including decimals.

Default: 1

Specify higher values to make a member more eligible to become
primary, and lower values to make the member less eligible
to become primary. Priorities are only used in comparison to each
other. Members of the set will veto election requests from members when
another eligible member has a higher priority
value. Changing the balance of priority in a replica set will trigger
an election.

A priority of 0 makes it impossible for a
member to become primary.

See also

priority and
Replica Set Elections.

	
local.system.replset.members[n].tags

	Optional.

Type: MongoDB Document

Default: none

Used to represent arbitrary values for describing or tagging members
for the purposes of extending write concern
to allow configurable data center
awareness.

Use in conjunction with
getLastErrorModes and
getLastErrorDefaults and
db.getLastError() (i.e. getLastError.)

For procedures on configuring tag sets, see
Configure Replica Set Tag Sets.

Important

In tag sets, all tag values must be strings.

	
local.system.replset.members[n].slaveDelay

	Optional.

Type: Integer. (seconds.)

Default: 0

Describes the number of seconds “behind” the primary that this
replica set member should “lag.” Use this option to create
delayed members, that
maintain a copy of the data that reflects the state of the data set
at some amount of time in the past, specified in seconds. Typically such delayed members
help protect against human error, and provide some measure
of insurance against the unforeseen consequences of changes and
updates.

	
local.system.replset.members[n].votes

	Optional.

Type: Integer

Default: 1

Controls the number of votes a server will cast in a replica set
election. The number of votes each member
has can be either 1 or 0.

If you need more than 7 members in one replica set, set
votes to 0 for
the additional non-voting members.

Note

Deprecated since version 2.5.3: votes values greater
than 1.

Earlier versions of MongoDB allowed a member
to have more than 1 vote by setting
votes to a value greater
than 1. Setting votes
to value greater than 1 now produces a warning message.

	
local.system.replset.settings

	Optional.

Type: MongoDB Document

The settings document configures options that apply to the whole
replica set.

	
local.system.replset.settings.chainingAllowed

	Optional.

Type: boolean

Default: true

New in version 2.2.4.

When chainingAllowed is
true, the replica set allows secondary members to
replicate from other secondary members. When
chainingAllowed is
false, secondaries can replicate only from the primary.

When you run rs.config() to view a replica set’s
configuration, the
chainingAllowed field
appears only when set to false. If not set,
chainingAllowed is true.

See also

Manage Chained Replication

	
local.system.replset.settings.getLastErrorDefaults

	Optional.

Type: MongoDB Document

Specify arguments to the getLastError that
members of this replica set will use when no arguments to
getLastError has no arguments. If you specify any
arguments, getLastError , ignores these defaults.

	
local.system.replset.settings.getLastErrorModes

	Optional.

Type: MongoDB Document

Defines the names and combination of
members for use by the application layer
to guarantee write concern to database using the
getLastError command to provide data-center
awareness.

Example Reconfiguration Operations

Most modifications of replica set configuration use the
mongo shell. Consider the following reconfiguration
operation:

Example

Given the following replica set configuration:

{
 "_id" : "rs0",
 "version" : 1,
 "members" : [
 {
 "_id" : 0,
 "host" : "mongodb0.example.net:27017"
 },
 {
 "_id" : 1,
 "host" : "mongodb1.example.net:27017"
 },
 {
 "_id" : 2,
 "host" : "mongodb2.example.net:27017"
 }
]
}

The following reconfiguration operation updates the
priority of the replica set
members:

cfg = rs.conf()
cfg.members[0].priority = 0.5
cfg.members[1].priority = 2
cfg.members[2].priority = 2
rs.reconfig(cfg)

First, this operation sets the local variable cfg to the current
replica set configuration using the rs.conf() method. Then
it adds priority values to the cfg document for the
three sub-documents in the members
array, accessing each replica set member with the array index and
not the replica set member’s
_id field. Finally, it
calls the rs.reconfig() method with the argument of
cfg to initialize this new configuration. The replica set
configuration after this operation will resemble the following:

{
 "_id" : "rs0",
 "version" : 1,
 "members" : [
 {
 "_id" : 0,
 "host" : "mongodb0.example.net:27017",
 "priority" : 0.5
 },
 {
 "_id" : 1,
 "host" : "mongodb1.example.net:27017",
 "priority" : 2
 },
 {
 "_id" : 2,
 "host" : "mongodb2.example.net:27017",
 "priority" : 1
 }
]
}

Using the “dot notation” demonstrated in the above example, you can
modify any existing setting or specify any of optional replica
set configuration variables. Until you run
rs.reconfig(cfg) at the shell, no changes will take effect. You
can issue cfg = rs.conf() at any time before using
rs.reconfig() to undo your changes and start from the current
configuration. If you issue cfg as an operation at any point, the
mongo shell at any point will output the complete
document with modifications for your review.

The rs.reconfig() operation has a “force” option, to make it
possible to reconfigure a replica set if a majority of the replica set
is not visible, and there is no primary member of the set.
use the following form:

rs.reconfig(cfg, { force: true })

Warning

Forcing a rs.reconfig() can lead to rollback
situations and other difficult to recover from situations. Exercise
caution when using this option.

Note

The rs.reconfig() shell method can force the current
primary to step down and triggers an election in some
situations. When the primary steps down, all clients will
disconnect. This is by design. Since this typically takes 10-20
seconds, attempt to make such changes during scheduled maintenance
periods.

The local Database

Overview

Every mongod instance has its own local database, which
stores data used in the replication process, and other
instance-specific data. The local database is invisible to
replication: collections in the local database are not replicated.

In replication, the local database store stores internal replication
data for each member of a replica set. The local stores the
following collections:

Changed in version 2.4: When running with authentication (i.e. auth),
authenticating to the local database is not equivalent to
authenticating to the admin database. In previous versions,
authenticating to the local database provided access to all databases.

Collection on all mongod Instances

	
local.startup_log

	On startup, each mongod instance inserts a document into
startup_log with diagnostic information about the
mongod instance itself and host
information. startup_log is a capped
collection. This information is primarily useful for diagnostic
purposes.

Example

Consider the following prototype of a document from the
startup_log collection:

{
 "_id" : "<string>",
 "hostname" : "<string>",
 "startTime" : ISODate("<date>"),
 "startTimeLocal" : "<string>",
 "cmdLine" : {
 "dbpath" : "<path>",
 "<option>" : <value>
 },
 "pid" : <number>,
 "buildinfo" : {
 "version" : "<string>",
 "gitVersion" : "<string>",
 "sysInfo" : "<string>",
 "loaderFlags" : "<string>",
 "compilerFlags" : "<string>",
 "allocator" : "<string>",
 "versionArray" : [<num>, <num>, <...>],
 "javascriptEngine" : "<string>",
 "bits" : <number>,
 "debug" : <boolean>,
 "maxBsonObjectSize" : <number>
 }
}

Documents in the startup_log collection contain the
following fields:

	
local.startup_log._id

	Includes the system hostname and a millisecond epoch value.

	
local.startup_log.hostname

	The system’s hostname.

	
local.startup_log.startTime

	A UTC ISODate value that reflects when the server started.

	
local.startup_log.startTimeLocal

	A string that reports the startTime
in the system’s local time zone.

	
local.startup_log.cmdLine

	A sub-document that reports the mongod runtime
options and their values.

	
local.startup_log.pid

	The process identifier for this process.

	
local.startup_log.buildinfo

	A sub-document that reports information about the build
environment and settings used to compile this
mongod. This is the same output as
buildInfo. See buildInfo.

Collections on Replica Set Members

	
local.system.replset

	local.system.replset holds the replica set’s configuration
object as its single document. To view the object’s configuration
information, issue rs.conf() from the mongo
shell. You can also query this collection directly.

	
local.oplog.rs

	local.oplog.rs is the capped collection that holds the
oplog. You set its size at creation using the
oplogSize setting. To resize the oplog after replica set
initiation, use the Change the Size of the Oplog
procedure. For additional information, see the
Oplog Size section.

	
local.replset.minvalid

	This contains an object used internally by replica sets to track replication
status.

	
local.slaves

	This contains information about each member of the set and the
latest point in time that this member has synced to. If this
collection becomes out of date, you can refresh it by dropping the
collection and allowing MongoDB to automatically refresh it during
normal replication:

db.getSiblingDB("local").slaves.drop()

Collections used in Master/Slave Replication

In master/slave replication, the local database contains
the following collections:

	On the master:

	
local.oplog.$main

	This is the oplog for the master-slave configuration.

	
local.slaves

	This contains information about each slave.

	On each slave:

	
local.sources

	This contains information about the slave’s master server.

Replica Set Member States

Members of replica sets have states that reflect the startup process, basic
operations, and potential error states.

	Number
	Name
	State Description

	0
	STARTUP
	Cannot vote. All members start up in this state. The
mongod parses the replica set configuration document while in STARTUP.

	1
	PRIMARY
	Can vote. The primary is the only member to accept write operations.

	2
	SECONDARY
	Can vote. The secondary replicates the data store.

	3
	RECOVERING
	Can vote. Members either perform startup self-checks, or transition
from completing a rollback or resync.

	4
	FATAL
	Cannot vote. Has encountered an unrecoverable error.

	5
	STARTUP2
	Cannot vote. Forks replication and election threads before
becoming a secondary.

	6
	UNKNOWN
	Cannot vote. Has never connected to the replica set.

	7
	ARBITER
	Can vote. Arbiters do not replicate
data and exist solely to participate in elections.

	8
	DOWN
	Cannot vote. Is not accessible to the set.

	9
	ROLLBACK
	Can vote. Performs a rollback.

	10
	SHUNNED
	Cannot vote. Was once in the replica set but has now been removed.

States

Core States

	
PRIMARY

	Members in PRIMARY state accept write operations. A replica set has only
one primary at a time. A SECONDARY member becomes primary
after an election. Members in the PRIMARY
state are eligible to vote.

	
SECONDARY

	Members in SECONDARY state replicate the primary’s data set
and can be configured to accept read operations. Secondaries are eligible to vote in
elections, and may be elected to the PRIMARY state if the
primary becomes unavailable.

	
ARBITER

	Members in ARBITER state do not replicate data or accept write operations.
They are eligible to vote, and exist solely to break a tie during
elections. Replica sets should only have a member in the ARBITER state
if the set would otherwise have an even number of members, and could suffer
from tied elections. Like primaries, there should only be at most one arbiter
in any replica set.

See Replica Set Members for more information on core states.

Initialization States

	
STARTUP

	Each member of a replica set starts up in STARTUP
state. mongod then loads that member’s replica set configuration,
and transitions the member’s state to STARTUP2. Members in
STARTUP are not eligible to vote.

	
STARTUP2

	Each member of a replica set enters the STARTUP2 state as
soon as mongod finishes loading that member’s
configuration. While in the STARTUP2 state, the member
creates threads to handle internal replication operations. Members are in the
STARTUP2 state for a short period of time before entering the RECOVERING state.
Members in the STARTUP2 state are not eligible to vote.

	
RECOVERING

	A member of a replica set enters RECOVERING state when
it is not ready to accept reads. The RECOVERING state
can occur during normal operation, and doesn’t necessarily reflect
an error condition. Members in the RECOVERING state
are eligible to vote in elections, but is not eligible to enter the
PRIMARY state.

During startup, members transition through RECOVERING after
STARTUP2 and before becoming SECONDARY.

During normal operation, if a secondary falls behind the
other members of the replica set, it may need to resync with the
rest of the set. While resyncing, the member enters the
RECOVERING state.

Whenever the replica set replaces a primary in an
election, the old primary’s data collection may contain documents
that did not have time to replicate to the secondary
members. In this case the member rolls back those writes. During
rollback, the member will have
RECOVERING state.

On secondaries, the compact and
replSetMaintenance commands force the secondary to enter
RECOVERING state. This prevents clients from reading
during those operations.

Error States

Members in any error state can’t vote.

	
FATAL

	Members that encounter an unrecoverable error enter the FATAL
state. Members in this state requires administrator intervention.

	
UNKNOWN

	Members that have never communicated status information to the replica
set are in the UNKNOWN state.

	
DOWN

	Members that lose their connection to the replica set enter the
DOWN state.

	
SHUNNED

	Members that are removed from the replica set enter the SHUNNED
state.

	
ROLLBACK

	When a SECONDARY rolls back a write operation after
transitioning from PRIMARY, it enters the
ROLLBACK state. See
Rollbacks During Replica Set Failover.

Read Preference Reference

Read preference describes how MongoDB clients route read operations to
members of a replica set.

By default, an application directs its read operations to the
primary member in a replica set. Reading from the
primary guarantees that read operations reflect the latest version of a
document. However, by distributing some or all reads to secondary
members of the replica set, you can improve read throughput or reduce
latency for an application that does not require fully up-to-date data.

	Read Preference Mode
	Description

	primary
	Default mode. All operations read from the current replica set
primary.

	primaryPreferred
	In most situations, operations read from the primary but
if it is unavailable, operations read from secondary
members.

	secondary
	All operations read from the secondary members of the
replica set.

	secondaryPreferred
	In most situations, operations read from secondary
members but if no secondary members are available,
operations read from the primary.

	nearest
	Operations read from the nearest member of the replica
set, irrespective of the member’s type.

Read Preference Modes

	
primary

	All read operations use only the current replica set primary.
This is the default. If the primary is unavailable,
read operations produce an error or throw an exception.

The primary read preference mode is not compatible with
read preference modes that use tag sets. If you specify a tag set
with primary, the driver will produce an error.

	
primaryPreferred

	In most situations, operations read from the primary member
of the set. However, if the primary is unavailable, as is the case
during failover situations, operations read from secondary
members.

When the read preference includes a tag set, the client reads first from
the primary, if available, and then from secondaries that match the specified tags. If no secondaries have
matching tags, the read operation produces an error.

Since the application may receive data from a secondary, read
operations using the primaryPreferred mode may return
stale data in some situations.

Warning

Changed in version 2.2: mongos added full support for read preferences.

When connecting to a mongos instance older than 2.2,
using a client that supports read preference modes,
primaryPreferred will send queries to secondaries.

	
secondary

	Operations read only from the secondary members of the set.
If no secondaries are available, then this read operation produces an
error or exception.

Most sets have at least one secondary, but there are situations
where there may be no available secondary. For example, a set with
a primary, a secondary, and an arbiter may not have any
secondaries if a member is in recovering state or unavailable.

When the read preference includes a tag set, the client attempts to
find secondary members that match the specified tag set and directs
reads to a random secondary from among the nearest group. If no secondaries
have matching tags, the read operation produces an
error. [1]

Read operations using the secondary mode may return stale data.

	
secondaryPreferred

	In most situations, operations read from secondary members,
but in situations where the set consists of a single
primary (and no other members), the read operation will use
the set’s primary.

When the read preference includes a tag set, the client attempts to find
a secondary member that matches the specified tag set and directs
reads to a random secondary from among the nearest group. If no secondaries
have matching tags, the client ignores tags and reads from the primary.

Read operations using the secondaryPreferred mode may
return stale data.

	
nearest

	The driver reads from the nearest member of the set according to the member selection process. Reads in
the nearest mode do not consider the member’s
type. Reads in nearest mode may read from both
primaries and secondaries.

Set this mode to minimize the effect of network latency
on read operations without preference for current or stale data.

If you specify a tag set, the client attempts to
find a replica set member that matches the specified tag set and
directs reads to an arbitrary member from among the nearest
group.

Read operations using the nearest mode may return stale
data.

Note

All operations read from a member of the nearest group of the
replica set that matches the specified read preference mode. The
nearest mode prefers low latency reads over a
member’s primary or secondary status.

For nearest, the client assembles a list of
acceptable hosts based on tag set and then narrows that list to
the host with the shortest ping time and all other members of
the set that are within the “local threshold,” or acceptable
latency. See Member Selection
for more information.

	[1]	If your set has more than one secondary, and
you use the secondary read preference mode, consider
the following effect. If you have a three member replica set with a primary and two secondaries,
and if one secondary becomes unavailable, all secondary
queries must target the remaining secondary. This will double the
load on this secondary. Plan and provide capacity to support this
as needed.

Use Cases

Depending on the requirements of an application, you can configure
different applications to use
different read preferences, or use different read preferences for different
queries in the same application. Consider the following applications
for different read preference strategies.

Maximize Consistency

To avoid stale reads under all circumstances, use
primary. This prevents all queries when the set has no
primary, which happens during elections, or when a majority of
the replica set is not accessible.

Maximize Availability

To permit read operations when possible, Use
primaryPreferred. When there’s a primary you will get
consistent reads, but if there is no primary you can still query
secondaries.

Minimize Latency

To always read from a low-latency node, use nearest. The
driver or mongos will read from the fastest member and
those no more than 15 milliseconds [2]
further away than the fastest member.

nearest does not guarantee consistency. If the nearest
member to your application server is a secondary with some replication
lag, queries could return stale data. nearest only
reflects network distance and does not reflect I/O or CPU load.

	[2]	This threshold is configurable. See
localThreshold for mongos or your driver
documentation for the appropriate setting.

Query From Geographically Distributed Members

If the members of a replica set are geographically distributed, you
can create replica tags based that reflect the location of the instance and
then configure your application to query the members nearby.

For example, if members in “east” and “west” data centers are
tagged {'dc': 'east'} and
{'dc': 'west'}, your application servers in the east data center can read
from nearby members with the following read preference:

db.collection.find().readPref({ mode: 'nearest',
 tags: [{'dc': 'east'}] })

Although nearest already favors members with low network latency,
including the tag makes the choice more predictable.

Maximize throughput

If disk I/O is the limiting fact for throughput, scale
reads capacity using nearest and by setting the nearest
threshold [3] very high. This will distribute the
query load equally among all members.

	[3]	See localThreshold for
mongos or your driver documentation for the appropriate
secondaryAcceptableLatencyMS setting.

Reduce load on the primary

To shift read load from the primary, use mode
secondary. Although secondaryPreferred is tempting for
this use case, it carries some risk: if all secondaries are unavailable and
your set has enough arbiters to prevent the primary from
stepping down, then the primary will receive all traffic from clients. If the
primary is unable to handle this load, queries will compete with writes. For
this reason, use secondary to distribute read load to replica sets,
not secondaryPreferred.

Read Preferences for Database Commands

Because some database commands read and
return data from the database, all of the official drivers support
full read preference mode semantics
for the following commands:

	group

	mapReduce [4]

	aggregate

	collStats

	dbStats

	count

	distinct

	geoNear

	geoSearch

	geoWalk

New in version 2.4: mongos adds support for routing commands to shards using
read preferences. Previously mongos sent all commands to
shards’ primaries.

	[4]	Only “inline” mapReduce
operations that do not write data support read preference,
otherwise these operations must run on the primary
members.

Sharding

Sharding is the process of storing data records across multiple
machines and is MongoDB’s approach to meeting the demands of data
growth. As the size of the data increases, a single machine may not be
sufficient to store the data nor provide an acceptable read and write
throughput. Sharding solves the problem with horizontal scaling. With
sharding, you add more machines to support data growth and the demands
of read and write operations.

	Sharding Introduction

	A high-level introduction to horizontal scaling, data partitioning,
and sharded clusters in MongoDB.

	Sharding Concepts

	The core documentation of sharded cluster features, configuration,
architecture and behavior.

	Sharded Cluster Components

	A sharded cluster consists of shards, config servers, and
mongos instances.

	Sharded Cluster Architectures

	Outlines the requirements for sharded clusters, and provides
examples of several possible architectures for sharded clusters.

	Sharded Cluster Behavior

	Discusses the operations of sharded clusters with regards to the
automatic balancing of data in a cluster and other related
availability and security considerations.

	Sharding Mechanics

	Discusses the internal operation and behavior of sharded
clusters, including chunk migration, balancing, and the cluster
metadata.

	Sharded Cluster Tutorials

	Tutorials that describe common procedures and administrative
operations relevant to the use and maintenance of sharded clusters.

	Sharding Reference

	Reference for sharding-related functions and operations.

	Sharding Introduction

	Sharding Concepts
	Sharded Cluster Components
	Shards

	Config Servers

	Sharded Cluster Architectures
	Sharded Cluster Requirements

	Production Cluster Architecture

	Sharded Cluster Test Architecture

	Sharded Cluster Behavior
	Shard Keys

	Sharded Cluster High Availability

	Sharded Cluster Query Routing

	Sharding Mechanics
	Sharded Collection Balancing

	Chunk Migration Across Shards

	Chunk Splits in a Sharded Cluster

	Shard Key Indexes

	Sharded Cluster Metadata

	Sharded Cluster Tutorials
	Sharded Cluster Deployment Tutorials
	Deploy a Sharded Cluster

	Considerations for Selecting Shard Keys

	Shard a Collection Using a Hashed Shard Key

	Enable Authentication in a Sharded Cluster

	Add Shards to a Cluster

	Deploy Three Config Servers for Production Deployments

	Convert a Replica Set to a Replicated Sharded Cluster

	Convert Sharded Cluster to Replica Set

	Sharded Cluster Maintenance Tutorials
	View Cluster Configuration

	Migrate Config Servers with the Same Hostname

	Migrate Config Servers with Different Hostnames

	Replace a Config Server

	Migrate a Sharded Cluster to Different Hardware

	Backup Cluster Metadata

	Configure Behavior of Balancer Process in Sharded Clusters

	Manage Sharded Cluster Balancer

	Remove Shards from an Existing Sharded Cluster

	Sharded Cluster Data Management
	Create Chunks in a Sharded Cluster

	Split Chunks in a Sharded Cluster

	Migrate Chunks in a Sharded Cluster

	Merge Chunks in a Sharded Cluster

	Modify Chunk Size in a Sharded Cluster

	Tag Aware Sharding

	Manage Shard Tags

	Enforce Unique Keys for Sharded Collections

	Shard GridFS Data Store

	Troubleshoot Sharded Clusters

	Sharding Reference
	Config Database

	Sharding Command Quick Reference

Sharded Cluster Tutorials

The following tutorials provide instructions for administering
sharded clusters. For a higher-level
overview, see Sharding.

	Sharded Cluster Deployment Tutorials

	Instructions for deploying sharded clusters, adding shards,
selecting shard keys, and the initial configuration of sharded
clusters.

	Deploy a Sharded Cluster

	Set up a sharded cluster by creating the needed data directories,
starting the required MongoDB instances, and configuring the cluster
settings.

	Considerations for Selecting Shard Keys

	Choose the field that MongoDB uses to parse a collection’s documents
for distribution over the cluster’s shards. Each shard holds documents
with values within a certain range.

	Shard a Collection Using a Hashed Shard Key

	Shard a collection based on hashes of a field’s values in order to
ensure even distribution over the collection’s shards.

	Add Shards to a Cluster

	Add a shard to add capacity to a sharded cluster.

Continue reading from Sharded Cluster Deployment Tutorials
for additional tutorials.

	Sharded Cluster Maintenance Tutorials

	Procedures and tasks for common operations on active sharded
clusters.

	View Cluster Configuration

	View status information about the cluster’s databases, shards, and
chunks.

	Remove Shards from an Existing Sharded Cluster

	Migrate a single shard’s data and remove the shard.

	Migrate Config Servers with Different Hostnames

	Migrate a config server to a new system that uses a new hostname. If
possible, avoid changing the hostname and instead use the
Migrate Config Servers with the Same Hostname procedure.

	Manage Shard Tags

	Use tags to associate specific ranges of shard key values with specific
shards.

Continue reading from Sharded Cluster Maintenance Tutorials
for additional tutorials.

	Sharded Cluster Data Management

	Practices that address common issues in managing large sharded data
sets.

	Troubleshoot Sharded Clusters

	Presents solutions to common issues and concerns relevant to the
administration and use of sharded clusters. Refer to
FAQ: MongoDB Diagnostics for general diagnostic information.

	Sharded Cluster Deployment Tutorials
	Deploy a Sharded Cluster

	Considerations for Selecting Shard Keys

	Shard a Collection Using a Hashed Shard Key

	Enable Authentication in a Sharded Cluster

	Add Shards to a Cluster

	Deploy Three Config Servers for Production Deployments

	Convert a Replica Set to a Replicated Sharded Cluster

	Convert Sharded Cluster to Replica Set

	Sharded Cluster Maintenance Tutorials
	View Cluster Configuration

	Migrate Config Servers with the Same Hostname

	Migrate Config Servers with Different Hostnames

	Replace a Config Server

	Migrate a Sharded Cluster to Different Hardware

	Backup Cluster Metadata

	Configure Behavior of Balancer Process in Sharded Clusters

	Manage Sharded Cluster Balancer

	Remove Shards from an Existing Sharded Cluster

	Sharded Cluster Data Management
	Create Chunks in a Sharded Cluster

	Split Chunks in a Sharded Cluster

	Migrate Chunks in a Sharded Cluster

	Merge Chunks in a Sharded Cluster

	Modify Chunk Size in a Sharded Cluster

	Tag Aware Sharding

	Manage Shard Tags

	Enforce Unique Keys for Sharded Collections

	Shard GridFS Data Store

	Troubleshoot Sharded Clusters

Sharded Cluster Deployment Tutorials

The following tutorials provide information on deploying sharded clusters.

	Deploy a Sharded Cluster

	Set up a sharded cluster by creating the needed data directories,
starting the required MongoDB instances, and configuring the cluster
settings.

	Considerations for Selecting Shard Keys

	Choose the field that MongoDB uses to parse a collection’s documents
for distribution over the cluster’s shards. Each shard holds documents
with values within a certain range.

	Shard a Collection Using a Hashed Shard Key

	Shard a collection based on hashes of a field’s values in order to
ensure even distribution over the collection’s shards.

	Enable Authentication in a Sharded Cluster

	Control access to a sharded cluster through a key file and the keyFile
setting on each of the cluster’s components.

	Add Shards to a Cluster

	Add a shard to add capacity to a sharded cluster.

	Deploy Three Config Servers for Production Deployments

	Convert a test deployment with one config server to a production
deployment with three config servers.

	Convert a Replica Set to a Replicated Sharded Cluster

	Convert a replica set to a sharded cluster in which each shard is its
own replica set.

	Convert Sharded Cluster to Replica Set

	Replace your sharded cluster with a single replica set.

	Deploy a Sharded Cluster

	Considerations for Selecting Shard Keys

	Shard a Collection Using a Hashed Shard Key

	Enable Authentication in a Sharded Cluster

	Add Shards to a Cluster

	Deploy Three Config Servers for Production Deployments

	Convert a Replica Set to a Replicated Sharded Cluster

	Convert Sharded Cluster to Replica Set

Deploy a Sharded Cluster

Deploy Sharded Cluster:

	Start the Config Server Database Instances

	Start the mongos Instances

	Add Shards to the Cluster

	Enable Sharding for a Database

	Enable Sharding for a Collection

Use the following sequence of tasks to deploy a sharded cluster:

Warning

Sharding and “localhost” Addresses

If you use either “localhost” or 127.0.0.1 as the hostname
portion of any host identifier, for example as the host argument
to addShard or the value to the
--configdb
run time option, then you must use “localhost” or
127.0.0.1 for all host settings for any MongoDB instances in
the cluster. If you mix localhost addresses and remote host address,
MongoDB will error.

Start the Config Server Database Instances

The config server processes are mongod instances that store
the cluster’s metadata. You designate a mongod as a config
server using the --configsvr option. Each
config server stores a complete copy of the cluster’s metadata.

In production deployments, you must deploy exactly three config server
instances, each running on different servers to assure good uptime and
data safety. In test environments, you can run all three instances on a
single server.

Important

All members of a sharded cluster must be able to
connect to all other members of a sharded cluster, including all
shards and all config servers. Ensure that the network and
security systems including all interfaces and firewalls, allow
these connections.

	Create data directories for each of the three config server
instances. By default, a config server stores its data files in the
/data/configdb directory. You can choose a different location. To
create a data directory, issue a command similar to the following:

mkdir /data/configdb

	Start the three config server instances. Start each by issuing a
command using the following syntax:

mongod --configsvr --dbpath <path> --port <port>

The default port for config servers is 27019. You can specify a
different port. The following example starts a config server using
the default port and default data directory:

mongod --configsvr --dbpath /data/configdb --port 27019

For additional command options, see mongod or
Configuration File Options.

Note

All config servers must be running and available when you first initiate
a sharded cluster.

Start the mongos Instances

The mongos instances are lightweight and do not require data
directories. You can run a mongos instance on a system that
runs other cluster components, such as on an application server or a
server running a mongod process. By default, a
mongos instance runs on port 27017.

When you start the mongos instance, specify the hostnames of
the three config servers, either in the configuration file or as command
line parameters.

Tip

To avoid downtime, give each config server a logical DNS name
(unrelated to the server’s physical or virtual hostname). Without
logical DNS names, moving or renaming a config server requires
shutting down every mongod and mongos instance
in the sharded cluster.

To start a mongos instance, issue a command using the following syntax:

mongos --configdb <config server hostnames>

For example, to start a mongos that connects to config server
instance running on the following hosts and on the default ports:

	cfg0.example.net

	cfg1.example.net

	cfg2.example.net

You would issue the following command:

mongos --configdb cfg0.example.net:27019,cfg1.example.net:27019,cfg2.example.net:27019

Each mongos in a sharded cluster must use the same
configdb string, with identical host names listed in
identical order.

If you start a mongos instance with a string that does not
exactly match the string used by the other mongos instances
in the cluster, the mongos fails and you receive the
Config Database String Error error.

Each mongos in a sharded cluster must use the same
configdb string, with identical host names listed in
identical order.

If you start a mongos instance with a string that does
not exactly match the string used by the other mongos
instances in the cluster, the mongos return a
Config Database String Error error and refuse to start.

Add Shards to the Cluster

A shard can be a standalone mongod or a
replica set. In a production environment, each shard
should be a replica set.

	From a mongo shell, connect to the mongos
instance. Issue a command using the following syntax:

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

For example, if a mongos is accessible at
mongos0.example.net on port 27017, issue the following
command:

mongo --host mongos0.example.net --port 27017

	Add each shard to the cluster using the sh.addShard()
method, as shown in the examples below. Issue sh.addShard()
separately for each shard. If the shard is a replica set, specify the
name of the replica set and specify a member of the set. In
production deployments, all shards should be replica sets.

Optional

You can instead use the addShard database
command, which lets you specify a name and maximum size for the
shard. If you do not specify these, MongoDB automatically assigns
a name and maximum size. To use the database command, see
addShard.

The following are examples of adding a shard with
sh.addShard():

	To add a shard for a replica set named rs1 with a member
running on port 27017 on mongodb0.example.net, issue the
following command:

sh.addShard("rs1/mongodb0.example.net:27017")

Changed in version 2.0.3.

For MongoDB versions prior to 2.0.3, you must specify all members of the replica set. For
example:

sh.addShard("rs1/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

	To add a shard for a standalone mongod on port 27017
of mongodb0.example.net, issue the following command:

sh.addShard("mongodb0.example.net:27017")

Note

It might take some time for chunks to
migrate to the new shard.

Enable Sharding for a Database

Before you can shard a collection, you must enable sharding for the
collection’s database. Enabling sharding for a database does not
redistribute data but make it possible to shard the collections in that
database.

Once you enable sharding for a database, MongoDB assigns a
primary shard for that database where MongoDB stores all data
before sharding begins.

	From a mongo shell, connect to the mongos
instance. Issue a command using the following syntax:

mongo --host <hostname of machine running mongos> --port <port mongos listens on>

	Issue the sh.enableSharding() method, specifying the name
of the database for which to enable sharding. Use the following syntax:

sh.enableSharding("<database>")

Optionally, you can enable sharding for a database using the
enableSharding command, which uses the following syntax:

db.runCommand({ enableSharding: <database> })

Enable Sharding for a Collection

You enable sharding on a per-collection basis.

	Determine what you will use for the shard key. Your selection
of the shard key affects the efficiency of sharding. See the
selection considerations listed in the Considerations for Selecting Shard Key.

	If the collection already contains data you must create an index on
the shard key using ensureIndex().
If the collection is empty then MongoDB will create the index as part
of the sh.shardCollection() step.

	Enable sharding for a collection by issuing the
sh.shardCollection() method in the mongo shell.
The method uses the following syntax:

sh.shardCollection("<database>.<collection>", shard-key-pattern)

Replace the <database>.<collection> string with the full
namespace of your database, which consists of the name of your
database, a dot (e.g. .), and the full name of the collection.
The shard-key-pattern represents your shard key, which you
specify in the same form as you would an index key pattern.

Example

The following sequence of commands shards four collections:

sh.shardCollection("records.people", { "zipcode": 1, "name": 1 })
sh.shardCollection("people.addresses", { "state": 1, "_id": 1 })
sh.shardCollection("assets.chairs", { "type": 1, "_id": 1 })

db.alerts.ensureIndex({ _id : "hashed" })
sh.shardCollection("events.alerts", { "_id": "hashed" })

In order, these operations shard:

	The people collection in the records database using the
shard key { "zipcode": 1, "name": 1 }.

This shard key distributes documents by the value of the
zipcode field. If a number of documents have the same value
for this field, then that chunk will be splittable by the values of the name
field.

	The addresses collection in the people database using the
shard key { "state": 1, "_id": 1 }.

This shard key distributes documents by the value of the state
field. If a number of documents have the same value for this
field, then that chunk will be splittable by the values of the _id
field.

	The chairs collection in the assets database using the shard key
{ "type": 1, "_id": 1 }.

This shard key distributes documents by the value of the type
field. If a number of documents have the same value for this
field, then that chunk will be splittable by the values of the _id
field.

	The alerts collection in the events database using the shard key
{ "_id": "hashed" }.

New in version 2.4.

This shard key distributes documents by a hash of the value of
the _id field. MongoDB computes the hash of the _id
field for the hashed index,
which should provide an even distribution of documents across a
cluster.

Considerations for Selecting Shard Keys

Choosing a Shard Key

For many collections there may be no single, naturally occurring key
that possesses all the qualities of a good shard key. The following
strategies may help construct a useful shard key from existing data:

	Compute a more ideal shard key in your application layer,
and store this in all of your documents, potentially in the
_id field.

	Use a compound shard key that uses two or three values from all
documents that provide the right mix of cardinality with scalable
write operations and query isolation.

	Determine that the impact of using a less than ideal shard key
is insignificant in your use case, given:

	limited write volume,

	expected data size, or

	application query patterns.

	
New in version 2.4: Use a hashed shard key. Choose a field that has high
cardinality and create a hashed index
on that field. MongoDB uses these hashed index values as shard key
values, which ensures an even distribution of documents across the
shards.

Tip

MongoDB automatically computes the hashes when resolving queries using
hashed indexes. Applications do not need to compute hashes.

Considerations for Selecting Shard Key

Choosing the correct shard key can have a great impact on the
performance, capability, and functioning of your database and cluster.
Appropriate shard key choice depends on the schema of your data and the
way that your applications query and write data.

Create a Shard Key that is Easily Divisible

An easily divisible shard key makes it easy for MongoDB to distribute
content among the shards. Shard keys that have a limited number of
possible values can result in chunks that are “unsplittable.”

See also

Cardinality

Create a Shard Key that has High Degree of Randomness

A shard key with high degree of randomness prevents any single shard
from becoming a bottleneck and will distribute write operations among
the cluster.

See also

Write Scaling

Create a Shard Key that Targets a Single Shard

A shard key that targets a single shard makes it possible for the
mongos program to return most query operations directly
from a single specific mongod instance. Your shard key
should be the primary field used by your queries. Fields with a high
degree of “randomness” make it difficult to target operations to
specific shards.

See also

Query Isolation

Shard Using a Compound Shard Key

The challenge when selecting a shard key is that there is not always
an obvious choice. Often, an existing field in your collection may not
be the optimal key. In those situations, computing a special purpose
shard key into an additional field or using a compound shard key may
help produce one that is more ideal.

Cardinality

Cardinality in the context of MongoDB, refers to the ability of the
system to partition data into chunks. For
example, consider a collection of data such as an “address book” that
stores address records:

	Consider the use of a state field as a shard key:

The state key’s value holds the US state for a given address document.
This field has a low cardinality as all documents that have the
same value in the state field must reside on the same shard,
even if a particular state’s chunk exceeds the maximum chunk size.

Since there are a limited number of possible values for the state
field, MongoDB may distribute data unevenly among a small
number of fixed chunks. This may have a number of effects:

	If MongoDB cannot split a chunk because all of its documents
have the same shard key, migrations involving these un-splittable
chunks will take longer than other migrations, and it will be more
difficult for your data to stay balanced.

	If you have a fixed maximum number of chunks, you will never be
able to use more than that number of shards for this collection.

	Consider the use of a zipcode field as a shard key:

While this field has a large number of possible values, and thus has
potentially higher cardinality, it’s possible that a large number of users
could have the same value for the shard key, which would make this
chunk of users un-splittable.

In these cases, cardinality depends on the data. If your address book
stores records for a geographically distributed contact list
(e.g. “Dry cleaning businesses in America,”) then a value like
zipcode would be sufficient. However, if your address book is
more geographically concentrated (e.g “ice cream stores in Boston
Massachusetts,”) then you may have a much lower cardinality.

	Consider the use of a phone-number field as a shard key:

Phone number has a high cardinality, because users will generally
have a unique value for this field, MongoDB will be able to split as
many chunks as needed.

While “high cardinality,” is necessary for ensuring an even
distribution of data, having a high cardinality does not guarantee
sufficient query isolation
or appropriate write scaling.

Shard a Collection Using a Hashed Shard Key

New in version 2.4.

Hashed shard keys use a hashed
index of a field as the shard key to
partition data across your sharded cluster.

For suggestions on choosing the right field as your hashed shard key, see
Hashed Shard Keys. For limitations on hashed indexes, see
Create a Hashed Index.

Note

If chunk migrations are in progress while creating a hashed
shard key collection, the initial chunk distribution may be
uneven until the balancer automatically balances the
collection.

Shard the Collection

To shard a collection using a hashed shard key, use an operation in
the mongo that resembles the following:

sh.shardCollection("records.active", { a: "hashed" })

This operation shards the active collection in the records
database, using a hash of the a field as the shard key.

Specify the Initial Number of Chunks

If you shard an empty collection using a hashed shard key, MongoDB
automatically creates and migrates empty chunks so that each shard
has two chunks. To control how many chunks MongoDB creates when
sharding the collection, use shardCollection with the
numInitialChunks parameter.

Important

MongoDB 2.4 adds support for hashed shard keys. After
sharding a collection with a hashed shard key, you must use the
MongoDB 2.4 or higher mongos and mongod
instances in your sharded cluster.

Warning

MongoDB hashed indexes truncate floating point numbers to 64-bit integers
before hashing. For example, a hashed index would store the same
value for a field that held a value of 2.3, 2.2, and 2.9.
To prevent collisions, do not use a hashed index for floating
point numbers that cannot be consistently converted to 64-bit
integers (and then back to floating point). MongoDB hashed indexes do
not support floating point values larger than 253.

Enable Authentication in a Sharded Cluster

New in version 2.0: Support for authentication with sharded clusters.

To control access to a sharded cluster, create key files and then set
the keyFile option on all components of the sharded
cluster, including all mongos instances, all config server
mongod instances, and all shard mongod
instances. The content of the key file is arbitrary but must be the
same on all cluster members.

Note

For an overview of authentication, see
Access Control. For an overview of security, see
Security.

Procedure

To enable authentication, do the following:

	Generate a key file to store authentication information, as described
in the Generate a Key File section.

	On each component in the sharded cluster, enable authentication by
doing one of the following:

	In the configuration file, set the keyFile option to the
key file’s path and then start the component, as in the following
example:

keyFile = /srv/mongodb/keyfile

	When starting the component, set --keyFile option,
which is an option for both mongos instances and
mongod instances. Set the --keyFile
to the key file’s path.

Note

The keyFile setting implies auth, which
means in most cases you do not need to set auth
explicitly.

	Add the first administrative user and then add subsequent users. See
Create a User Administrator.

Add Shards to a Cluster

You add shards to a sharded cluster after you create the cluster
or anytime that you need to add capacity to the cluster. If you have not
created a sharded cluster, see Deploy a Sharded Cluster.

When adding a shard to a cluster, you should always ensure that the
cluster has enough capacity to support the migration without affecting
legitimate production traffic.

In production environments, all shards should be replica sets.

Add a Shard to a Cluster

You interact with a sharded cluster by connecting to a mongos
instance.

	From a mongo shell, connect to the mongos
instance. For example, if a mongos is accessible at
mongos0.example.net on port 27017, issue the following
command:

mongo --host mongos0.example.net --port 27017

	Add a shard to the cluster using the sh.addShard()
method, as shown in the examples below. Issue sh.addShard()
separately for each shard. If the shard is a replica set, specify the
name of the replica set and specify a member of the set. In
production deployments, all shards should be replica sets.

Optional

You can instead use the addShard database
command, which lets you specify a name and maximum size for the
shard. If you do not specify these, MongoDB automatically assigns
a name and maximum size. To use the database command, see
addShard.

The following are examples of adding a shard with
sh.addShard():

	To add a shard for a replica set named rs1 with a member
running on port 27017 on mongodb0.example.net, issue the
following command:

sh.addShard("rs1/mongodb0.example.net:27017")

Changed in version 2.0.3.

For MongoDB versions prior to 2.0.3, you must specify all members of the replica set. For
example:

sh.addShard("rs1/mongodb0.example.net:27017,mongodb1.example.net:27017,mongodb2.example.net:27017")

	To add a shard for a standalone mongod on port 27017
of mongodb0.example.net, issue the following command:

sh.addShard("mongodb0.example.net:27017")

Note

It might take some time for chunks to
migrate to the new shard.

Deploy Three Config Servers for Production Deployments

This procedure converts a test deployment with only one
config server to a production deployment
with three config servers.

Tip

Use CNAMEs to identify your config servers to the cluster so
that you can rename and renumber your config servers without downtime.

For redundancy, all production sharded clusters should deploy three config servers on
three different machines. Use a single config server only for testing
deployments, never for production deployments. When you shift to
production, upgrade immediately to three config servers.

To convert a test deployment with one config server to a production
deployment with three config servers:

	Shut down all existing MongoDB processes in the cluster. This
includes:

	all mongod instances or replica sets
that provide your shards.

	all mongos instances in your cluster.

	Copy the entire dbpath file system tree from the
existing config server to the two machines that will provide the
additional config servers. These commands, issued on the system
with the existing Config Database, mongo-config0.example.net may
resemble the following:

rsync -az /data/configdb mongo-config1.example.net:/data/configdb
rsync -az /data/configdb mongo-config2.example.net:/data/configdb

	Start all three config servers, using the same invocation that you
used for the single config server.

mongod --configsvr

	Restart all shard mongod and mongos processes.

Convert a Replica Set to a Replicated Sharded Cluster

Overview

Following this tutorial, you will convert a single 3-member
replica set to a cluster that consists of 2 shards. Each shard
will consist of an independent 3-member replica set.

The tutorial uses a test environment running on a local system
UNIX-like system. You should feel encouraged to “follow along at
home.” If you need to perform this process in a production
environment, notes throughout the document indicate procedural
differences.

The procedure, from a high level, is as follows:

	Create or select a 3-member replica set and insert some data into a collection.

	Start the config databases and create a cluster with a single
shard.

	Create a second replica set with three new mongod instances.

	Add the second replica set as a shard in the cluster.

	Enable sharding on the desired collection or collections.

Process

Install MongoDB according to the instructions in the MongoDB Installation Tutorial.

Deploy a Replica Set with Test Data

If have an existing MongoDB replica set deployment, you can
omit the this step and continue from
Deploy Sharding Infrastructure.

Use the following sequence of steps to configure and deploy a replica
set and to insert test data.

	Create the following directories for the first replica set instance, named firstset:

	/data/example/firstset1

	/data/example/firstset2

	/data/example/firstset3

To create directories, issue the following command:

mkdir -p /data/example/firstset1 /data/example/firstset2 /data/example/firstset3

	In a separate terminal window or GNU Screen
window, start three mongod instances by running each of the
following commands:

mongod --dbpath /data/example/firstset1 --port 10001 --replSet firstset --oplogSize 700 --rest
mongod --dbpath /data/example/firstset2 --port 10002 --replSet firstset --oplogSize 700 --rest
mongod --dbpath /data/example/firstset3 --port 10003 --replSet firstset --oplogSize 700 --rest

Note

The --oplogSize 700
option restricts the size of the operation log (i.e. oplog) for
each mongod instance to 700MB. Without the
--oplogSize option, each
mongod reserves approximately 5% of the free disk
space on the volume. By limiting the size of the oplog, each
instance starts more quickly. Omit this setting in production
environments.

	In a mongo shell session in a new terminal, connect to the
mongodb instance on port 10001 by running the following command. If you
are in a production environment, first read the note below.

mongo localhost:10001/admin

Note

Above and hereafter, if you are running in a production
environment or are testing this process with mongod
instances on multiple systems, replace “localhost” with a
resolvable domain, hostname, or the IP address of your system.

	In the mongo shell, initialize the first replica set by issuing the following command:

db.runCommand({"replSetInitiate" :
 {"_id" : "firstset", "members" : [{"_id" : 1, "host" : "localhost:10001"},
 {"_id" : 2, "host" : "localhost:10002"},
 {"_id" : 3, "host" : "localhost:10003"}
]}})
{
 "info" : "Config now saved locally. Should come online in about a minute.",
 "ok" : 1
}

	In the mongo shell, create and populate a new collection
by issuing the following sequence of JavaScript operations:

use test
switched to db test
people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy", "Greg", "Steve", "Kristina", "Katie", "Jeff"];
for(var i=0; i<1000000; i++){
 name = people[Math.floor(Math.random()*people.length)];
 user_id = i;
 boolean = [true, false][Math.floor(Math.random()*2)];
 added_at = new Date();
 number = Math.floor(Math.random()*10001);
 db.test_collection.save({"name":name, "user_id":user_id, "boolean": boolean, "added_at":added_at, "number":number });
 }

The above operations add one million documents to the collection
test_collection. This can take several minutes, depending on your
system.

The script adds the documents in the following form:

{ "_id" : ObjectId("4ed5420b8fc1dd1df5886f70"), "name" : "Greg", "user_id" : 4, "boolean" : true, "added_at" : ISODate("2011-11-29T20:35:23.121Z"), "number" : 74 }

Deploy Sharding Infrastructure

This procedure creates the three config databases that
store the cluster’s metadata.

Note

For development and testing environments, a single config database is
sufficient. In production environments, use three config
databases. Because config instances store only the metadata for the
sharded cluster, they have minimal resource requirements.

	Create the following data directories for three config database
instances:

	/data/example/config1

	/data/example/config2

	/data/example/config3

Issue the following command at the system prompt:

mkdir -p /data/example/config1 /data/example/config2 /data/example/config3

	In a
separate terminal window or GNU Screen window,
start the config databases by running the following commands:

mongod --configsvr --dbpath /data/example/config1 --port 20001
mongod --configsvr --dbpath /data/example/config2 --port 20002
mongod --configsvr --dbpath /data/example/config3 --port 20003

	In a separate terminal window or GNU Screen
window,
start mongos instance by running the following
command:

mongos --configdb localhost:20001,localhost:20002,localhost:20003 --port 27017 --chunkSize 1

Note

If you are using the collection created earlier or are just
experimenting with sharding, you can use a small
--chunkSize (1MB works well.) The
default chunkSize of 64MB means that your
cluster must have 64MB of data before the MongoDB’s
automatic sharding begins working.

In production environments,
do not use a small shard size.

The configdb options specify the configuration databases
(e.g. localhost:20001, localhost:20002, and
localhost:2003). The mongos instance runs on the default
“MongoDB” port (i.e. 27017), while the databases themselves
are running on ports in the 30001 series. In the
this example, you may omit
the --port 27017 option, as 27017 is the default port.

	Add the first shard in mongos. In a new terminal window
or GNU Screen session, add the first shard, according to the
following procedure:

	Connect to the mongos with the following
command:

mongo localhost:27017/admin

	Add the first shard to the cluster by issuing
the addShard command:

db.runCommand({ addShard : "firstset/localhost:10001,localhost:10002,localhost:10003" })

	Observe the following message, which denotes success:

{ "shardAdded" : "firstset", "ok" : 1 }

Deploy a Second Replica Set

This procedure deploys a second replica set. This
closely mirrors the process used to establish the first replica set
above, omitting the test data.

	Create the following data directories for the members of the
second replica set, named secondset:

	/data/example/secondset1

	/data/example/secondset2

	/data/example/secondset3

	In three new terminal windows, start three instances of mongod
with the following commands:

mongod --dbpath /data/example/secondset1 --port 10004 --replSet secondset --oplogSize 700 --rest
mongod --dbpath /data/example/secondset2 --port 10005 --replSet secondset --oplogSize 700 --rest
mongod --dbpath /data/example/secondset3 --port 10006 --replSet secondset --oplogSize 700 --rest

Note

As above, the second replica set uses the smaller
oplogSize configuration. Omit this setting in
production environments.

	In the mongo shell, connect to one mongodb instance by issuing
the following command:

mongo localhost:10004/admin

	In the mongo shell, initialize the second replica set by issuing
the following command:

db.runCommand({"replSetInitiate" :
 {"_id" : "secondset",
 "members" : [{"_id" : 1, "host" : "localhost:10004"},
 {"_id" : 2, "host" : "localhost:10005"},
 {"_id" : 3, "host" : "localhost:10006"}
]}})

{
 "info" : "Config now saved locally. Should come online in about a minute.",
 "ok" : 1
}

	Add the second replica set to the cluster. Connect to the mongos instance created
in the previous procedure and issue the following sequence of commands:

use admin
db.runCommand({ addShard : "secondset/localhost:10004,localhost:10005,localhost:10006" })

This command returns the following success message:

{ "shardAdded" : "secondset", "ok" : 1 }

	Verify that both shards are properly configured by running the
listShards command. View this and example output
below:

db.runCommand({listShards:1})
{
 "shards" : [
 {
 "_id" : "firstset",
 "host" : "firstset/localhost:10001,localhost:10003,localhost:10002"
 },
 {
 "_id" : "secondset",
 "host" : "secondset/localhost:10004,localhost:10006,localhost:10005"
 }
],
 "ok" : 1
}

Enable Sharding

MongoDB must have sharding enabled on both the database and
collection levels.

Enabling Sharding on the Database Level

Issue the enableSharding command. The following example
enables sharding on the “test” database:

db.runCommand({ enableSharding : "test" })
{ "ok" : 1 }

Create an Index on the Shard Key

MongoDB uses the shard key to
distribute documents between shards. Once selected, you cannot change
the shard key. Good shard keys:

	have values that are evenly distributed among all documents,

	group documents that are often accessed at the same time into
contiguous chunks, and

	allow for effective distribution of activity among shards.

Typically shard keys are compound, comprising of some sort of hash and
some sort of other primary key. Selecting a shard key depends on your
data set, application architecture, and usage pattern, and is beyond
the scope of this document. For the purposes of this example, we will
shard the “number” key. This typically would
not be a good shard key for production deployments.

Create the index with the following procedure:

use test
db.test_collection.ensureIndex({number:1})

See also

The Shard Key Overview and
Shard Key sections.

Shard the Collection

Issue the following command:

use admin
db.runCommand({ shardCollection : "test.test_collection", key : {"number":1} })
{ "collectionsharded" : "test.test_collection", "ok" : 1 }

The collection test_collection is now sharded!

Over the next few minutes the Balancer begins to redistribute
chunks of documents. You can confirm this activity by switching to the
test database and running db.stats() or
db.printShardingStatus().

As clients insert additional documents into this collection,
mongos distributes the documents evenly between the shards.

In the mongo shell, issue the following commands to return
statics against each cluster:

use test
db.stats()
db.printShardingStatus()

Example output of the db.stats() command:

{
 "raw" : {
 "firstset/localhost:10001,localhost:10003,localhost:10002" : {
 "db" : "test",
 "collections" : 3,
 "objects" : 973887,
 "avgObjSize" : 100.33173458522396,
 "dataSize" : 97711772,
 "storageSize" : 141258752,
 "numExtents" : 15,
 "indexes" : 2,
 "indexSize" : 56978544,
 "fileSize" : 1006632960,
 "nsSizeMB" : 16,
 "ok" : 1
 },
 "secondset/localhost:10004,localhost:10006,localhost:10005" : {
 "db" : "test",
 "collections" : 3,
 "objects" : 26125,
 "avgObjSize" : 100.33286124401914,
 "dataSize" : 2621196,
 "storageSize" : 11194368,
 "numExtents" : 8,
 "indexes" : 2,
 "indexSize" : 2093056,
 "fileSize" : 201326592,
 "nsSizeMB" : 16,
 "ok" : 1
 }
 },
 "objects" : 1000012,
 "avgObjSize" : 100.33176401883178,
 "dataSize" : 100332968,
 "storageSize" : 152453120,
 "numExtents" : 23,
 "indexes" : 4,
 "indexSize" : 59071600,
 "fileSize" : 1207959552,
 "ok" : 1
}

Example output of the db.printShardingStatus() command:

--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:
 { "_id" : "firstset", "host" : "firstset/localhost:10001,localhost:10003,localhost:10002" }
 { "_id" : "secondset", "host" : "secondset/localhost:10004,localhost:10006,localhost:10005" }
databases:
 { "_id" : "admin", "partitioned" : false, "primary" : "config" }
 { "_id" : "test", "partitioned" : true, "primary" : "firstset" }
 test.test_collection chunks:
 secondset 5
 firstset 186

[...]

In a few moments you can run these commands for a second time to
demonstrate that chunks are migrating from
firstset to secondset.

When this procedure is complete, you will have converted a replica set
into a cluster where each shard is itself a replica set.

Convert Sharded Cluster to Replica Set

	Convert a Cluster with a Single Shard into a Replica Set

	Convert a Sharded Cluster into a Replica Set

This tutorial describes the process for converting a sharded
cluster to a non-sharded replica set. To convert a replica
set into a sharded cluster
Convert a Replica Set to a Replicated Sharded Cluster. See the
Sharding documentation for more information on sharded
clusters.

Convert a Cluster with a Single Shard into a Replica Set

In the case of a sharded cluster with only one shard, that shard
contains the full data set. Use the following procedure to convert that
cluster into a non-sharded replica set:

	Reconfigure the application to connect to the primary member of the
replica set hosting the single shard that system will be the new replica
set.

	Optionally remove the --shardsrv
option, if your mongod started with this option.

Tip

Changing the --shardsrv
option will change the port that mongod listens for
incoming connections on.

The single-shard cluster is now a non-sharded replica set that
will accept read and write operations on the data set.

You may now decommission the remaining sharding infrastructure.

Convert a Sharded Cluster into a Replica Set

Use the following procedure to transition from a sharded cluster
with more than one shard to an entirely new replica set.

	With the sharded cluster running, deploy a new replica
set in addition to your sharded cluster. The
replica set must have sufficient capacity to hold all of the data
files from all of the current shards combined. Do not configure the
application to connect to the new replica set until the data
transfer is complete.

	Stop all writes to the sharded cluster. You may reconfigure
your application or stop all mongos instances. If you
stop all mongos instances, the applications will not be
able to read from the database. If you stop all mongos
instances, start a temporary mongos instance on that
applications cannot access for the data migration procedure.

	Use mongodump and mongorestore to migrate
the data from the mongos instance to the new
replica set.

Note

Not all collections on all databases are necessarily
sharded. Do not solely migrate the sharded collections. Ensure that
all databases and all collections migrate correctly.

	Reconfigure the application to use the non-sharded replica
set instead of the mongos instance.

The application will now use the un-sharded replica set for
reads and writes. You may now decommission the remaining unused
sharded cluster infrastructure.

Sharded Cluster Maintenance Tutorials

The following tutorials provide information in maintaining sharded clusters.

	View Cluster Configuration

	View status information about the cluster’s databases, shards, and
chunks.

	Migrate Config Servers with the Same Hostname

	Migrate a config server to a new system while keeping the same
hostname. This procedure requires changing the DNS entry to point to
the new system.

	Migrate Config Servers with Different Hostnames

	Migrate a config server to a new system that uses a new hostname. If
possible, avoid changing the hostname and instead use the
Migrate Config Servers with the Same Hostname procedure.

	Replace a Config Server

	Replaces a config server that has become inoperable. This procedure
assumes that the hostname does not change.

	Migrate a Sharded Cluster to Different Hardware

	Migrate a sharded cluster to a different hardware system, for example,
when moving a pre-production environment to production.

	Backup Cluster Metadata

	Create a backup of a sharded cluster’s metadata while keeping the
cluster operational.

	Configure Behavior of Balancer Process in Sharded Clusters

	Manage the balancer’s behavior by scheduling a balancing window,
changing size settings, or requiring replication before migration.

	Manage Sharded Cluster Balancer

	View balancer status and manage balancer behavior.

	Remove Shards from an Existing Sharded Cluster

	Migrate a single shard’s data and remove the shard.

	View Cluster Configuration

	Migrate Config Servers with the Same Hostname

	Migrate Config Servers with Different Hostnames

	Replace a Config Server

	Migrate a Sharded Cluster to Different Hardware

	Backup Cluster Metadata

	Configure Behavior of Balancer Process in Sharded Clusters

	Manage Sharded Cluster Balancer

	Remove Shards from an Existing Sharded Cluster

See also

Backup and Restore Sharded Clusters

View Cluster Configuration

List Databases with Sharding Enabled

To list the databases that have sharding enabled, query the
databases collection in the Config Database.
A database has sharding enabled if the value of the partitioned
field is true. Connect to a mongos instance with a
mongo shell, and run the following operation to get a full
list of databases with sharding enabled:

use config
db.databases.find({ "partitioned": true })

Example

You can use the following sequence of commands when to
return a list of all databases in the cluster:

use config
db.databases.find()

If this returns the following result set:

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "animals", "partitioned" : true, "primary" : "m0.example.net:30001" }
{ "_id" : "farms", "partitioned" : false, "primary" : "m1.example2.net:27017" }

Then sharding is only enabled for the animals database.

List Shards

To list the current set of configured shards, use the listShards
command, as follows:

use admin
db.runCommand({ listShards : 1 })

View Cluster Details

To view cluster details, issue db.printShardingStatus() or
sh.status(). Both methods return the same output.

Example

In the following example output from sh.status()

	sharding version displays the version number of the shard
metadata.

	shards displays a list of the mongod instances
used as shards in the cluster.

	databases displays all databases in the cluster,
including database that do not have sharding enabled.

	The chunks information for the foo database displays how
many chunks are on each shard and displays the range of each chunk.

--- Sharding Status ---
 sharding version: { "_id" : 1, "version" : 3 }
 shards:
 { "_id" : "shard0000", "host" : "m0.example.net:30001" }
 { "_id" : "shard0001", "host" : "m3.example2.net:50000" }
 databases:
 { "_id" : "admin", "partitioned" : false, "primary" : "config" }
 { "_id" : "contacts", "partitioned" : true, "primary" : "shard0000" }
 foo.contacts
 shard key: { "zip" : 1 }
 chunks:
 shard0001 2
 shard0002 3
 shard0000 2
 { "zip" : { "$minKey" : 1 } } -->> { "zip" : 56000 } on : shard0001 { "t" : 2, "i" : 0 }
 { "zip" : 56000 } -->> { "zip" : 56800 } on : shard0002 { "t" : 3, "i" : 4 }
 { "zip" : 56800 } -->> { "zip" : 57088 } on : shard0002 { "t" : 4, "i" : 2 }
 { "zip" : 57088 } -->> { "zip" : 57500 } on : shard0002 { "t" : 4, "i" : 3 }
 { "zip" : 57500 } -->> { "zip" : 58140 } on : shard0001 { "t" : 4, "i" : 0 }
 { "zip" : 58140 } -->> { "zip" : 59000 } on : shard0000 { "t" : 4, "i" : 1 }
 { "zip" : 59000 } -->> { "zip" : { "$maxKey" : 1 } } on : shard0000 { "t" : 3, "i" : 3 }
 { "_id" : "test", "partitioned" : false, "primary" : "shard0000" }

Migrate Config Servers with the Same Hostname

This procedure migrates a config server
in a sharded cluster
to a new system that uses the same hostname.

To migrate all the config servers in a cluster, perform this procedure
for each config server separately and migrate the config servers in
reverse order from how they are listed in the mongos
instances’ configdb string. Start with the last config server
listed in the configdb string.

	Shut down the config server.

This renders all config data for the sharded cluster “read only.”

	Change the DNS entry that points to the system that provided the old
config server, so that the same hostname points to the new
system.
How you do this depends on how you organize your DNS and
hostname resolution services.

	Copy the contents of dbpath from the old config server to
the new config server.

For example, to copy the contents of dbpath to a machine
named mongodb.config2.example.net, you might issue a command
similar to the following:

rsync -az /data/configdb/ mongodb.config2.example.net:/data/configdb

	Start the config server instance on the new system. The default
invocation is:

mongod --configsvr

When you start the third config server, your cluster will become
writable and it will be able to create new splits and migrate chunks
as needed.

Migrate Config Servers with Different Hostnames

This procedure migrates a config server
in a sharded cluster
to a new server that uses a different hostname. Use this procedure only
if the config server will not be accessible via the same hostname.

Changing a config server’s hostname
requires downtime and requires restarting every process in the
sharded cluster.
If possible, avoid changing the hostname so that you can instead use the
procedure to migrate a config server and use the same hostname.

To migrate all the config servers in a cluster, perform this procedure
for each config server separately and migrate the config servers in
reverse order from how they are listed in the mongos
instances’ configdb string. Start with the last config server
listed in the configdb string.

	Disable the cluster balancer process temporarily. See
Disable the Balancer for more information.

	Shut down the config server.

This renders all config data for the sharded cluster “read only.”

	Copy the contents of dbpath from the old config server to
the new config server.

Example

To copy the contents of dbpath to a machine
named mongodb.config2.example.net, use a command that
resembles the following:

rsync -az /data/configdb mongodb.config2.example.net:/data/configdb

	Start the config server instance on the new system. The default
invocation is:

mongod --configsvr

	Shut down all existing MongoDB processes. This includes:

	the mongod instances or replica sets
that provide your shards.

	the mongod instances that provide your existing
config databases.

	the mongos instances.

	Restart all mongod processes that provide the shard
servers.

	Update the configdb setting for each mongos
instances.

	Restart the mongos instances.

	Re-enable the balancer to allow the cluster to resume normal
balancing operations. See the
Disable the Balancer section for more
information on managing the balancer process.

Replace a Config Server

This procedure replaces an inoperable
config server in a
sharded cluster. Use this procedure only
to replace a config server that has become inoperable (e.g. hardware
failure).

This process assumes that the hostname of the instance will not change.
If you must change the hostname of the instance, use the procedure to
migrate a config server and use a new hostname.

	Disable the cluster balancer process temporarily. See
Disable the Balancer for more information.

	Provision a new system, with the same hostname as the previous
host.

You will have to ensure that the new system has the same IP address
and hostname as the system it’s replacing or you will need to
modify the DNS records and wait for them to propagate.

	Shut down one (and only one) of the existing config servers. Copy
all of this host’s dbpath file system tree from the current system
to the system that will provide the new config server. This
command, issued on the system with the data files, may resemble the
following:

rsync -az /data/configdb mongodb.config2.example.net:/data/configdb

	Restart the config server process that you used in the previous
step to copy the data files to the new config server instance.

	Start the new config server instance. The default invocation is:

mongod --configsvr

	Re-enable the balancer to allow the cluster to resume normal
balancing operations. See the
Disable the Balancer section for more
information on managing the balancer process.

Note

In the course of this procedure never remove a config server from
the configdb parameter on any of the mongos
instances. If you need to change the name of a config server,
always make sure that all mongos instances have three
config servers specified in the configdb setting at all
times.

Migrate a Sharded Cluster to Different Hardware

Migrate Sharded Cluster:

	Disable the Balancer

	Migrate Each Config Server Separately

	Restart the mongos Instances

	Migrate the Shards
	Migrate a Replica Set Shard
	Migrate a Member of a Replica Set Shard

	Migrate the Primary in a Replica Set Shard

	Migrate a Standalone Shard

	Re-Enable the Balancer

This procedure moves the components of the sharded cluster to a
new hardware system without downtime for reads and writes.

Important

While the migration is in progress, do not attempt to change to the
cluster metadata. Do not use
any operation that modifies the cluster metadata in any way. For
example, do not create or drop databases, create or drop collections,
or use any sharding commands.

If your cluster includes a shard backed by a standalone
mongod instance, consider converting the standalone
to a replica set to
simplify migration and to let you keep the cluster online during
future maintenance. Migrating a shard as standalone is a multi-step
process that may require downtime.

To migrate a cluster to new hardware, perform the following tasks.

Disable the Balancer

Disable the balancer to stop chunk migration and do not perform any metadata
write operations until the process finishes. If a migration is in
progress, the balancer will complete the in-progress migration before
stopping.

To disable the balancer, connect to one of the cluster’s
mongos instances and issue the following method:

sh.stopBalancer()

To check the balancer state, issue the sh.getBalancerState()
method.

For more information, see Disable the Balancer.

Migrate Each Config Server Separately

Migrate each config server by starting
with the last config server listed in the configdb string.
Proceed in reverse order of the configdb string. Migrate and
restart a config server before proceeding to the next.
Do not rename a config server during this process.

Note

If the name or address that a sharded cluster uses to connect
to a config server changes, you must restart every
mongod and mongos instance in the sharded
cluster. Avoid downtime by using CNAMEs to identify config servers
within the MongoDB deployment.

See
Migrate Config Servers with Different Hostnames
for more information.

Important

Start with the last config server listed in configdb.

	Shut down the config server.

This renders all config data for the sharded cluster “read only.”

	Change the DNS entry that points to the system that provided the old
config server, so that the same hostname points to the new
system.
How you do this depends on how you organize your DNS and
hostname resolution services.

	Copy the contents of dbpath from the old config server to
the new config server.

For example, to copy the contents of dbpath to a machine
named mongodb.config2.example.net, you might issue a command
similar to the following:

rsync -az /data/configdb/ mongodb.config2.example.net:/data/configdb

	Start the config server instance on the new system. The default
invocation is:

mongod --configsvr

Restart the mongos Instances

If the configdb string will change as part of the
migration, you must shut down all mongos instances before
changing the configdb string. This avoids errors in the
sharded cluster over configdb string conflicts.

If the configdb string will remain the same, you can migrate
the mongos instances sequentially or all at once.

	Shut down the mongos instances using the
shutdown command. If the configdb string is
changing, shut down all mongos instances.

	If the hostname has changed for any of the config servers, update the
configdb string for each mongos instance. The
mongos instances must all use the same configdb
string. The strings must list identical host names in identical order.

Tip

To avoid downtime, give each config server a logical DNS name
(unrelated to the server’s physical or virtual hostname). Without
logical DNS names, moving or renaming a config server requires
shutting down every mongod and mongos instance
in the sharded cluster.

	Restart the mongos instances being sure to use the
updated configdb string if hostnames have changed.

For more information, see Start the mongos Instances.

Migrate the Shards

Migrate the shards one at a time. For each shard, follow the appropriate
procedure in this section.

Migrate a Replica Set Shard

To migrate a sharded cluster, migrate each member separately. First
migrate the non-primary members, and then migrate the primary
last.

If the replica set has two voting members, add an arbiter to the replica set to ensure the set
keeps a majority of its votes available during the migration. You can
remove the arbiter after completing the migration.

Migrate a Member of a Replica Set Shard

	Shut down the mongod process. To ensure a
clean shutdown, use the shutdown command.

	Move the data directory (i.e., the dbpath)
to the new machine.

	Restart the mongod process at the new
location.

	Connect to the replica set’s current primary.

	If the hostname of the member has changed, use
rs.reconfig() to update the replica set configuration
document with the new hostname.

For example, the following sequence of commands updates the
hostname for the instance at position 2 in the members
array:

cfg = rs.conf()
cfg.members[2].host = "pocatello.example.net:27017"
rs.reconfig(cfg)

For more information on updating the configuration document, see
Example Reconfiguration Operations.

	To confirm the new configuration, issue rs.conf().

	Wait for the member to recover. To check the member’s state, issue
rs.status().

Migrate the Primary in a Replica Set Shard

While migrating the replica set’s primary, the set must elect a new
primary. This failover process which renders the replica set
unavailable to perform reads or accept writes for the duration of the
election, which typically completes quickly. If possible, plan the
migration during a maintenance window.

	Step down the primary to allow the normal failover process. To step down the primary, connect
to the primary and issue the either the
replSetStepDown command or the rs.stepDown()
method. The following example shows the rs.stepDown()
method:

rs.stepDown()

	Once the primary has stepped down and another member has become
PRIMARY state. To migrate the stepped-down primary,
follow the Migrate a Member of a Replica Set Shard procedure

You can check the output of rs.status() to confirm the
change in status.

Migrate a Standalone Shard

The ideal procedure for migrating a standalone shard is to
convert the standalone to a replica set and then use the
procedure for migrating a replica set shard. In production clusters, all shards
should be replica sets, which provides continued availability during
maintenance windows.

Migrating a shard as standalone is a multi-step process during which
part of the shard may be unavailable. If the shard is the
primary shard for a database,the process includes the
movePrimary command. While the movePrimary
runs, you should stop modifying data in that database. To migrate the
standalone shard, use the Remove Shards from an Existing Sharded Cluster
procedure.

Re-Enable the Balancer

To complete the migration, re-enable the balancer to resume
chunk migrations.

Connect to one of the cluster’s mongos instances and pass
true to the sh.setBalancerState() method:

sh.setBalancerState(true)

To check the balancer state, issue the sh.getBalancerState()
method.

For more information, see Enable the Balancer.

Backup Cluster Metadata

This procedure shuts down the mongod instance of a
config server in order to create a
backup of a sharded cluster’s
metadata. The cluster’s config servers store all of the cluster’s
metadata, most importantly the mapping from chunks to
shards.

When you perform this procedure, the cluster remains operational
[1].

	Disable the cluster balancer process temporarily. See
Disable the Balancer for more information.

	Shut down one of the config databases.

	Create a full copy of the data files (i.e. the path specified by
the dbpath option for the config instance.)

	Restart the original configuration server.

	Re-enable the balancer to allow the cluster to resume normal
balancing operations. See the
Disable the Balancer section for more
information on managing the balancer process.

See also

Backup Strategies for MongoDB Systems.

	[1]	While one of the three config servers is unavailable,
the cluster cannot split any chunks nor can it migrate chunks
between shards. Your application will be able to write data to the
cluster. See Config Servers for more information.

Configure Behavior of Balancer Process in Sharded Clusters

The balancer is a process that runs on one of the mongos
instances in a cluster and ensures that chunks are
evenly distributed throughout a sharded cluster. In most deployments,
the default balancer configuration is sufficient for normal
operation. However, administrators might need to modify balancer
behavior depending on application or operational requirements. If you
encounter a situation where you need to modify the behavior of the
balancer, use the procedures described in this document.

For conceptual information about the balancer, see
Sharded Collection Balancing and Cluster Balancer.

Schedule a Window of Time for Balancing to Occur

You can schedule a window of time during which the balancer can
migrate chunks, as described in the following procedures:

	Schedule the Balancing Window

	Remove a Balancing Window Schedule.

The mongos instances user their own local timezones to when
respecting balancer window.

Configure Default Chunk Size

The default chunk size for a sharded cluster is 64 megabytes. In most
situations, the default size is appropriate for splitting and migrating
chunks. For information on how chunk size affects deployments, see
details, see Chunk Size.

Changing the default chunk size affects chunks that are processes during
migrations and auto-splits but does not retroactively affect all chunks.

To configure default chunk size, see Modify Chunk Size in a Sharded Cluster.

Change the Maximum Storage Size for a Given Shard

The maxSize field in the shards collection in the
config database sets the maximum size for a
shard, allowing you to control whether the balancer will migrate chunks
to a shard. If mapped size [1] is above a shard’s
maxSize, the balancer will not move chunks to the shard. Also, the
balancer will not move chunks off an overloaded shard. This must happen
manually. The maxSize value only affects the balancer’s selection of
destination shards.

By default, maxSize is not specified, allowing shards to consume the
total amount of available space on their machines if necessary.

You can set maxSize both when adding a shard and once a shard is
running.

To set maxSize when adding a shard, set the addShard
command’s maxSize parameter to the maximum size in megabytes. For
example, the following command run in the mongo shell adds a
shard with a maximum size of 125 megabytes:

db.runCommand({ addshard : "example.net:34008", maxSize : 125 })

To set maxSize on an existing shard, insert or update the
maxSize field in the shards collection in the
config database. Set the maxSize in
megabytes.

Example

Assume you have the following shard without a maxSize field:

{ "_id" : "shard0000", "host" : "example.net:34001" }

Run the following sequence of commands in the mongo shell
to insert a maxSize of 125 megabytes:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 125 } })

To later increase the maxSize setting to 250 megabytes, run the
following:

use config
db.shards.update({ _id : "shard0000" }, { $set : { maxSize : 250 } })

	[1]	This value includes the mapped size of all data
files including the``local`` and admin databases. Account for
this when setting maxSize.

Require Replication before Chunk Migration (Secondary Throttle)

New in version 2.2.1: _secondaryThrottle became an option to the balancer and to
command moveChunk. _secondaryThrottle makes it
possible to require the balancer wait for replication to
secondaries during migrations.

Changed in version 2.4: _secondaryThrottle became the default mode for all balancer and
moveChunk operations.

Before 2.2.1, the write operations required to migrate chunks between
shards do not need to replicate to secondaries in order to
succeed. However, you can configure the balancer to require migration
related write operations to replicate to secondaries. This throttles
or slows the migration process and in doing so reduces the potential
impact of migrations on a sharded cluster.

You can throttle migrations by enabling the balancer’s
_secondaryThrottle parameter. When enabled, secondary throttle
requires a { w : 2 } write concern on delete and insertion
operations, so that every operation propagates to at least one
secondary before the balancer issues the next operation.

Starting with version 2.4 the default secondaryThrottle value is
true. To revert to previous behavior, set _secondaryThrottle
to false.

You enable or disable _secondaryThrottle directly in the
settings collection in the config database by running the following commands from a
mongo shell, connected to a mongos instance:

use config
db.settings.update({ "_id" : "balancer" } , { $set : { "_secondaryThrottle" : true } } , { upsert : true })

You also can enable secondary throttle when issuing the
moveChunk command by setting _secondaryThrottle to
true. For more information, see moveChunk.

Manage Sharded Cluster Balancer

This page describes common administrative procedures related
to balancing. For an introduction to balancing, see
Sharded Collection Balancing. For lower level information on balancing, see
Cluster Balancer.

See also

Configure Behavior of Balancer Process in Sharded Clusters

Check the Balancer State

The following command checks if the balancer is enabled (i.e. that the
balancer is allowed to run). The command does not check if the balancer
is active (i.e. if it is actively balancing chunks).

To see if the balancer is enabled in your cluster, issue the following command, which returns a boolean:

sh.getBalancerState()

Check the Balancer Lock

To see if the balancer process is active in your cluster, do the following:

	Connect to any mongos in the cluster using the
mongo shell.

	Issue the following command to switch to the Config Database:

use config

	Use the following query to return the balancer lock:

db.locks.find({ _id : "balancer" }).pretty()

When this command returns, you will see output like the following:

{ "_id" : "balancer",
"process" : "mongos0.example.net:1292810611:1804289383",
 "state" : 2,
 "ts" : ObjectId("4d0f872630c42d1978be8a2e"),
 "when" : "Mon Dec 20 2010 11:41:10 GMT-0500 (EST)",
 "who" : "mongos0.example.net:1292810611:1804289383:Balancer:846930886",
 "why" : "doing balance round" }

This output confirms that:

	The balancer originates from the mongos running on the
system with the hostname mongos0.example.net.

	The value in the state field indicates that a mongos
has the lock. For version 2.0 and later, the value of an active lock
is 2; for earlier versions the value is 1.

Schedule the Balancing Window

In some situations, particularly when your data set grows slowly and a
migration can impact performance, it’s useful to be able to ensure
that the balancer is active only at certain times. Use the following
procedure to specify a window during which the balancer will
be able to migrate chunks:

	Connect to any mongos in the cluster using the
mongo shell.

	Issue the following command to switch to the Config Database:

use config

	Use an operation modeled on the following example update() operation to modify the balancer’s
window:

db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "<start-time>", stop : "<stop-time>" } } }, true)

Replace <start-time> and <end-time> with time values using
two digit hour and minute values (e.g HH:MM) that describe the
beginning and end boundaries of the balancing window.
These times will be evaluated relative to the time zone of each individual
mongos instance in the sharded cluster.
If your mongos instances are physically located in different
time zones, use a common time zone (e.g. GMT) to ensure that the
balancer window is interpreted correctly.

For instance, running the following
will force the balancer to run between 11PM and 6AM local time only:

db.settings.update({ _id : "balancer" }, { $set : { activeWindow : { start : "23:00", stop : "6:00" } } }, true)

Note

The balancer window must be sufficient to complete the migration
of all data inserted during the day.

As data insert rates can change based on activity and usage
patterns, it is important to ensure that the balancing window you
select will be sufficient to support the needs of your deployment.

Remove a Balancing Window Schedule

If you have set the balancing window and wish to remove the schedule
so that the balancer is always running, issue the following sequence
of operations:

use config
db.settings.update({ _id : "balancer" }, { $unset : { activeWindow : true } })

Disable the Balancer

By default the balancer may run at any time and only moves chunks as
needed. To disable the balancer for a short period of time and prevent
all migration, use the following procedure:

	Connect to any mongos in the cluster using the
mongo shell.

	Issue the following operation to disable the balancer:

sh.setBalancerState(false)

If a migration is in progress, the system will complete the
in-progress migration before stopping.

	To verify that the balancer has stopped, issue the following command,
which returns false if the balancer is stopped:

sh.getBalancerState()

Optionally, to verify no migrations are in progress after disabling,
issue the following operation in the mongo shell:

use config
while(sh.isBalancerRunning()) {
 print("waiting...");
 sleep(1000);
}

Note

To disable the balancer from a driver that does not have the
sh.startBalancer() helper, issue the following command from
the config database:

db.settings.update({ _id: "balancer" }, { $set : { stopped: true } } , true)

Enable the Balancer

Use this procedure if you have disabled the balancer and are ready to
re-enable it:

	Connect to any mongos in the cluster using the
mongo shell.

	Issue one of the following operations to enable the balancer:

From the mongo shell, issue:

sh.setBalancerState(true)

From a driver that does not have the sh.startBalancer() helper,
issue the following from the config database:

db.settings.update({ _id: "balancer" }, { $set : { stopped: false } } , true)

Disable Balancing During Backups

If MongoDB migrates a chunk during a backup, you can end with an inconsistent snapshot
of your sharded cluster. Never run a backup while the balancer is
active. To ensure that the balancer is inactive during your backup
operation:

	Set the balancing window
so that the balancer is inactive during the backup. Ensure that the
backup can complete while you have the balancer disabled.

	manually disable the balancer
for the duration of the backup procedure.

If you turn the balancer off while it is in the middle of a balancing round,
the shut down is not instantaneous. The balancer completes the chunk
move in-progress and then ceases all further balancing rounds.

Before starting a backup operation, confirm that the balancer is not
active. You can use the following command to determine if the balancer
is active:

!sh.getBalancerState() && !sh.isBalancerRunning()

When the backup procedure is complete you can reactivate
the balancer process.

Remove Shards from an Existing Sharded Cluster

Remove Shards:

	Ensure the Balancer Process is Enabled

	Determine the Name of the Shard to Remove

	Remove Chunks from the Shard

	Check the Status of the Migration

	Move Unsharded Data

	Finalize the Migration

To remove a shard you must ensure the shard’s data is migrated
to the remaining shards in the cluster. This procedure describes how to
safely migrate data and how to remove a shard.

This procedure describes how to safely remove a single shard. Do not
use this procedure to migrate an entire cluster to new hardware. To
migrate an entire shard to new hardware, migrate individual shards as if
they were independent replica sets.

To remove a shard, first connect to one of the cluster’s
mongos instances using mongo shell. Then use the
sequence of tasks in this document to remove a shard from the cluster.

Ensure the Balancer Process is Enabled

To successfully migrate data from a shard, the balancer process
must be enabled. Check the balancer state using the
sh.getBalancerState() helper in the mongo shell.
For more information, see the section on balancer operations.

Determine the Name of the Shard to Remove

To determine the name of the shard, connect to a mongos
instance with the mongo shell and either:

	Use the listShards command, as in the following:

db.adminCommand({ listShards: 1 })

	Run either the sh.status() or the
db.printShardingStatus() method.

The shards._id field lists the name of each shard.

Remove Chunks from the Shard

Run the removeShard command. This begins “draining” chunks
from the shard you are removing to other shards in the cluster. For
example, for a shard named mongodb0, run:

db.runCommand({ removeShard: "mongodb0" })

This operation returns immediately, with the following response:

{ msg : "draining started successfully" , state: "started" , shard :"mongodb0" , ok : 1 }

Depending on your network capacity and the amount of data, this
operation can take from a few minutes to several days to complete.

Check the Status of the Migration

To check the progress of the migration at any stage in the process, run
removeShard. For example, for a shard named mongodb0, run:

db.runCommand({ removeShard: "mongodb0" })

The command returns output similar to the following:

{ msg: "draining ongoing" , state: "ongoing" , remaining: { chunks: NumberLong(42), dbs : NumberLong(1) }, ok: 1 }

In the output, the remaining document displays the remaining number
of chunks that MongoDB must migrate to other shards and the number of
MongoDB databases that have “primary” status on this shard.

Continue checking the status of the removeShard command until the
number of chunks remaining is 0. Then proceed to the next step.

Move Unsharded Data

If the shard is the primary shard for one or more databases in
the cluster, then the shard will have unsharded data. If the shard is
not the primary shard for any databases, skip to the next task,
Finalize the Migration.

In a cluster, a database with unsharded collections stores those
collections only on a single shard. That shard becomes the primary shard
for that database. (Different databases in a cluster can have different
primary shards.)

Warning

Do not perform this procedure until you have finished draining the
shard.

	To determine if the shard you are removing is the primary shard for
any of the cluster’s databases, issue one of the following methods:

	sh.status()

	db.printShardingStatus()

In the resulting document, the databases field lists each
database and its primary shard. For example, the following
database field shows that the products database uses
mongodb0 as the primary shard:

{ "_id" : "products", "partitioned" : true, "primary" : "mongodb0" }

	To move a database to another shard, use the movePrimary
command. For example, to migrate all remaining unsharded data from
mongodb0 to mongodb1, issue the following command:

db.runCommand({ movePrimary: "products", to: "mongodb1" })

This command does not return until MongoDB completes moving all data,
which may take a long time. The response from this command will
resemble the following:

{ "primary" : "mongodb1", "ok" : 1 }

Finalize the Migration

To clean up all metadata information and finalize the removal, run
removeShard again. For example, for a shard named
mongodb0, run:

db.runCommand({ removeShard: "mongodb0" })

A success message appears at completion:

{ msg: "remove shard completed successfully" , state: "completed", host: "mongodb0", ok : 1 }

Once the value of the stage field is “completed”, you may safely
stop the processes comprising the mongodb0 shard.

Sharded Cluster Data Management

The following documents provide information in managing data in sharded clusters.

	Create Chunks in a Sharded Cluster

	Create chunks, or pre-split empty collection to ensure an even
distribution of chunks during data ingestion.

	Split Chunks in a Sharded Cluster

	Manually create chunks in a sharded collection.

	Migrate Chunks in a Sharded Cluster

	Manually migrate chunks without using the automatic balance process.

	Merge Chunks in a Sharded Cluster

	Use the mergeChunks to manually combine chunk ranges.

	Modify Chunk Size in a Sharded Cluster

	Modify the default chunk size in a sharded collection

	Tag Aware Sharding

	Tags associate specific ranges of shard key values with specific shards for
use in managing deployment patterns.

	Manage Shard Tags

	Use tags to associate specific ranges of shard key values with specific
shards.

	Enforce Unique Keys for Sharded Collections

	Ensure that a field is always unique in all collections in a sharded
cluster.

	Shard GridFS Data Store

	Choose whether to shard GridFS data in a sharded collection.

	Create Chunks in a Sharded Cluster

	Split Chunks in a Sharded Cluster

	Migrate Chunks in a Sharded Cluster

	Merge Chunks in a Sharded Cluster

	Modify Chunk Size in a Sharded Cluster

	Tag Aware Sharding

	Manage Shard Tags

	Enforce Unique Keys for Sharded Collections

	Shard GridFS Data Store

Create Chunks in a Sharded Cluster

Pre-splitting the chunk ranges in an empty sharded collection allows
clients to insert data into an already partitioned collection. In most
situations a sharded cluster will create and distribute chunks
automatically without user intervention. However, in a limited number
of cases, MongoDB cannot create enough chunks or distribute
data fast enough to support required throughput. For example:

	If you want to partition an existing data collection that resides on a
single shard.

	If you want to ingest a large volume of data into a cluster that isn’t
balanced, or where the ingestion of data will lead to data imbalance.
For example, monotonically increasing or decreasing shard keys insert
all data into a single chunk.

These operations are resource intensive for several reasons:

	Chunk migration requires copying all the data in the chunk from one shard to
another.

	MongoDB can migrate only a single chunk at a time.

	MongoDB creates splits only after an insert operation.

Warning

Only pre-split an empty collection. If a collection already has data,
MongoDB automatically splits the collection’s data when you enable
sharding for the collection. Subsequent attempts to manually create
splits can lead to unpredictable chunk ranges and sizes as well as
inefficient or ineffective balancing behavior.

To create chunks manually, use the following procedure:

	Split empty chunks in your collection by manually performing
the split command on chunks.

Example

To create chunks for documents in the myapp.users
collection using the email field as the shard key,
use the following operation in the mongo shell:

for (var x=97; x<97+26; x++){
 for(var y=97; y<97+26; y+=6) {
 var prefix = String.fromCharCode(x) + String.fromCharCode(y);
 db.runCommand({ split : "myapp.users" , middle : { email : prefix } });
 }
}

This assumes a collection size of 100 million documents.

For information on the balancer and automatic distribution of
chunks across shards, see Cluster Balancer
and Chunk Migration. For
information on manually migrating chunks, see
Migrate Chunks in a Sharded Cluster.

Split Chunks in a Sharded Cluster

Normally, MongoDB splits a chunk after an insert if the chunk
exceeds the maximum chunk size. However,
you may want to split chunks manually if:

	you have a large amount of data in your cluster and very few
chunks, as is the case after deploying a cluster using
existing data.

	you expect to add a large amount of data that would initially reside
in a single chunk or shard. For example, you plan to insert a large
amount of data with shard key values between 300 and
400, but all values of your shard keys are between 250 and
500 are in a single chunk.

Note

New in version 2.5.3: MongoDB provides the mergeChunks command
to combine contiguous chunk ranges into a single chunk. See
Merge Chunks in a Sharded Cluster for more
information.

The balancer may migrate recently split chunks to a new shard
immediately if mongos predicts future insertions will benefit
from the move. The balancer does not distinguish between chunks split
manually and those split automatically by the system.

Warning

Be careful when splitting data in a sharded collection to create
new chunks. When you shard a collection that has existing data,
MongoDB automatically creates chunks to evenly distribute the
collection. To split data effectively in a sharded cluster you must
consider the number of documents in a chunk and the average
document size to create a uniform chunk size. When chunks have
irregular sizes, shards may have an equal number of chunks but have
very different data sizes. Avoid creating splits that lead to a
collection with differently sized chunks.

Use sh.status() to determine the current chunk ranges across
the cluster.

To split chunks manually, use the split command with either
fields middle or find. The mongo shell provides the
helper methods sh.splitFind() and sh.splitAt().

splitFind() splits the chunk that contains the first
document returned that matches this query into two equally sized chunks.
You must specify the full namespace (i.e. “<database>.<collection>”)
of the sharded collection to splitFind(). The query in
splitFind() does not need to use the shard key, though it
nearly always makes sense to do so.

Example

The following command splits the chunk that contains the value of
63109 for the zipcode field in the people collection of
the records database:

sh.splitFind("records.people", { "zipcode": 63109 })

Use splitAt() to split a chunk in two, using the queried
document as the lower bound in the new chunk:

Example

The following command splits the chunk that contains the value of
63109 for the zipcode field in the people collection of
the records database.

sh.splitAt("records.people", { "zipcode": 63109 })

Note

splitAt() does not necessarily split the chunk
into two equally sized chunks. The split occurs at the location of
the document matching the query, regardless of where that document is
in the chunk.

Migrate Chunks in a Sharded Cluster

In most circumstances, you should let the automatic balancer
migrate chunks between shards. However,
you may want to migrate chunks manually in a few cases:

	When pre-splitting an empty collection, migrate chunks
manually to distribute them evenly across the shards. Use
pre-splitting in limited situations to support bulk data ingestion.

	If the balancer in an active cluster cannot distribute chunks within
the balancing window, then
you will have to migrate chunks manually.

To manually migrate chunks, use the moveChunk command.
For more information on how the automatic balancer moves chunks
between shards, see Cluster Balancer and
Chunk Migration.

Example

Migrate a single chunk

The following example assumes that the field username is the
shard key for a collection named users in the myapp
database, and that the value smith exists within the chunk
to migrate. Migrate the chunk using the following command in the
mongo shell.

db.adminCommand({ moveChunk : "myapp.users",
 find : {username : "smith"},
 to : "mongodb-shard3.example.net" })

This command moves the chunk that includes the shard key value “smith” to the
shard named mongodb-shard3.example.net. The command will
block until the migration is complete.

Tip

To return a list of shards, use the listShards
command.

Example

Evenly migrate chunks

To evenly migrate chunks for the myapp.users collection,
put each prefix chunk on the next shard from the other and run
the following commands in the mongo shell:

var shServer = ["sh0.example.net", "sh1.example.net", "sh2.example.net", "sh3.example.net", "sh4.example.net"];
for (var x=97; x<97+26; x++){
 for(var y=97; y<97+26; y+=6) {
 var prefix = String.fromCharCode(x) + String.fromCharCode(y);
 db.adminCommand({moveChunk : "myapp.users", find : {email : prefix}, to : shServer[(y-97)/6]})
 }
}

See Create Chunks in a Sharded Cluster for an introduction
to pre-splitting.

New in version 2.2: The moveChunk command has the: _secondaryThrottle
parameter. When set to true, MongoDB ensures that changes to
shards as part of chunk migrations replicate to secondaries throughout the migration operation. For more
information, see Require Replication before Chunk Migration (Secondary Throttle).

Changed in version 2.4: In 2.4, _secondaryThrottle is true by default.

Warning

The moveChunk command may produce the following error
message:

The collection's metadata lock is already taken.

This occurs when clients have too many open cursors that access the migrating chunk. You may either
wait until the cursors complete their operations or close the
cursors manually.

Merge Chunks in a Sharded Cluster

	Overview

	Procedure
	Identify Chunk Ranges

	Verify a Chunk is Empty

	Merge Chunks

	View Merged Chunks Ranges

Overview

The mergeChunks command allows you to collapse empty chunks
into neighboring chunks on the same shard. A chunk is empty if
it has no documents associated with its shard key range.

Important

Empty chunks can make the balancer assess
the cluster as properly balanced when it is not.

Empty chunks can occur under various circumstances, including:

	If a pre-split
creates too many chunks, the distribution of data to chunks may be
uneven.

	If you delete many documents from a sharded collection, some chunks
may no longer contain data.

This tutorial explains how to identify chunks available to merge, and
how to merge those chunks with neighboring chunks.

Procedure

Note

Examples in this procedure use a users collection in the
test database, using the username filed as a
shard key.

Identify Chunk Ranges

In the mongo shell, identify the chunk
ranges with the following operation:

sh.status()

The output of the sh.status() will resemble the following:

--- Sharding Status ---
sharding version: {
 "_id" : 1,
 "version" : 4,
 "minCompatibleVersion" : 4,
 "currentVersion" : 5,
 "clusterId" : ObjectId("5260032c901f6712dcd8f400")
}
shards:
 { "_id" : "shard0000", "host" : "localhost:30000" }
 { "_id" : "shard0001", "host" : "localhost:30001" }
 databases:
 { "_id" : "admin", "partitioned" : false, "primary" : "config" }
 { "_id" : "test", "partitioned" : true, "primary" : "shard0001" }
 test.users
 shard key: { "username" : 1 }
 chunks:
 shard0000 7
 shard0001 7
 { "username" : { "$minKey" : 1 } } -->> { "username" : "user16643" } on : shard0000 Timestamp(2, 0)
 { "username" : "user16643" } -->> { "username" : "user2329" } on : shard0000 Timestamp(3, 0)
 { "username" : "user2329" } -->> { "username" : "user29937" } on : shard0000 Timestamp(4, 0)
 { "username" : "user29937" } -->> { "username" : "user36583" } on : shard0000 Timestamp(5, 0)
 { "username" : "user36583" } -->> { "username" : "user43229" } on : shard0000 Timestamp(6, 0)
 { "username" : "user43229" } -->> { "username" : "user49877" } on : shard0000 Timestamp(7, 0)
 { "username" : "user49877" } -->> { "username" : "user56522" } on : shard0000 Timestamp(8, 0)
 { "username" : "user56522" } -->> { "username" : "user63169" } on : shard0001 Timestamp(8, 1)
 { "username" : "user63169" } -->> { "username" : "user69816" } on : shard0001 Timestamp(1, 8)
 { "username" : "user69816" } -->> { "username" : "user76462" } on : shard0001 Timestamp(1, 9)
 { "username" : "user76462" } -->> { "username" : "user83108" } on : shard0001 Timestamp(1, 10)
 { "username" : "user83108" } -->> { "username" : "user89756" } on : shard0001 Timestamp(1, 11)
 { "username" : "user89756" } -->> { "username" : "user96401" } on : shard0001 Timestamp(1, 12)
 { "username" : "user96401" } -->> { "username" : { "$maxKey" : 1 } } on : shard0001 Timestamp(1, 13)

The chunk ranges appear after the chunk counts for each sharded
collection, as in the following excerpts:

Chunk counts:

chunks:
 shard0000 7
 shard0001 7

Chunk range:

{ "username" : "user36583" } -->> { "username" : "user43229" } on : shard0000 Timestamp(6, 0)

Verify a Chunk is Empty

The mergeChunks command requires at least one empty input
chunk. In the mongo shell, check the amount of data in a
chunk using an operation that resembles:

db.runCommand({
 "dataSize": "test.users",
 "keyPattern": { username: 1 },
 "min": { "username": "user36583" },
 "max": { "username": "user43229" }
})

If the input chunk to dataSize is empty,
dataSize produces output similar to:

{ "size" : 0, "numObjects" : 0, "millis" : 0, "ok" : 1 }

Merge Chunks

Merge two contiguous chunks on the same shard,
where at least one of the contains no data, with an operation that
resembles the following:

db.runCommand({ mergeChunks: "test.users",
 bounds: [{ "username": "user68982" },
 { "username": "user95197" }]
 })

On success, mergeChunks produces the following output:

{ "ok" : 1 }

On any failure condition, mergeChunks returns a document
where the value of the ok field is 0.

View Merged Chunks Ranges

After merging all empty chunks, confirm the new chunk, as follows:

sh.status()

The output of sh.status() should resemble:

--- Sharding Status ---
sharding version: {
 "_id" : 1,
 "version" : 4,
 "minCompatibleVersion" : 4,
 "currentVersion" : 5,
 "clusterId" : ObjectId("5260032c901f6712dcd8f400")
}
shards:
 { "_id" : "shard0000", "host" : "localhost:30000" }
 { "_id" : "shard0001", "host" : "localhost:30001" }
 databases:
 { "_id" : "admin", "partitioned" : false, "primary" : "config" }
 { "_id" : "test", "partitioned" : true, "primary" : "shard0001" }
 test.users
 shard key: { "username" : 1 }
 chunks:
 shard0000 2
 shard0001 2
 { "username" : { "$minKey" : 1 } } -->> { "username" : "user16643" } on : shard0000 Timestamp(2, 0)
 { "username" : "user16643" } -->> { "username" : "user56522" } on : shard0000 Timestamp(3, 0)
 { "username" : "user56522" } -->> { "username" : "user96401" } on : shard0001 Timestamp(8, 1)
 { "username" : "user96401" } -->> { "username" : { "$maxKey" : 1 } } on : shard0001 Timestamp(1, 13)

Modify Chunk Size in a Sharded Cluster

When the first mongos connects to a set of config
servers, it initializes the sharded cluster with a
default chunk size of 64 megabytes. This default chunk size works well
for most deployments; however, if you notice that automatic migrations
have more I/O than your hardware can handle, you may want to reduce the
chunk size. For automatic splits and migrations, a small chunk size
leads to more rapid and frequent migrations.

To modify the chunk size, use the following procedure:

	Connect to any mongos in the cluster using the
mongo shell.

	Issue the following command to switch to the Config Database:

use config

	Issue the following save() operation to
store the global chunk size configuration value:

db.settings.save({ _id:"chunksize", value: <size> })

Note

The chunkSize and
--chunkSize
options, passed at runtime to the mongos,
do not affect the chunk size after you have initialized the
cluster.

To avoid confusion, always set the chunk size using the above
procedure instead of the runtime options.

Modifying the chunk size has several limitations:

	Automatic splitting only occurs on insert or update.

	If you lower the chunk size, it may take time for all chunks to split to
the new size.

	Splits cannot be undone.

	If you increase the chunk size, existing chunks grow only through
insertion or updates until they reach the new size.

Manage Shard Tags

In a sharded cluster, you can use tags to associate specific ranges of
a shard key with a specific shard or subset of shards.

Tag a Shard

Associate tags with a particular shard using the
sh.addShardTag() method when connected to a mongos
instance. A single shard may have multiple tags, and multiple shards
may also have the same tag.

Example

The following example adds the tag NYC to two shards, and the tags
SFO and NRT to a third shard:

sh.addShardTag("shard0000", "NYC")
sh.addShardTag("shard0001", "NYC")
sh.addShardTag("shard0002", "SFO")
sh.addShardTag("shard0002", "NRT")

You may remove tags from a particular shard using the
sh.removeShardTag() method when connected to a
mongos instance, as in the following example, which removes
the NRT tag from a shard:

sh.removeShardTag("shard0002", "NRT")

Tag a Shard Key Range

To assign a tag to a range of shard keys use the
sh.addTagRange() method when connected to a
mongos instance. Any given shard key range may only have
one assigned tag. You cannot overlap defined ranges, or tag the same
range more than once.

Example

Given a collection named users in the records database,
sharded by the zipcode field. The following operations assign:

	two ranges of zip codes in Manhattan and Brooklyn the NYC tag

	one range of zip codes in San Francisco the SFO tag

sh.addTagRange("records.users", { zipcode: "10001" }, { zipcode: "10281" }, "NYC")
sh.addTagRange("records.users", { zipcode: "11201" }, { zipcode: "11240" }, "NYC")
sh.addTagRange("records.users", { zipcode: "94102" }, { zipcode: "94135" }, "SFO")

Note

Shard ranges are always inclusive of the lower value and exclusive
of the upper boundary.

Remove a Tag From a Shard Key Range

The mongod does not provide a helper for removing a tag
range. You may delete tag assignment from a shard key range by removing
the corresponding document from the tags collection of
the config database.

Each document in the tags holds the namespace
of the sharded collection and a minimum shard key value.

Example

The following example removes the NYC tag assignment for the
range of zip codes within Manhattan:

use config
db.tags.remove({ _id: { ns: "records.users", min: { zipcode: "10001" }}, tag: "NYC" })

View Existing Shard Tags

The output from sh.status() lists tags associated with a
shard, if any, for each shard. A shard’s tags exist in the shard’s
document in the shards collection of the config
database. To return all shards with a specific tag, use a sequence of
operations that resemble the following, which will return only those
shards tagged with NYC:

use config
db.shards.find({ tags: "NYC" })

You can find tag ranges for all namespaces in the
tags collection of the config database. The output
of sh.status() displays all tag ranges. To return all shard
key ranges tagged with NYC, use the following sequence of
operations:

use config
db.tags.find({ tags: "NYC" })

Enforce Unique Keys for Sharded Collections

Overview

The unique constraint on indexes ensures
that only one document can have a value for a field in a
collection. For sharded collections these unique indexes
cannot enforce uniqueness because
insert and indexing operations are local to each shard. [1]

If your need to ensure that a field is always unique in all
collections in a sharded environment, there are two options:

	Enforce uniqueness of the shard key.

MongoDB can enforce uniqueness for the shard key. For
compound shard keys, MongoDB will enforce uniqueness on the
entire key combination, and not for a specific component of the
shard key.

You cannot specify a unique constraint on a
hashed index.

	Use a secondary collection to enforce uniqueness.

Create a minimal collection that only contains the unique field and
a reference to a document in the main collection. If you always
insert into a secondary collection before inserting to the main
collection, MongoDB will produce an error if you attempt to use a
duplicate key.

Note

If you have a small data set, you may not need to shard this
collection and you can create multiple unique indexes. Otherwise
you can shard on a single unique key.

Always use the default acknowledged
write concern in conjunction with a
recent MongoDB driver.

	[1]	If you specify a unique index on a sharded
collection, MongoDB will be able to enforce uniqueness only among
the documents located on a single shard at the time of creation.

Unique Constraints on the Shard Key

Process

To shard a collection using the unique constraint, specify the
shardCollection command in the following form:

db.runCommand({ shardCollection : "test.users" , key : { email : 1 } , unique : true });

Remember that the _id field index is always unique. By default, MongoDB
inserts an ObjectId into the _id field. However,
you can manually insert your own value into the _id field and
use this as the shard key. To use the
_id field as the shard key, use the following operation:

db.runCommand({ shardCollection : "test.users" })

Warning

In any sharded collection where you are not sharding by the
_id field, you must ensure uniqueness of the _id
field. The best way to ensure _id is always unique is to use
ObjectId, or another universally unique identifier (UUID.)

Limitations

	You can only enforce uniqueness on one single field in the collection
using this method.

	If you use a compound shard key, you can only enforce
uniqueness on the combination of component keys in the shard
key.

In most cases, the best shard keys are compound keys that include elements
that permit write scaling
and query isolation, as
well as high cardinality.
These ideal shard keys are not often the same keys that require
uniqueness and requires a different approach.

Unique Constraints on Arbitrary Fields

If you cannot use a unique field as the shard key or if you need to
enforce uniqueness over multiple fields, you must create another
collection to act as a “proxy collection”. This collection
must contain both a reference to the original document (i.e. its
ObjectId) and the unique key.

If you must shard this “proxy” collection, then shard on the unique
key using the above procedure;
otherwise, you can simply create multiple unique indexes on the
collection.

Process

Consider the following for the “proxy collection:”

{
 "_id" : ObjectId("...")
 "email" ": "..."
}

The _id field holds the ObjectId of the document
it reflects, and the email field is the field on which you want to
ensure uniqueness.

To shard this collection, use the following operation
using the email field as the shard key:

db.runCommand({ shardCollection : "records.proxy" ,
 key : { email : 1 } ,
 unique : true });

If you do not need to shard the proxy collection, use the following
command to create a unique index on the email field:

db.proxy.ensureIndex({ "email" : 1 }, { unique : true })

You may create multiple unique indexes on this collection if you do
not plan to shard the proxy collection.

To insert documents, use the following procedure in the
JavaScript shell:

db = db.getSiblingDB('records');

var primary_id = ObjectId();

db.proxy.insert({
 "_id" : primary_id
 "email" : "example@example.net"
})

// if: the above operation returns successfully,
// then continue:

db.information.insert({
 "_id" : primary_id
 "email": "example@example.net"
 // additional information...
})

You must insert a document into the proxy collection first. If
this operation succeeds, the email field is unique, and you may
continue by inserting the actual document into the information
collection.

See

The full documentation of: ensureIndex()
and shardCollection.

Considerations

	Your application must catch errors when inserting documents into the
“proxy” collection and must enforce consistency between the two
collections.

	If the proxy collection requires sharding, you must shard on the
single field on which you want to enforce uniqueness.

	To enforce uniqueness on more than one field using sharded proxy
collections, you must have one proxy collection for every field
for which to enforce uniqueness. If you create multiple unique
indexes on a single proxy collection, you will not be able to
shard proxy collections.

Shard GridFS Data Store

When sharding a GridFS store, consider the following:

files Collection

Most deployments will not need to shard the files
collection. The files collection is typically small, and only
contains metadata. None of the required keys for GridFS lend
themselves to an even distribution in a sharded situation. If you
must shard the files collection, use the _id field
possibly in combination with an application field.

Leaving files unsharded means that all the file metadata
documents live on one shard. For production GridFS stores you must
store the files collection on a replica set.

chunks Collection

To shard the chunks collection by { files_id : 1 , n : 1 },
issue commands similar to the following:

db.fs.chunks.ensureIndex({ files_id : 1 , n : 1 })

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 , n : 1 } })

You may also want to shard using just the file_id field, as in
the following operation:

db.runCommand({ shardCollection : "test.fs.chunks" , key : { files_id : 1 } })

Important

{ files_id : 1 , n : 1 } and { files_id : 1 }
are the only supported shard keys for the chunks collection
of a GridFS store.

Note

Changed in version 2.2.

Before 2.2, you had to create an additional index on files_id
to shard using only this field.

The default files_id value is an ObjectId, as a result
the values of files_id are always ascending, and applications
will insert all new GridFS data to a single chunk and shard. If
your write load is too high for a single server to handle, consider
a different shard key or use a different value
for _id in the files collection.

Troubleshoot Sharded Clusters

This section describes common strategies for troubleshooting
sharded cluster deployments.

Config Database String Error

Start all mongos instances in a sharded cluster with an identical
configdb string. If a mongos instance tries to
connect to the sharded cluster with a configdb string that
does not exactly match the string used by the other mongos
instances, including the order of the hosts, the following errors occur:

could not initialize sharding on connection

And:

mongos specified a different config database string

To solve the issue, restart the mongos with the correct
string.

Cursor Fails Because of Stale Config Data

A query returns the following warning when one or more of the
mongos instances has not yet updated its cache of the
cluster’s metadata from the config database:

could not initialize cursor across all shards because : stale config detected

This warning should not propagate back to your application. The
warning will repeat until all the mongos instances refresh
their caches. To force an instance to refresh its cache, run the
flushRouterConfig command.

Avoid Downtime when Moving Config Servers

Use CNAMEs to identify your config servers to the cluster so
that you can rename and renumber your config servers without downtime.

Sharding Reference

Sharding Methods in the mongo Shell

	Name
	Description

	sh._adminCommand
	Runs a database command against the admin database, like db.runCommand(), but can confirm that it is issued against a mongos.

	sh._checkFullName()
	Tests a namespace to determine if its well formed.

	sh._checkMongos()
	Tests to see if the mongo shell is connected to a mongos instance.

	sh._lastMigration()
	Reports on the last chunk migration.

	sh.addShard()
	Adds a shard to a sharded cluster.

	sh.addShardTag()
	Associates a shard with a tag, to support tag aware sharding.

	sh.addTagRange()
	Associates range of shard keys with a shard tag, to support tag aware sharding.

	sh.disableBalancing()
	Disable balancing on a single collection in a sharded database. Does not affect balancing of other collections in a sharded cluster.

	sh.enableBalancing()
	Activates the sharded collection balancer process if previously disabled using sh.disableBalancing().

	sh.enableSharding()
	Enables sharding on a specific database.

	sh.getBalancerHost()
	Returns the name of a mongos that’s responsible for the balancer process.

	sh.getBalancerState()
	Returns a boolean to report if the balancer is currently enabled.

	sh.help()
	Returns help text for the sh methods.

	sh.isBalancerRunning()
	Returns a boolean to report if the balancer process is currently migrating chunks.

	sh.moveChunk()
	Migrates a chunk in a sharded cluster.

	sh.removeShardTag()
	Removes the association between a shard and a shard tag shard tag.

	sh.setBalancerState()
	Enables or disables the balancer which migrates chunks between shards.

	sh.shardCollection()
	Enables sharding for a collection.

	sh.splitAt()
	Divides an existing chunk into two chunks using a specific value of the shard key as the dividing point.

	sh.splitFind()
	Divides an existing chunk that contains a document matching a query into two approximately equal chunks.

	sh.startBalancer()
	Enables the balancer and waits for balancing to start.

	sh.status()
	Reports on the status of a sharded cluster, as db.printShardingStatus().

	sh.stopBalancer()
	Disables the balancer and waits for any in progress balancing rounds to complete.

	sh.waitForBalancer()
	Internal. Waits for the balancer state to change.

	sh.waitForBalancerOff()
	Internal. Waits until the balancer stops running.

	sh.waitForDLock()
	Internal. Waits for a specified distributed sharded cluster lock.

	sh.waitForPingChange()
	Internal. Waits for a change in ping state from one of the mongos in the sharded cluster.

Sharding Database Commands

The following database commands support sharded clusters.

	Name
	Description

	flushRouterConfig
	Forces an update to the cluster metadata cached by a mongos.

	addShard
	Adds a shard to a sharded cluster.

	cleanupOrphapned
	Removes orphaned data on a shard that is not part of the chunks owned by that shard.

	checkShardingIndex
	Internal command that validates index on shard key.

	enableSharding
	Enables sharding on a specific database.

	listShards
	Returns a list of configured shards.

	removeShard
	Starts the process of removing a shard from a sharded cluster.

	getShardMap
	Internal command that reports on the state of a sharded cluster.

	getShardVersion
	Internal command that returns the config server version.

	mergeChunks
	Provides the ability to combine chunks on a single shard.

	setShardVersion
	Internal command to sets the config server version.

	shardCollection
	Enables the sharding functionality for a collection, allowing the collection to be sharded.

	shardingState
	Reports whether the mongod is a member of a sharded cluster.

	unsetSharding
	Internal command that affects connections between instances in a MongoDB deployment.

	split
	Creates a new chunk.

	splitChunk
	Internal command to split chunk. Instead use the methods sh.splitFind() and sh.splitAt().

	splitVector
	Internal command that determines split points.

	medianKey
	Deprecated internal command. See splitVector.

	moveChunk
	Internal command that migrates chunks between shards.

	movePrimary
	Reassigns the primary shard when removing a shard from a sharded cluster.

	isdbgrid
	Verifies that a process is a mongos.

Reference Documentation

	Config Database

	Complete documentation of the content of the local database
that MongoDB uses to store sharded cluster metadata.

	Sharding Command Quick Reference

	A quick reference for all commands and
mongo shell methods that support sharding and sharded clusters.

	Config Database

	Sharding Command Quick Reference

Config Database

The config database supports sharded cluster
operation. See the Sharding section of this manual for full
documentation of sharded clusters.

Important

Consider the schema of the config database
internal and may change between releases of MongoDB. The
config database is not a dependable API, and users should not
write data to the config database in the course of normal
operation or maintenance.

Warning

Modification of the config database on a functioning
system may lead to instability or inconsistent data sets. If you
must modify the config database, use mongodump to
create a full backup of the config database.

To access the config database, connect to a mongos
instance in a sharded cluster, and use the following helper:

use config

You can return a list of the collections, with the following helper:

show collections

Collections

	
config

	

	
config.changelog

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The changelog collection stores a document for each change to
the metadata of a sharded collection.

Example

The following example displays a single record of a chunk split
from a changelog collection:

{
 "_id" : "<hostname>-<timestamp>-<increment>",
 "server" : "<hostname><:port>",
 "clientAddr" : "127.0.0.1:63381",
 "time" : ISODate("2012-12-11T14:09:21.039Z"),
 "what" : "split",
 "ns" : "<database>.<collection>",
 "details" : {
 "before" : {
 "min" : {
 "<database>" : { $minKey : 1 }
 },
 "max" : {
 "<database>" : { $maxKey : 1 }
 },
 "lastmod" : Timestamp(1000, 0),
 "lastmodEpoch" : ObjectId("000000000000000000000000")
 },
 "left" : {
 "min" : {
 "<database>" : { $minKey : 1 }
 },
 "max" : {
 "<database>" : "<value>"
 },
 "lastmod" : Timestamp(1000, 1),
 "lastmodEpoch" : ObjectId(<...>)
 },
 "right" : {
 "min" : {
 "<database>" : "<value>"
 },
 "max" : {
 "<database>" : { $maxKey : 1 }
 },
 "lastmod" : Timestamp(1000, 2),
 "lastmodEpoch" : ObjectId("<...>")
 }
 }
}

Each document in the changelog collection contains the
following fields:

	
config.changelog._id

	The value of changelog._id is:
<hostname>-<timestamp>-<increment>.

	
config.changelog.server

	The hostname of the server that holds this data.

	
config.changelog.clientAddr

	A string that holds the address of the client, a
mongos instance that initiates this change.

	
config.changelog.time

	A ISODate timestamp that reflects when the change
occurred.

	
config.changelog.what

	Reflects the type of change recorded. Possible values are:

	dropCollection

	dropCollection.start

	dropDatabase

	dropDatabase.start

	moveChunk.start

	moveChunk.commit

	split

	multi-split

	
config.changelog.ns

	Namespace where the change occurred.

	
config.changelog.details

	A document that contains additional details regarding
the change. The structure of the details
document depends on the type of change.

	
config.chunks

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The chunks collection stores a document for each chunk in
the cluster. Consider the following example of a document for a
chunk named records.pets-animal_\"cat\":

{
 "_id" : "mydb.foo-a_\"cat\"",
 "lastmod" : Timestamp(1000, 3),
 "lastmodEpoch" : ObjectId("5078407bd58b175c5c225fdc"),
 "ns" : "mydb.foo",
 "min" : {
 "animal" : "cat"
 },
 "max" : {
 "animal" : "dog"
 },
 "shard" : "shard0004"
}

These documents store the range of values for the shard key that
describe the chunk in the min and max fields. Additionally
the shard field identifies the shard in the cluster that “owns”
the chunk.

	
config.collections

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The collections collection stores a document for each sharded collection
in the cluster. Given a collection named pets
in the records database, a document in the collections
collection would resemble the following:

{
 "_id" : "records.pets",
 "lastmod" : ISODate("1970-01-16T15:00:58.107Z"),
 "dropped" : false,
 "key" : {
 "a" : 1
 },
 "unique" : false,
 "lastmodEpoch" : ObjectId("5078407bd58b175c5c225fdc")
}

	
config.databases

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The databases collection stores a document for each
database in the cluster, and tracks if the database has sharding
enabled. databases represents each database in a
distinct document. When a databases have sharding enabled, the
primary field holds the name of the primary shard.

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "mydb", "partitioned" : true, "primary" : "shard0000" }

	
config.lockpings

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The lockpings collection keeps track of the active components
in the sharded cluster. Given a cluster with a mongos
running on example.com:30000, the document in the
lockpings collection would resemble:

{ "_id" : "example.com:30000:1350047994:16807", "ping" : ISODate("2012-10-12T18:32:54.892Z") }

	
config.locks

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The locks collection stores a distributed lock. This
ensures that only one mongos instance can perform
administrative tasks on the cluster at once. The mongos
acting as balancer takes a lock by inserting a document
resembling the following into the locks collection.

{
 "_id" : "balancer",
 "process" : "example.net:40000:1350402818:16807",
 "state" : 2,
 "ts" : ObjectId("507daeedf40e1879df62e5f3"),
 "when" : ISODate("2012-10-16T19:01:01.593Z"),
 "who" : "example.net:40000:1350402818:16807:Balancer:282475249",
 "why" : "doing balance round"
}

If a mongos holds the balancer lock, the state field
has a value of 2, which means that balancer is active. The when field
indicates when the balancer began the current operation.

Changed in version 2.0: The value of the state field was 1 before MongoDB 2.0.

	
config.mongos

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The mongos collection stores a document for each
mongos instance affiliated with the
cluster. mongos instances send pings to all members of
the cluster every 30 seconds so the cluster can verify that the
mongos is active. The ping field shows the time of
the last ping, while the up field reports the uptime of the
mongos as of the last ping. The cluster maintains this
collection for reporting purposes.

The following document shows the status of the mongos
running on example.com:30000.

{ "_id" : "example.com:30000", "ping" : ISODate("2012-10-12T17:08:13.538Z"), "up" : 13699, "waiting" : true }

	
config.settings

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The settings collection holds the following
sharding configuration settings:

	Chunk size. To change chunk size,
see Modify Chunk Size in a Sharded Cluster.

	Balancer status. To change status,
see Disable the Balancer.

The following is an example settings collection:

{ "_id" : "chunksize", "value" : 64 }
{ "_id" : "balancer", "stopped" : false }

	
config.shards

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The shards collection represents each shard in the cluster
in a separate document. If the shard is a replica set, the
host field displays the name of the replica set, then a slash, then
the hostname, as in the following example:

{ "_id" : "shard0000", "host" : "shard1/localhost:30000" }

If the shard has tags assigned, this
document has a tags field, that holds an array of the tags, as
in the following example:

{ "_id" : "shard0001", "host" : "localhost:30001", "tags": ["NYC"] }

	
config.tags

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The tags collection holds documents for each tagged
shard key range in the cluster. The documents in the
tags collection resemble the following:

{
 "_id" : { "ns" : "records.users", "min" : { "zipcode" : "10001" } },
 "ns" : "records.users",
 "min" : { "zipcode" : "10001" },
 "max" : { "zipcode" : "10281" },
 "tag" : "NYC"
}

	
config.version

	
Internal MongoDB Metadata

The config database is internal: applications and
administrators should not modify or depend upon its content in the
course of normal operation.

The version collection holds the current metadata version number. This
collection contains only one document:

To access the version collection you must use the
db.getCollection() method. For example, to display the
collection’s document:

mongos> db.getCollection("version").find()
{ "_id" : 1, "version" : 3 }

Note

Like all databases in MongoDB, the config database contains a
system.indexes collection
contains metadata for all indexes in the database for information
on indexes, see Indexes.

Sharding Command Quick Reference

JavaScript Methods

Definition

	
sh.addShard(host)

	Adds a database instance or replica set to a sharded cluster.
The optimal configuration is to deploy shards across replica
sets. This method must be run on a mongos
instance.

The sh.addShard() method has the following parameter:

	Parameter
	Type
	Description

	host
	string
	The hostname of either a standalone database instance or of a replica
set. Include the port number if the instance is running on a
non-standard port. Include the replica set name if the instance is a
replica set, as explained below.

	param string host:

		The hostname of either a standalone database instance or of a replica
set. Include the port number if the instance is running on a
non-standard port. Include the replica set name if the instance is
a replica set, as explained below.

The sh.addShard() method has the following prototype form:

sh.addShard("<host>")

The host parameter can be in any
of the following forms:

[hostname]
[hostname]:[port]
[replica-set-name]/[hostname]
[replica-set-name]/[hostname]:port

Warning

Do not use localhost for the hostname unless your
configuration server
is also running on localhost.

Note

New in version 2.5.3: mongos installed from official .deb and .rpm packages
have the bind_ip configuration set to 127.0.0.1 by
default.

The sh.addShard() method is a helper for the
addShard command.
The addShard command has additional options which are
not available with this helper.

Important

You cannot include a hidden member in the seed list provided to
addShard.

Example

To add a shard on a replica set, specify the name of the replica set and
the hostname of at least one member of the replica set, as a seed. If
you specify additional hostnames, all must be members of the same
replica set.

The following example adds a replica set named repl0 and specifies
one member of the replica set:

sh.addShard("repl0/mongodb3.example.net:27327")

Definition

	
sh.enableSharding(database)

	Enables sharding on the specified database. This does not
automatically shard any collections but makes it possible to begin
sharding collections using sh.shardCollection().

The sh.enableSharding() method has the following parameter:

	Parameter
	Type
	Description

	database
	string
	The name of the database shard. Enclose the name in quotation marks.

	param string database:

		The name of the database shard. Enclose the name in quotation marks.

See also

sh.shardCollection()

Definition

	
sh.shardCollection(namespace, key, unique)

	Shards a collection using the key as a the shard
key. sh.shardCollection() takes the following arguments:

	Parameter
	Type
	Description

	namespace
	string
	The namespace of the collection to shard.

	key
	document
	A document that specifies the shard key to use to
partition and distribute objects among the shards. A shard key
may be one field or multiple fields. A shard key with multiple fields
is called a “compound shard key.”

	unique
	Boolean
	When true, ensures that the underlying index enforces a unique
constraint. Hashed shard keys do not
support unique constraints.

	param string namespace:

		The namespace of the collection to shard.

	param document key:

		A document that specifies the shard key to use to
partition and distribute objects among the shards. A shard
key may be one field or multiple fields. A shard key with multiple
fields is called a “compound shard key.”

	param Boolean unique:

		When true, ensures that the underlying index enforces a unique
constraint. Hashed shard keys do not
support unique constraints.

New in version 2.4: Use the form {field: "hashed"} to create a
hashed shard key.
Hashed shard keys may not be compound indexes.

Warning

MongoDB provides no method to deactivate sharding for a collection
after calling shardCollection. Additionally, after
shardCollection, you cannot change shard keys or modify
the value of any field used in your shard key index.

See also

shardCollection for additional options,
Sharding and Sharding Introduction for an
overview of sharding, Deploy a Sharded Cluster for a
tutorial, and Shard Keys for choosing a shard key.

Example

Given the people collection in the records database, the
following command shards the collection by the zipcode field:

sh.shardCollection("records.people", { zipcode: 1})

Definition

	
sh.splitFind(namespace, query)

	Splits the chunk containing the document specified by the query
at its median point, creating two roughly equal chunks. Use
sh.splitAt() to split a collection in a specific point.

In most circumstances, you should leave chunk splitting to the
automated processes. However, when initially deploying a
sharded cluster it is necessary to perform some measure of
pre-splitting using manual methods including
sh.splitFind().

	Parameter
	Type
	Description

	namespace
	string
	The namespace (i.e. <database>.<collection>) of the sharded collection that contains the chunk to split.

	query
	document
	A query to identify a document in a specific chunk. Typically specify the shard key for a document as the query.

	param string namespace:

		The namespace (i.e. <database>.<collection>) of the sharded
collection that contains the chunk to split.

	param document query:

		A query to identify a document in a specific chunk. Typically specify
the shard key for a document as the query.

Definition

	
sh.splitAt(namespace, query)

	Splits the chunk containing the document specified by the query as if
that document were at the “middle” of the collection, even if the
specified document is not the actual median of the collection.

	Parameter
	Type
	Description

	namespace
	string
	The namespace (i.e. <database>.<collection>) of the sharded collection that contains the chunk to split.

	query
	document
	A query to identify a document in a specific chunk. Typically specify the shard key for a document as the query.

	param string namespace:

		The namespace (i.e. <database>.<collection>) of the sharded
collection that contains the chunk to split.

	param document query:

		A query to identify a document in a specific chunk. Typically specify
the shard key for a document as the query.

Use this command to manually split chunks unevenly. Use the
“sh.splitFind()” function to split a chunk at the actual
median.

In most circumstances, you should leave chunk splitting to the
automated processes within MongoDB. However, when initially deploying
a sharded cluster it is necessary to perform some measure of
pre-splitting using manual methods including
sh.splitAt().

Definition

	
sh.moveChunk(namespace, query, destination)

	Moves the chunk that contains the document specified by the
query to the destination shard. sh.moveChunk()
provides a wrapper around the moveChunk database
command and takes the following arguments:

	Parameter
	Type
	Description

	namespace
	string
	The namespace of the sharded collection that contains the
chunk to migrate.

	query
	document
	An equality match on the shard key that selects the chunk to move.

	destination
	string
	The name of the shard to move.

	param string namespace:

		The namespace of the sharded collection that contains the chunk
to migrate.

	param document query:

		An equality match on the shard key that selects the chunk to move.

	param string destination:

		The name of the shard to move.

Important

In most circumstances, allow the balancer to
automatically migrate chunks, and avoid calling
sh.moveChunk() directly.

See also

moveChunk, sh.splitAt(),
sh.splitFind(), Sharding, and chunk
migration.

Example

Given the people collection in the records database, the
following operation finds the chunk that contains the documents with the
zipcode field set to 53187 and then moves that chunk to the
shard named shard0019:

sh.moveChunk("records.people", { zipcode: 53187 }, "shard0019")

Description

	
sh.setBalancerState(state)

	Enables or disables the balancer. Use
sh.getBalancerState() to determine if the balancer is
currently enabled or disabled and sh.isBalancerRunning()
to check its current state.

The sh.getBalancerState() method has the following
parameter:

	Parameter
	Type
	Description

	state
	Boolean
	Set this to true to enable the balancer and false to disable it.

	param Boolean state:

		Set this to true to enable the balancer and false to disable it.

See also

	sh.enableBalancing()

	sh.disableBalancing()

	sh.getBalancerHost()

	sh.getBalancerState()

	sh.isBalancerRunning()

	sh.startBalancer()

	sh.stopBalancer()

	sh.waitForBalancer()

	sh.waitForBalancerOff()

	
sh.isBalancerRunning()

	

	Returns:	boolean

Returns true if the balancer process is currently running
and migrating chunks and false if the balancer process is not
running. Use sh.getBalancerState() to determine if the
balancer is enabled or disabled.

See also

	sh.enableBalancing()

	sh.disableBalancing()

	sh.getBalancerHost()

	sh.getBalancerState()

	sh.setBalancerState()

	sh.startBalancer()

	sh.stopBalancer()

	sh.waitForBalancer()

	sh.waitForBalancerOff()

	
sh.status()

	Prints a formatted report of the sharding configuration and the
information regarding existing chunks in a sharded cluster.
The default behavior suppresses the detailed chunk information if
the total number of chunks is greater than or equal to 20.

The sh.status() method has the following parameter:

	Parameter
	Type
	Description

	verbose
	Boolean
	Optional. If true, the method displays details of the document
distribution across chunks when you have 20 or more chunks.

	param Boolean verbose:

		If true, the method displays details of the document distribution
across chunks when you have 20 or more chunks.

See also

db.printShardingStatus()

Definition

	
sh.addShardTag(shard, tag)

	
New in version 2.2.

Associates a shard with a tag or identifier. MongoDB uses these
identifiers to direct chunks that fall within a
tagged range to specific shards. sh.addTagRange()
associates chunk ranges with tag ranges.

	Parameter
	Type
	Description

	shard
	string
	The name of the shard to which to give a specific tag.

	tag
	string
	The name of the tag to add to the shard.

	param string shard:

		The name of the shard to which to give a specific tag.

	param string tag:

		The name of the tag to add to the shard.

Only issue sh.addShardTag() when connected to a
mongos instance.

Example

The following example adds three tags, NYC, LAX, and NRT, to
three shards:

sh.addShardTag("shard0000", "NYC")
sh.addShardTag("shard0001", "LAX")
sh.addShardTag("shard0002", "NRT")

See also

sh.addTagRange() and sh.removeShardTag().

Definition

	
sh.addTagRange(namespace, minimum, maximum, tag)

	
New in version 2.2.

Attaches a range of shard key values to a shard tag created using the
sh.addShardTag() method. sh.addTagRange() takes
the following arguments:

	Parameter
	Type
	Description

	namespace
	string
	The namespace of the sharded collection to tag.

	minimum
	document
	The minimum value of the shard key range to include in the
tag. Specify the minimum value in the form of <fieldname>:<value>.
This value must be of the same BSON type or types as the shard key.

	maximum
	document
	The maximum value of the shard key range to include in the tag.
Specify the maximum value in the form of <fieldname>:<value>. This
value must be of the same BSON type or types as the shard key.

	tag
	string
	The name of the tag to attach the range specified by the minimum
and maximum arguments to.

	param string namespace:

		The namespace of the sharded collection to tag.

	param document minimum:

		The minimum value of the shard key range to include in the tag.
Specify the minimum value in the form of <fieldname>:<value>.
This value must be of the same BSON type or types as the shard
key.

	param document maximum:

		The maximum value of the shard key range to include in the tag. Specify
the maximum value in the form of <fieldname>:<value>. This
value must be of the same BSON type or types as the shard key.

	param string tag:

		The name of the tag to attach the range specified by the minimum and
maximum arguments to.

Use sh.addShardTag() to ensure that the balancer migrates
documents that exist within the specified range to a specific shard
or set of shards.

Only issue sh.addTagRange() when connected to a
mongos instance.

Note

If you add a tag range to a collection using
sh.addTagRange() and then later drop the collection
or its database, MongoDB does not remove the tag association. If you
later create a new collection with the same name, the old tag
association will apply to the new collection.

Example

Given a shard key of {state: 1, zip: 1}, the following operation
creates a tag range covering zip codes in New York State:

sh.addTagRange("exampledb.collection",
 { state: "NY", zip: MinKey },
 { state: "NY", zip: MaxKey },
 "NY"
)

Definition

	
sh.removeShardTag(shard, tag)

	
New in version 2.2.

Removes the association between a tag and a shard. Only issue
sh.removeShardTag() when connected to a mongos
instance.

	Parameter
	Type
	Description

	shard
	string
	The name of the shard from which to remove a tag.

	tag
	string
	The name of the tag to remove from the shard.

	param string shard:

		The name of the shard from which to remove a tag.

	param string tag:

		The name of the tag to remove from the shard.

See also

sh.addShardTag(),
sh.addTagRange()

	
sh.help()

	

	Returns:	a basic help text for all sharding related shell
functions.

Database Commands

The following database commands support sharded clusters.

Definition

	
addShard

	Adds either a database instance or a replica set to a
sharded cluster. The optimal configuration is to deploy
shards across replica sets.

Run addShard when connected to a mongos
instance. The command takes the following form when adding a single
database instance as a shard:

{ addShard: "<hostname><:port>", maxSize: <size>, name: "<shard_name>" }

When adding a replica set as a shard, use the following form:

{ addShard: "<replica_set>/<hostname><:port>", maxSize: <size>, name: "<shard_name>" }

The command contains the following fields:

	Field
	Type
	Description

	addShard
	string
	The hostname and port of the mongod instance to be added
as a shard. To add a replica set as a shard, specify the name
of the replica set and the hostname and port of a member of the replica set.

	maxSize
	integer
	Optional. The maximum size in megabytes of the shard. If you set maxSize
to 0, MongoDB does not limit the size of the shard.

	name
	string
	Optional. A name for the shard. If this is not specified, MongoDB
automatically provides a unique name.

	field string addShard:

		The hostname and port of the mongod instance to be added as a
shard. To add a replica set as a shard, specify the name of the
replica set and the hostname and port of a member of the replica
set.

	field integer maxSize:

		The maximum size in megabytes of the shard. If you set maxSize to
0, MongoDB does not limit the size of the shard.

	field string name:

		A name for the shard. If this is not specified, MongoDB automatically
provides a unique name.

The addShard command stores shard configuration
information in the config database.

Specify a maxSize when you have machines with different disk
capacities, or if you want to limit the amount of data on some
shards. The maxSize constraint prevents the balancer from
migrating chunks to the shard when the value of mem.mapped exceeds the value of maxSize.

Important

You cannot include a hidden member in the seed list provided to
addShard.

Examples

The following command adds the database instance running on
port``27027`` on the host mongodb0.example.net as a shard:

db.runCommand({addShard: "mongodb0.example.net:27027"})

Warning

Do not use localhost for the hostname unless your
configuration server is also running on
localhost.

The following command adds a replica set as a shard:

db.runCommand({ addShard: "repl0/mongodb3.example.net:27327"})

You may specify all members in the replica set. All additional
hostnames must be members of the same replica set.

	
listShards

	Use the listShards command to return a list of
configured shards. The command takes the following form:

{ listShards: 1 }

	
enableSharding

	The enableSharding command enables sharding on a per-database
level. Use the following command form:

{ enableSharding: "<database name>" }

Once you’ve enabled sharding in a database, you can use the shardCollection
command to begin the process of distributing data among the shards.

Definition

	
shardCollection

	Enables a collection for sharding and allows MongoDB to begin
distributing data among shards. You must run
enableSharding on a database before running the
shardCollection command. shardCollection
has the following form:

{ shardCollection: "<database>.<collection>", key: <shardkey> }

shardCollection has the following fields:

	Field
	Type
	Description

	shardCollection
	string
	The namespace of the collection to shard in the form
<database>.<collection>.

	key
	document
	The index specification document
to use as the shard key. The index must exist prior to the
shardCollection command, unless the collection is empty.
If the collection is empty, in which case MongoDB creates the index
prior to sharding the collection. New in version 2.4: The key may be
in the form { field : "hashed" }, which will use the specified
field as a hashed shard key.

	unique
	Boolean
	When true, the unique option ensures that the underlying index
enforces a unique constraint. Hashed shard keys do not support unique
constraints.

	numInitialChunks
	integer
	To support hashed sharding added
in MongoDB 2.4, numInitialChunks specifies the number of chunks
to create when sharding an collection with a hashed shard
key. MongoDB will then create and balance chunks across the cluster.
The numInitialChunks must be less than 8192.

	field string shardCollection:

		The namespace of the collection to shard in the form
<database>.<collection>.

	field document key:

		The index specification document to use as the shard key. The index must
exist prior to the shardCollection command, unless
the collection is empty. If the collection is empty, in which case
MongoDB creates the index prior to sharding the collection. New in
version 2.4: The key may be in the form { field : "hashed" },
which will use the specified field as a hashed shard key.

	field Boolean unique:

		When true, the unique option ensures that the underlying index
enforces a unique constraint. Hashed shard keys do not support
unique constraints.

	field integer numInitialChunks:

		To support hashed sharding added in
MongoDB 2.4, numInitialChunks specifies the number of chunks
to create when sharding an collection with a hashed shard key.
MongoDB will then create and balance chunks across the cluster.
The numInitialChunks must be less than 8192.

Warning

Do not run more than one
shardCollection command on the same collection at
the same time.

Shard Keys

Choosing the best shard key to effectively distribute load among your
shards requires some planning. Review Shard Keys
regarding choosing a shard key.

Hashed Shard Keys

New in version 2.4.

Hashed shard keys use a
hashed index of a single field as the shard key.

Warning

MongoDB provides no method to deactivate sharding for a collection
after calling shardCollection. Additionally, after
shardCollection, you cannot change shard keys or modify
the value of any field used in your shard key index.

See also

Sharding, Sharding Concepts, and
Deploy a Sharded Cluster.

Example

The following operation enables sharding for the people collection
in the records database and uses the zipcode field as the
shard key:

db.runCommand({ shardCollection: "records.people", key: { zipcode: 1 } })

	
shardingState

	shardingState is an admin command that reports if
mongod is a member of a sharded cluster.
shardingState has the following prototype form:

{ shardingState: 1 }

For shardingState to detect that a mongod
is a member of a sharded cluster, the mongod must
satisfy the following conditions:

	the mongod is a primary member of a replica set, and

	the mongod instance is a member of a sharded
cluster.

If shardingState detects that a mongod is a
member of a sharded cluster, shardingState returns a
document that resembles the following prototype:

{
 "enabled" : true,
 "configServer" : "<configdb-string>",
 "shardName" : "<string>",
 "shardHost" : "string:",
 "versions" : {
 "<database>.<collection>" : Timestamp(<...>),
 "<database>.<collection>" : Timestamp(<...>)
 },
 "ok" : 1
}

Otherwise, shardingState will return the following
document:

{ "note" : "from execCommand", "ok" : 0, "errmsg" : "not master" }

The response from shardingState when used with a
config server is:

{ "enabled": false, "ok": 1 }

Note

mongos instances do not provide the
shardingState.

Warning

This command obtains a write lock on the affected database and
will block other operations until it has completed; however, the
operation is typically short lived.

	
removeShard

	Starts the process of removing a shard from a cluster. This
is a multi-stage process. Begin by issuing the following command:

{ removeShard : "[shardName]" }

The balancer will then migrate chunks from the shard specified by
[shardName]. This process happens slowly to avoid placing
undue load on the overall cluster.

The command returns immediately, with the following message:

{ msg : "draining started successfully" , state: "started" , shard: "shardName" , ok : 1 }

If you run the command again, you’ll see the following progress
output:

{ msg: "draining ongoing" , state: "ongoing" , remaining: { chunks: 23 , dbs: 1 }, ok: 1 }

The remaining document specifies how many chunks and
databases remain on the shard. Use db.printShardingStatus()
to list the databases that you must move from the shard.

Each database in a sharded cluster has a primary shard. If the
shard you want to remove is also the primary of one of the cluster’s
databases, then you must manually move the database to a new
shard. This can be only after the shard is empty. See the
movePrimary command for details.

After removing all chunks and databases from the shard, you
may issue the command again, to return:

{ msg: "remove shard completed successfully", state: "completed", host: "shardName", ok : 1 }

Frequently Asked Questions

	FAQ: MongoDB Fundamentals
	What kind of database is MongoDB?

	Do MongoDB databases have tables?

	Do MongoDB databases have schemas?

	What languages can I use to work with MongoDB?

	Does MongoDB support SQL?

	What are typical uses for MongoDB?

	Does MongoDB support transactions?

	Does MongoDB require a lot of RAM?

	How do I configure the cache size?

	Does MongoDB require a separate caching layer for application-level caching?

	Does MongoDB handle caching?

	Are writes written to disk immediately, or lazily?

	What language is MongoDB written in?

	What are the limitations of 32-bit versions of MongoDB?

	FAQ: MongoDB for Application Developers
	What is a namespace in MongoDB?

	How do you copy all objects from one collection to another?

	If you remove a document, does MongoDB remove it from disk?

	When does MongoDB write updates to disk?

	How do I do transactions and locking in MongoDB?

	How do you aggregate data with MongoDB?

	Why does MongoDB log so many “Connection Accepted” events?

	Does MongoDB run on Amazon EBS?

	Why are MongoDB’s data files so large?

	How do I optimize storage use for small documents?

	When should I use GridFS?

	How does MongoDB address SQL or Query injection?

	How does MongoDB provide concurrency?

	What is the compare order for BSON types?

	When multiplying values of mixed types, what type conversion rules apply?

	How do I query for fields that have null values?

	Are there any restrictions on the names of Collections?

	How do I isolate cursors from intervening write operations?

	When should I embed documents within other documents?

	Where can I learn more about data modeling in MongoDB?

	Can I manually pad documents to prevent moves during updates?

	FAQ: The mongo Shell
	How can I enter multi-line operations in the mongo shell?

	How can I access different databases temporarily?

	Does the mongo shell support tab completion and other keyboard shortcuts?

	How can I customize the mongo shell prompt?

	Can I edit long shell operations with an external text editor?

	FAQ: Concurrency
	What type of locking does MongoDB use?

	How granular are locks in MongoDB?

	How do I see the status of locks on my mongod instances?

	Does a read or write operation ever yield the lock?

	Which operations lock the database?

	Which administrative commands lock the database?

	Does a MongoDB operation ever lock more than one database?

	How does sharding affect concurrency?

	How does concurrency affect a replica set primary?

	How does concurrency affect secondaries?

	What kind of concurrency does MongoDB provide for JavaScript operations?

	FAQ: Sharding with MongoDB
	Is sharding appropriate for a new deployment?

	How does sharding work with replication?

	Can I change the shard key after sharding a collection?

	What happens to unsharded collections in sharded databases?

	How does MongoDB distribute data across shards?

	What happens if a client updates a document in a chunk during a migration?

	What happens to queries if a shard is inaccessible or slow?

	How does MongoDB distribute queries among shards?

	How does MongoDB sort queries in sharded environments?

	How does MongoDB ensure unique _id field values when using a shard key other than _id?

	I’ve enabled sharding and added a second shard, but all the data is still on one server. Why?

	Is it safe to remove old files in the moveChunk directory?

	How does mongos use connections?

	Why does mongos hold connections open?

	Where does MongoDB report on connections used by mongos?

	What does writebacklisten in the log mean?

	How should administrators deal with failed migrations?

	What is the process for moving, renaming, or changing the number of config servers?

	When do the mongos servers detect config server changes?

	Is it possible to quickly update mongos servers after updating a replica set configuration?

	What does the maxConns setting on mongos do?

	How do indexes impact queries in sharded systems?

	Can shard keys be randomly generated?

	Can shard keys have a non-uniform distribution of values?

	Can you shard on the _id field?

	What do moveChunk commit failed errors mean?

	How does draining a shard affect the balancing of uneven chunk distribution?

	FAQ: Replica Sets and Replication in MongoDB
	What kinds of replication does MongoDB support?

	What do the terms “primary” and “master” mean?

	What do the terms “secondary” and “slave” mean?

	How long does replica set failover take?

	Does replication work over the Internet and WAN connections?

	Can MongoDB replicate over a “noisy” connection?

	What is the preferred replication method: master/slave or replica sets?

	What is the preferred replication method: replica sets or replica pairs?

	Why use journaling if replication already provides data redundancy?

	Are write operations durable if write concern does not acknowledge writes?

	How many arbiters do replica sets need?

	What information do arbiters exchange with the rest of the replica set?

	Which members of a replica set vote in elections?

	Do hidden members vote in replica set elections?

	Is it normal for replica set members to use different amounts of disk space?

	FAQ: MongoDB Storage
	What are memory mapped files?

	How do memory mapped files work?

	How does MongoDB work with memory mapped files?

	What are page faults?

	What is the difference between soft and hard page faults?

	What tools can I use to investigate storage use in MongoDB?

	What is the working set?

	Why are the files in my data directory larger than the data in my database?

	How can I check the size of a collection?

	How can I check the size of indexes?

	How do I know when the server runs out of disk space?

	FAQ: Indexes
	Should you run ensureIndex() after every insert?

	How do you know what indexes exist in a collection?

	How do you determine the size of an index?

	What happens if an index does not fit into RAM?

	How do you know what index a query used?

	How do you determine what fields to index?

	How do write operations affect indexes?

	Will building a large index affect database performance?

	Can I use index keys to constrain query matches?

	Using $ne and $nin in a query is slow. Why?

	Can I use a multi-key index to support a query for a whole array?

	How can I effectively use indexes strategy for attribute lookups?

	FAQ: MongoDB Diagnostics
	Where can I find information about a mongod process that stopped running unexpectedly?

	Does TCP keepalive time affect sharded clusters and replica sets?

	What tools are available for monitoring MongoDB?

	Memory Diagnostics

	Sharded Cluster Diagnostics

FAQ: MongoDB Fundamentals

Frequently Asked Questions:

	What kind of database is MongoDB?

	Do MongoDB databases have tables?

	Do MongoDB databases have schemas?

	What languages can I use to work with MongoDB?

	Does MongoDB support SQL?

	What are typical uses for MongoDB?

	Does MongoDB support transactions?

	Does MongoDB require a lot of RAM?

	How do I configure the cache size?

	Does MongoDB require a separate caching layer for application-level caching?

	Does MongoDB handle caching?

	Are writes written to disk immediately, or lazily?

	What language is MongoDB written in?

	What are the limitations of 32-bit versions of MongoDB?

This document addresses basic high level questions about MongoDB and
its use.

If you don’t find the answer you’re looking for, check
the complete list of FAQs or post your question to the
MongoDB User Mailing List [https://groups.google.com/forum/?fromgroups#!forum/mongodb-user].

What kind of database is MongoDB?

MongoDB is a document-oriented DBMS. Think of MySQL but with
JSON-like objects comprising the data model, rather than RDBMS
tables. Significantly, MongoDB supports neither joins nor transactions.
However, it features secondary indexes, an expressive query language,
atomic writes on a per-document level, and fully-consistent reads.

Operationally, MongoDB features master-slave replication with automated
failover and built-in horizontal scaling via automated range-based
partitioning.

Note

MongoDB uses BSON, a binary object format similar
to, but more expressive than JSON.

Do MongoDB databases have tables?

Instead of tables, a MongoDB database stores its data in
collections, which are the rough equivalent of RDBMS
tables. A collection holds one or more documents, which corresponds to a record or a row in a relational
database table, and each document has
one or more fields, which corresponds to a column in a relational
database table.

Collections have important differences from RDBMS tables. Documents in a
single collection may have a unique combination and set of fields.
Documents need not have identical fields. You can add a field to some
documents in a collection without adding that field to all documents in
the collection.

See

SQL to MongoDB Mapping Chart

Do MongoDB databases have schemas?

MongoDB uses dynamic schemas. You can create collections without
defining the structure, i.e. the fields or the types of their values,
of the documents in the collection. You can change the structure of
documents simply by adding new fields or deleting existing ones.
Documents in a collection need not have an identical set of fields.

In practice, it is common for the documents in a collection to have
a largely homogeneous structure; however, this is not a
requirement. MongoDB’s flexible schemas mean that schema migration and
augmentation are very easy in practice, and you will rarely, if ever,
need to write scripts that perform “alter table” type operations,
which simplifies and facilitates iterative software development with
MongoDB.

See

SQL to MongoDB Mapping Chart

What languages can I use to work with MongoDB?

MongoDB client drivers exist for
all of the most popular programming languages, and many
other ones. See the latest list of
drivers [http://docs.mongodb.org/ecosystem/drivers]
for details.

See also

MongoDB Drivers and Client Libraries.

Does MongoDB support SQL?

No.

However, MongoDB does support a rich, ad-hoc query language
of its own.

See also

Operators

What are typical uses for MongoDB?

MongoDB has a general-purpose design, making it appropriate for a large
number of use cases. Examples include content management
systems, mobile applications, gaming, e-commerce, analytics,
archiving, and logging.

Do not use MongoDB for systems that require SQL,
joins, and multi-object transactions.

Does MongoDB support transactions?

MongoDB does not provide ACID transactions.

However, MongoDB does provide some basic transactional capabilities. Atomic
operations are possible within the scope of a single document: that
is, we can debit a and credit b as a transaction if they
are fields within the same document. Because documents can be rich,
some documents contain thousands of fields, with support for testing
fields in sub-documents.

Additionally, you can make writes in MongoDB durable (the ‘D’ in
ACID). To get durable writes, you must enable journaling,
which is on by default in 64-bit builds. You must also issue
writes with a write concern of {j: true} to ensure that the
writes block until the journal has synced to disk.

Users have built successful e-commerce systems using MongoDB,
but applications requiring multi-object commits with rollback
generally aren’t feasible.

Does MongoDB require a lot of RAM?

Not necessarily. It’s certainly possible to run MongoDB
on a machine with a small amount of free RAM.

MongoDB automatically uses all free memory on the machine as its
cache. System resource monitors show that MongoDB uses a lot of
memory, but its usage is dynamic. If another process suddenly needs
half the server’s RAM, MongoDB will yield cached memory to the other process.

Technically, the operating system’s virtual memory subsystem manages
MongoDB’s memory. This means that MongoDB will use as much free memory
as it can, swapping to disk as needed. Deployments with enough memory
to fit the application’s working data set in RAM will achieve the best
performance.

See also

FAQ: MongoDB Diagnostics for answers to additional
questions about MongoDB and Memory use.

How do I configure the cache size?

MongoDB has no configurable cache. MongoDB uses all free memory on
the system automatically by way of memory-mapped files. Operating
systems use the same approach with their file system caches.

Does MongoDB require a separate caching layer for application-level caching?

No. In MongoDB, a document’s representation in the database is similar
to its representation in application memory. This means the database
already stores the usable form of data, making the data usable in both
the persistent store and in the application cache. This eliminates the
need for a separate caching layer in the application.

This differs from relational databases, where caching data is more
expensive. Relational databases must transform data into object
representations that applications can read and must store the
transformed data in a separate cache: if these transformation from
data to application objects require joins, this process increases the
overhead related to using the database which increases the importance
of the caching layer.

Does MongoDB handle caching?

Yes. MongoDB keeps all of the most recently used data in RAM. If you
have created indexes for your queries and your working data set fits
in RAM, MongoDB serves all queries from memory.

MongoDB does not implement a query cache: MongoDB serves all queries
directly from the indexes and/or data files.

Are writes written to disk immediately, or lazily?

Writes are physically written to the journal
within 100 milliseconds, by default. At that point, the write is “durable” in the
sense that after a pull-plug-from-wall event, the data will still be
recoverable after a hard restart. See journalCommitInterval
for more information on the journal commit window.

While the journal commit is nearly instant, MongoDB writes to the data
files lazily. MongoDB may wait to write data to the data files for as
much as one minute by default. This does not affect durability, as the journal
has enough information to ensure crash recovery. To change the interval
for writing to the data files, see syncdelay.

What language is MongoDB written in?

MongoDB is implemented in C++. Drivers and client libraries
are typically written in their respective languages, although some
drivers use C extensions for better performance.

What are the limitations of 32-bit versions of MongoDB?

MongoDB uses memory-mapped files.
When running a 32-bit build of
MongoDB, the total storage size for the server, including data and
indexes, is 2 gigabytes. For this reason, do not deploy MongoDB to
production on 32-bit machines.

If you’re running a 64-bit build of MongoDB, there’s virtually no
limit to storage size. For production deployments, 64-bit builds and
operating systems are strongly recommended.

See also

“Blog Post: 32-bit Limitations [http://blog.mongodb.org/post/137788967/32-bit-limitations]“

Note

32-bit builds disable journaling by default
because journaling further limits the maximum amount of data that
the database can store.

FAQ: MongoDB for Application Developers

Frequently Asked Questions:

	What is a namespace in MongoDB?

	How do you copy all objects from one collection to another?

	If you remove a document, does MongoDB remove it from disk?

	When does MongoDB write updates to disk?

	How do I do transactions and locking in MongoDB?

	How do you aggregate data with MongoDB?

	Why does MongoDB log so many “Connection Accepted” events?

	Does MongoDB run on Amazon EBS?

	Why are MongoDB’s data files so large?

	How do I optimize storage use for small documents?

	When should I use GridFS?

	How does MongoDB address SQL or Query injection?
	BSON

	JavaScript

	Dollar Sign Operator Escaping

	Driver-Specific Issues

	How does MongoDB provide concurrency?

	What is the compare order for BSON types?

	When multiplying values of mixed types, what type conversion rules apply?

	How do I query for fields that have null values?

	Are there any restrictions on the names of Collections?

	How do I isolate cursors from intervening write operations?

	When should I embed documents within other documents?

	Where can I learn more about data modeling in MongoDB?

	Can I manually pad documents to prevent moves during updates?

This document answers common questions about application
development using MongoDB.

If you don’t find the answer you’re looking for, check
the complete list of FAQs or post your question to the
MongoDB User Mailing List [https://groups.google.com/forum/?fromgroups#!forum/mongodb-user].

What is a namespace in MongoDB?

A “namespace” is the concatenation of the database name and
the collection names [1] with a period
character in between.

Collections are containers for documents that share one or more
indexes. Databases are groups of collections stored on disk using a
single set of data files. [2]

For an example acme.users namespace, acme is the database
name and users is the collection name. Period characters can
occur in collection names, so that acme.user.history is a
valid namespace, with acme as the database name, and
user.history as the collection name.

While data models like this appear to support nested collections, the
collection namespace is flat, and there is no difference from the
perspective of MongoDB between acme, acme.users, and
acme.records.

	[1]	Each index also has its own namespace.

	[2]	MongoDB database have a configurable limit on the
number of namespaces in a database.

How do you copy all objects from one collection to another?

In the mongo shell, you can use the following operation to
duplicate the entire collection:

db.source.copyTo(newCollection)

Warning

When using db.collection.copyTo() check field types to
ensure that the operation does not remove type information from
documents during the translation from BSON to
JSON. Consider using cloneCollection()
to maintain type fidelity.

Also consider the cloneCollection command that may provide some of this functionality.

If you remove a document, does MongoDB remove it from disk?

Yes.

When you use remove(), the object will no longer
exist in MongoDB’s on-disk data storage.

When does MongoDB write updates to disk?

MongoDB flushes writes to disk on a regular interval. In the default
configuration, MongoDB writes data to the main data files on disk
every 60 seconds and commits the journal roughly every 100
milliseconds. These values are configurable with the
journalCommitInterval and syncdelay.

These values represent the maximum amount of time between the
completion of a write operation and the point when the write is
durable in the journal, if enabled, and when MongoDB flushes data to
the disk. In many cases MongoDB and the operating system flush data to
disk more frequently, so that the above values represents a
theoretical maximum.

However, by default, MongoDB uses a “lazy” strategy to write to
disk. This is advantageous in situations where the database receives a
thousand increments to an object within one second, MongoDB only needs
to flush this data to disk once. In addition to the aforementioned
configuration options, you can also use fsync and
getLastError to modify this strategy.

How do I do transactions and locking in MongoDB?

MongoDB does not have support for traditional locking or complex
transactions with rollback. MongoDB aims to be lightweight, fast, and
predictable in its performance. This is similar to the MySQL MyISAM
autocommit model. By keeping transaction support extremely simple,
MongoDB can provide greater performance especially for
partitioned or replicated
systems with a number of database server processes.

MongoDB does have support for atomic operations within a single
document. Given the possibilities provided by nested documents, this
feature provides support for a large number of use-cases.

See also

The Isolate Sequence of Operations page.

How do you aggregate data with MongoDB?

In version 2.1 and later, you can use the new aggregation
framework, with the
aggregate command.

MongoDB also supports map-reduce with the
mapReduce command, as well as basic aggregation with the
group, count, and
distinct. commands.

See also

The Aggregation page.

Why does MongoDB log so many “Connection Accepted” events?

If you see a very large number connection and re-connection messages
in your MongoDB log, then clients are frequently connecting and
disconnecting to the MongoDB server. This is normal behavior for
applications that do not use request pooling, such as CGI. Consider
using FastCGI, an Apache Module, or some other kind of persistent
application server to decrease the connection overhead.

If these connections do not impact your performance you can use the
run-time quiet option or the command-line option
--quiet to suppress these messages from the
log.

Does MongoDB run on Amazon EBS?

Yes.

MongoDB users of all sizes have had a great deal of success using
MongoDB on the EC2 platform using EBS disks.

See also

Amazon EC2 [http://docs.mongodb.org/ecosystem/platforms/amazon-ec2]

Why are MongoDB’s data files so large?

MongoDB aggressively preallocates data files to reserve space and
avoid file system fragmentation. You can use the smallfiles
setting to modify the file preallocation strategy.

See also

Why are the files in my data directory larger than the data in my database?

How do I optimize storage use for small documents?

Each MongoDB document contains a certain amount of overhead. This
overhead is normally insignificant but becomes significant if all
documents are just a few bytes, as might be the case if the documents
in your collection only have one or two fields.

Consider the following suggestions and strategies for optimizing
storage utilization for these collections:

	Use the _id field explicitly.

MongoDB clients automatically add an _id field to each document
and generate a unique 12-byte ObjectId for the _id
field. Furthermore, MongoDB always indexes the _id field. For
smaller documents this may account for a significant amount of
space.

To optimize storage use, users can specify a value for the _id field
explicitly when inserting documents into the collection. This
strategy allows applications to store a value in the _id field
that would have occupied space in another portion of the document.

You can store any value in the _id field, but because this value
serves as a primary key for documents in the collection, it must
uniquely identify them. If the field’s value is not unique, then it
cannot serve as a primary key as there would be collisions in the
collection.

	Use shorter field names.

MongoDB stores all field names in every document. For most
documents, this represents a small fraction of the space used by a
document; however, for small documents the field names may represent
a proportionally large amount of space. Consider a collection of
documents that resemble the following:

{ last_name : "Smith", best_score: 3.9 }

If you shorten the filed named last_name to lname and the
field name best_score to score, as follows, you could save 9
bytes per document.

{ lname : "Smith", score : 3.9 }

Shortening field names reduces expressiveness and does not provide
considerable benefit on for larger documents and where document
overhead is not significant concern. Shorter field names do not
reduce the size of indexes, because indexes have a predefined
structure.

In general it is not necessary to use short field names.

	Embed documents.

In some cases you may want to embed documents in other documents
and save on the per-document overhead.

When should I use GridFS?

For documents in a MongoDB collection, you should always use
GridFS for storing files larger than 16 MB.

In some situations, storing large files may be more efficient in a
MongoDB database than on a system-level filesystem.

	If your filesystem limits the number of files in a directory, you can
use GridFS to store as many files as needed.

	When you want to keep your files and metadata automatically synced
and deployed across a number of systems and facilities. When using
geographically distributed replica sets MongoDB can distribute
files and their metadata automatically to a number of
mongod instances and facilities.

	When you want to access information from portions of large
files without having to load whole files into memory, you can use
GridFS to recall sections of files without reading the entire file
into memory.

Do not use GridFS if you need to update the content of the entire file
atomically. As an alternative you can store multiple versions of each
file and specify the current version of the file in the metadata. You
can update the metadata field that indicates “latest” status in an
atomic update after uploading the new version of the file, and later
remove previous versions if needed.

Furthermore, if your files are all smaller the 16 MB
BSON Document Size limit, consider storing the file manually
within a single document. You may use the BinData data type to store
the binary data. See your drivers
documentation for details on using BinData.

For more information on GridFS, see GridFS.

How does MongoDB address SQL or Query injection?

BSON

As a client program assembles a query in MongoDB, it builds a BSON
object, not a string. Thus traditional SQL injection attacks are not a
problem. More details and some nuances are covered below.

MongoDB represents queries as BSON objects. Typically
client libraries provide a convenient,
injection free, process to build these objects. Consider the following
C++ example:

BSONObj my_query = BSON("name" << a_name);
auto_ptr<DBClientCursor> cursor = c.query("tutorial.persons", my_query);

Here, my_query then will have a value such as { name : "Joe"
}. If my_query contained special characters, for example
,, :, and {, the query simply wouldn’t match any
documents. For example, users cannot hijack a query and convert it to
a delete.

JavaScript

Note

You can disable all server-side execution of JavaScript, by passing
the --noscripting option on the
command line or setting noscripting in a configuration
file.

All of the following MongoDB operations permit you to run arbitrary JavaScript
expressions directly on the server:

	$where

	db.eval()

	mapReduce

	group

You must exercise care in these cases to prevent users from
submitting malicious JavaScript.

Fortunately, you can express most queries in MongoDB without
JavaScript and for queries that require JavaScript, you can mix
JavaScript and non-JavaScript in a single query. Place all the
user-supplied fields directly in a BSON field and pass
JavaScript code to the $where field.

	If you need to pass user-supplied values in a $where
clause, you may escape these values with the CodeWScope
mechanism. When you set user-submitted values as variables in the
scope document, you can avoid evaluating them on the database
server.

	If you need to use db.eval() with user supplied values, you can
either use a CodeWScope or you can supply extra arguments to your
function. For instance:

db.eval(function(userVal){...},
 user_value);

This will ensure that your application sends user_value to the
database server as data rather than code.

Dollar Sign Operator Escaping

Field names in MongoDB’s query language have semantic meaning. The
dollar sign (i.e $) is a reserved character used to represent
operators (i.e. $inc.) Thus,
you should ensure that your application’s users cannot inject operators
into their inputs.

In some cases, you may wish to build a BSON object with a
user-provided key. In these situations, keys will need to substitute
the reserved $ and . characters. Any character is sufficient,
but consider using the Unicode full width equivalents: U+FF04
(i.e. “＄”) and U+FF0E (i.e. “．”).

Consider the following example:

BSONObj my_object = BSON(a_key << a_name);

The user may have supplied a $ value in the a_key value. At
the same time, my_object might be { $where : "things"
}. Consider the following cases:

	Insert. Inserting this into the database does no harm. The
insert process does not evaluate the object as a query.

Note

MongoDB client drivers, if properly implemented, check for
reserved characters in keys on inserts.

	Update. The update() operation permits $ operators
in the update argument but does not support the
$where operator. Still, some users
may be able to inject operators that can manipulate a single
document only. Therefore your application should escape keys, as
mentioned above, if reserved characters are possible.

	Query Generally this is not a problem for queries that
resemble { x : user_obj }: dollar signs are not top level and
have no effect. Theoretically it may be possible for the user to
build a query themselves. But checking the user-submitted content for
$ characters in key names may help protect against this kind
of injection.

Driver-Specific Issues

See the “PHP MongoDB Driver Security Notes [http://us.php.net/manual/en/mongo.security.php]” page in the PHP
driver documentation for more information

How does MongoDB provide concurrency?

MongoDB implements a readers-writer lock. This means that
at any one time, only one client may be writing or any number
of clients may be reading, but that reading and writing cannot
occur simultaneously.

In standalone and replica sets the lock’s scope
applies to a single mongod instance or primary
instance. In a sharded cluster, locks apply to each individual shard,
not to the whole cluster.

For more information, see FAQ: Concurrency.

What is the compare order for BSON types?

MongoDB permits documents within a single collection to
have fields with different BSON types. For instance,
the following documents may exist within a single collection.

{ x: "string" }
{ x: 42 }

When comparing values of different BSON types, MongoDB uses
the following comparison order, from lowest to highest:

	MinKey (internal type)

	Null

	Numbers (ints, longs, doubles)

	Symbol, String

	Object

	Array

	BinData

	ObjectID

	Boolean

	Date, Timestamp

	Regular Expression

	MaxKey (internal type)

Note

MongoDB treats some types as equivalent for comparison purposes.
For instance, numeric types undergo conversion before comparison.

Consider the following mongo example:

db.test.insert({x : 3 });
db.test.insert({x : 2.9 });
db.test.insert({x : new Date() });
db.test.insert({x : true });

db.test.find().sort({x:1});
{ "_id" : ObjectId("4b03155dce8de6586fb002c7"), "x" : 2.9 }
{ "_id" : ObjectId("4b03154cce8de6586fb002c6"), "x" : 3 }
{ "_id" : ObjectId("4b031566ce8de6586fb002c9"), "x" : true }
{ "_id" : ObjectId("4b031563ce8de6586fb002c8"), "x" : "Tue Nov 17 2009 16:28:03 GMT-0500 (EST)" }

The $type operator provides access to BSON type comparison in the MongoDB query syntax. See the
documentation on BSON types and the $type operator
for additional information.

Warning

Storing values of the different types in the same field in a
collection is strongly discouraged.

See also

	The Tailable Cursors
page for an example of a C++ use of MinKey.

When multiplying values of mixed types, what type conversion rules apply?

The $mul multiplies the numeric value of a field by a
number. For multiplication with values of mixed numeric types (32-bit
integer, 64-bit integer, float), the following type conversion rules
apply:

	
	32-bit Integer
	64-bit Integer
	Float

	32-bit Integer
	32-bit or 64-bit Integer
	64-bit Integer
	Float

	64-bit Integer
	64-bit Integer
	64-bit Integer
	Float

	Float
	Float
	Float
	Float

Note

	If the product of two 32-bit integers exceeds the maximum value
for a 32-bit integer, the result is a 64-bit integer.

	Integer operations of any type that exceed the maximum value for a
64-bit integer produce an error.

How do I query for fields that have null values?

Fields in a document may store null values, as in a notional
collection, test, with the following documents:

{ _id: 1, cancelDate: null }
{ _id: 2 }

Different query operators treat null values differently:

	The { cancelDate : null } query matches documents that either
contains the cancelDate field whose value is null or that
do not contain the cancelDate field:

db.test.find({ cancelDate: null })

The query returns both documents:

{ "_id" : 1, "cancelDate" : null }
{ "_id" : 2 }

	The { cancelDate : { $type: 10 } } query matches documents that
contains the cancelDate field whose value is null only;
i.e. the value of the cancelDate field is of BSON Type Null
(i.e. 10) :

db.test.find({ cancelDate : { $type: 10 } })

The query returns only the document that contains the null value:

{ "_id" : 1, "cancelDate" : null }

	The { cancelDate : { $exists: false } } query matches documents
that do not contain the cancelDate field:

db.test.find({ cancelDate : { $exists: false } })

The query returns only the document that does not contain the
cancelDate field:

{ "_id" : 2 }

See also

The reference documentation for the $type and
$exists operators.

Are there any restrictions on the names of Collections?

Collection names can be any UTF-8 string with the following
exceptions:

	A collection name should begin with a letter or an underscore.

	The empty string ("") is not a valid collection name.

	Collection names cannot contain the $ character. (version 2.2 only)

	Collection names cannot contain the null character: \0

	Do not name a collection using the system. prefix. MongoDB
reserves system.
for system collections, such as the
system.indexes collection.

	The maximum size of a collection name is 128 characters, including
the name of the database. However, for maximum flexibility,
collections should have names less than 80 characters.

If your collection name includes special characters, such as the
underscore character, then to access the collection use the
db.getCollection() method or a similar method for your
driver [http://api.mongodb.org/].

Example

To create a collection _foo and insert the
{ a : 1 } document, use the following operation:

db.getCollection("_foo").insert({ a : 1 })

To perform a query, use the find()
method, in as the following:

db.getCollection("_foo").find()

How do I isolate cursors from intervening write operations?

MongoDB cursors can return the same document more than once in some
situations. [3] You can use the
snapshot() method on a cursor to isolate
the operation for a very specific case.

snapshot() traverses the index on the _id field
and guarantees that the query will return each document (with respect to
the value of the _id field) no more than once. [4]

The snapshot() does not guarantee that the data
returned by the query will reflect a single moment in time nor does it
provide isolation from insert or delete operations.

Warning

	You cannot use snapshot() with
sharded collections.

	You cannot use snapshot() with
sort() or hint() cursor methods.

As an alternative, if your collection has a field or fields that are
never modified, you can use a unique index on this field or these
fields to achieve a similar result as the snapshot().
Query with hint() to explicitly force the query to use
that index.

	[3]	As a cursor returns documents other
operations may interleave with the query: if some of these
operations are updates that cause the
document to move (in the case of a table scan, caused by document
growth) or that change the indexed field on the index used by the
query; then the cursor will return the same document more than
once.

	[4]	MongoDB does not permit changes to the value of the
_id field; it is not possible for a cursor that transverses
this index to pass the same document more than once.

When should I embed documents within other documents?

When modeling data in MongoDB, embedding
is frequently the choice for:

	“contains” relationships between entities.

	one-to-many relationships when the “many” objects always appear
with or are viewed in the context of their parents.

You should also consider embedding for performance reasons if you have
a collection with a large number of small documents. Nevertheless, if
small, separate documents represent the natural model for the data,
then you should maintain that model.

If, however, you can group these small documents by some logical
relationship and you frequently retrieve the documents by this
grouping, you might consider “rolling-up” the small documents into
larger documents that contain an array of subdocuments. Keep in mind
that if you often only need to retrieve a subset of the documents
within the group, then “rolling-up” the documents may not provide
better performance.

“Rolling up” these small documents into logical groupings means that queries to
retrieve a group of documents involve sequential reads and fewer random disk
accesses.

Additionally, “rolling up” documents and moving common fields to the
larger document benefit the index on these fields. There would be fewer
copies of the common fields and there would be fewer associated key
entries in the corresponding index. See Index Concepts for more
information on indexes.

Where can I learn more about data modeling in MongoDB?

Begin by reading the documents in the Data Models
section. These documents contain a high level introduction to data
modeling considerations in addition to practical examples of data
models targeted at particular issues.

Additionally, consider the following external resources that provide
additional examples:

	Schema Design by Example [http://www.10gen.com/presentations/mongodb-melbourne-2012/schema-design-example]

	Dynamic Schema Blog Post [http://dmerr.tumblr.com/post/6633338010/schemaless]

	MongoDB Data Modeling and Rails [http://docs.mongodb.org/ecosystem/tutorial/model-data-for-ruby-on-rails/]

	Ruby Example of Materialized Paths [http://github.com/banker/newsmonger/blob/master/app/models/comment.rb]

	Sean Cribs Blog Post [http://seancribbs.com/tech/2009/09/28/modeling-a-tree-in-a-document-database]
which was the source for much of the Model Tree Structures in MongoDB
content.

Can I manually pad documents to prevent moves during updates?

An update can cause a document to move on disk if the document grows in
size. To minimize document movements, MongoDB uses
padding.

You should not have to pad manually because MongoDB adds
padding automatically and can
adaptively adjust the amount of padding added to documents to prevent
document relocations following updates.
You can change the default paddingFactor
calculation by using the collMod command with the
usePowerOf2Sizes flag. The usePowerOf2Sizes
flag ensures that MongoDB allocates document space in sizes that are
powers of 2, which helps ensure that MongoDB can efficiently reuse
free space created by document deletion or relocation.

However, if you must pad a document manually, you can add a
temporary field to the document and then $unset the field,
as in the following example.

Warning

Do not manually pad documents in a capped
collection. Applying manual padding to a document in a capped
collection can break replication. Also, the padding is not
preserved if you re-sync the MongoDB instance.

var myTempPadding = ["aaa",
 "aaa",
 "aaa",
 "aaa"];

db.myCollection.insert({ _id: 5, paddingField: myTempPadding });

db.myCollection.update({ _id: 5 },
 { $unset: { paddingField: "" } }
)

db.myCollection.update({ _id: 5 },
 { $set: { realField: "Some text that I might have needed padding for" } }
)

See also

Padding Factor

FAQ: The mongo Shell

Frequently Asked Questions:

	How can I enter multi-line operations in the mongo shell?

	How can I access different databases temporarily?

	Does the mongo shell support tab completion and other keyboard shortcuts?

	How can I customize the mongo shell prompt?

	Can I edit long shell operations with an external text editor?

How can I enter multi-line operations in the mongo shell?

If you end a line with an open parenthesis ('('), an open brace
('{'), or an open bracket ('['), then the subsequent lines start
with ellipsis ("...") until you enter the corresponding closing
parenthesis (')'), the closing brace ('}') or the closing
bracket (']'). The mongo shell waits for the closing
parenthesis, closing brace, or the closing bracket before evaluating
the code, as in the following example:

> if (x > 0) {
... count++;
... print (x);
... }

You can exit the line continuation mode if you enter two blank
lines, as in the following example:

> if (x > 0
...
...
>

How can I access different databases temporarily?

You can use db.getSiblingDB() method to access another
database without switching databases, as in the following example which
first switches to the test database and then accesses the
sampleDB database from the test database:

use test

db.getSiblingDB('sampleDB').getCollectionNames();

Does the mongo shell support tab completion and other keyboard shortcuts?

The mongo shell supports keyboard shortcuts. For example,

	Use the up/down arrow keys to scroll through command history. See
.dbshell documentation for more
information on the .dbshell file.

	Use <Tab> to autocomplete or to list the completion
possibilities, as in the following example which uses <Tab> to
complete the method name starting with the letter 'c':

db.myCollection.c<Tab>

Because there are many collection methods starting with the letter
'c', the <Tab> will list the various methods that start with
'c'.

For a full list of the shortcuts, see Shell Keyboard Shortcuts

How can I customize the mongo shell prompt?

New in version 1.9.

You can change the mongo shell prompt by setting the
prompt variable. This makes it possible to display additional
information in the prompt.

Set prompt to any string or arbitrary JavaScript code that returns
a string, consider the following examples:

	Set the shell prompt to display the hostname and the database issued:

var host = db.serverStatus().host;
var prompt = function() { return db+"@"+host+"> "; }

The mongo shell prompt should now reflect the new prompt:

test@my-machine.local>

	Set the shell prompt to display the database statistics:

var prompt = function() {
 return "Uptime:"+db.serverStatus().uptime+" Documents:"+db.stats().objects+" > ";
 }

The mongo shell prompt should now reflect the new prompt:

Uptime:1052 Documents:25024787 >

You can add the logic for the prompt in the .mongorc.js file to set the prompt each time you start up the
mongo shell.

Can I edit long shell operations with an external text editor?

You can use your own editor in the mongo shell by setting
the EDITOR environment variable before starting the
mongo shell. Once in the mongo shell, you can
edit with the specified editor by typing edit <variable> or edit
<function>, as in the following example:

	Set the EDITOR variable from the command line prompt:

EDITOR=vim

	Start the mongo shell:

mongo

	Define a function myFunction:

function myFunction () { }

	Edit the function using your editor:

edit myFunction

The command should open the vim edit session. Remember to save
your changes.

	Type myFunction to see the function definition:

myFunction

The result should be the changes from your saved edit:

function myFunction() {
 print("This was edited");
}

FAQ: Concurrency

Frequently Asked Questions:

	What type of locking does MongoDB use?

	How granular are locks in MongoDB?

	How do I see the status of locks on my mongod instances?

	Does a read or write operation ever yield the lock?

	Which operations lock the database?

	Which administrative commands lock the database?

	Does a MongoDB operation ever lock more than one database?

	How does sharding affect concurrency?

	How does concurrency affect a replica set primary?

	How does concurrency affect secondaries?

	What kind of concurrency does MongoDB provide for JavaScript operations?

Changed in version 2.2.

MongoDB allows multiple clients to read and write a single corpus of
data using a locking system to ensure that all clients receive a
consistent view of the data and to prevent multiple applications
from modifying the exact same pieces of data at the same time. Locks
help guarantee that all writes to a single document occur either in
full or not at all.

See also

Presentation on Concurrency and Internals in 2.2 [http://www.mongodb.com/presentations/concurrency-internals-mongodb-2-2]

What type of locking does MongoDB use?

MongoDB uses a readers-writer [1] lock that
allows concurrent reads access to a database but gives exclusive
access to a single write operation.

When a read lock exists, many read operations may use this lock. However, when
a write lock exists, a single write operation holds the lock
exclusively, and no other read or write operations may share the lock.

Locks are “writer greedy,” which means writes have preference over
reads. When both a read and write are waiting for a lock, MongoDB
grants the lock to the write.

	[1]	You may be familiar with a
“readers-writer” lock as “multi-reader” or “shared exclusive”
lock. See the Wikipedia page on Readers-Writer Locks [http://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock] for
more information.

How granular are locks in MongoDB?

Changed in version 2.2.

Beginning with version 2.2, MongoDB implements locks on a per-database
basis for most read and write operations. Some global operations,
typically short lived operations involving multiple databases, still
require a global “instance” wide lock. Before 2.2, there is only one
“global” lock per mongod instance.

For example, if you have six databases and one takes a write lock, the
other five are still available for read and write.

How do I see the status of locks on my mongod instances?

For reporting on lock utilization information on locks, use any of the
following methods:

	db.serverStatus(),

	db.currentOp(),

	mongotop,

	mongostat, and/or

	the MongoDB Management Service (MMS) [http://mms.mongodb.com/]

Specifically, the locks document in the output of
serverStatus, or the locks field
in the current operation reporting
provides insight into the type of locks and amount of lock
contention in your mongod instance.

To terminate an operation, use db.killOp().

Does a read or write operation ever yield the lock?

In some situations, read and write operations can yield their locks.

Long running read and write operations, such as queries, updates, and
deletes, yield under many conditions. In MongoDB 2.0, operations
yielded based on time slices and the number of operations waiting for
the actively held lock. After 2.2, more adaptive algorithms allow
operations to yield based on predicted disk access (i.e. page faults).

New in version 2.0: Read and write operations will yield their locks if the
mongod receives a page fault or fetches data that
is unlikely to be in memory. Yielding allows other operations that
only need to access documents that are already in memory to complete
while mongod loads documents into memory.

Additionally, write operations that affect multiple documents
(i.e. update() with the multi
parameter) will yield periodically to allow read operations during
these long write operations. Similarly, long running read locks will
yield periodically to ensure that write operations have the
opportunity to complete.

Changed in version 2.2: The use of yielding expanded greatly in MongoDB 2.2. Including the
“yield for page fault.” MongoDB tracks the contents of memory and
predicts whether data is available before performing a read. If
MongoDB predicts that the data is not in memory a read operation
yields its lock while MongoDB loads the data to memory. Once data
is available in memory, the read will reacquire the lock to
complete the operation.

Which operations lock the database?

Changed in version 2.2.

The following table lists common database operations and the types of
locks they use.

	Operation
	Lock Type

	Issue a query
	Read lock

	Get more data from a cursor
	Read lock

	Insert data
	Write lock

	Remove data
	Write lock

	Update data
	Write lock

	Map-reduce
	Read lock and write lock, unless operations are specified as
non-atomic. Portions of map-reduce jobs can run concurrently.

	Create an index
	Building an index in the foreground, which is the default, locks
the database for extended periods of time.

	db.eval()
	Write lock. db.eval() blocks all other JavaScript
processes.

	eval
	Write lock. If used with the nolock lock option, the
eval option does not take a write lock and
cannot write data to the database.

	aggregate()
	Read lock

Which administrative commands lock the database?

Certain administrative commands can exclusively lock the database for
extended periods of time. In some deployments, for large databases,
you may consider taking the mongod instance offline so that
clients are not affected. For example, if a mongod is part
of a replica set, take the mongod offline and let
other members of the set service load while maintenance is in progress.

The following administrative operations require an exclusive
(i.e. write) lock on the database for extended periods:

	db.collection.ensureIndex(), when issued
without setting background to true,

	reIndex,

	compact,

	db.repairDatabase(),

	db.createCollection(), when creating a very large
(i.e. many gigabytes) capped collection,

	db.collection.validate(), and

	db.copyDatabase(). This operation may lock all
databases. See Does a MongoDB operation ever lock more than one database?.

The following administrative commands lock the database but only hold
the lock for a very short time:

	db.collection.dropIndex(),

	db.getLastError(),

	db.isMaster(),

	rs.status() (i.e. replSetGetStatus),

	db.serverStatus(),

	db.auth(), and

	db.addUser().

Does a MongoDB operation ever lock more than one database?

The following MongoDB operations lock multiple databases:

	db.copyDatabase() must lock the entire mongod
instance at once.

	Journaling, which is an internal operation, locks
all databases for short intervals. All databases share a single
journal.

	User authentication locks the
admin database as well as the database the user is accessing.

	All writes to a replica set’s primary lock both the database
receiving the writes and then the local database for a short
time. The lock for the local database allows the
mongod to write to the primary’s oplog and
accounts for a small portion of the total time of the operation.

How does sharding affect concurrency?

Sharding improves concurrency by distributing
collections over multiple mongod instances, allowing shard
servers (i.e. mongos processes) to perform any number of
operations concurrently to the various downstream mongod
instances.

Each mongod instance is independent of the others in the
shard cluster and uses the MongoDB readers-writer lock. The operations on one mongod
instance do not block the operations on any others.

How does concurrency affect a replica set primary?

In replication, when MongoDB writes to a collection on the
primary, MongoDB also writes to the primary’s oplog,
which is a special collection in the local database. Therefore,
MongoDB must lock both the collection’s database and the local
database. The mongod must lock both databases at the same
time keep both data consistent and ensure that write operations, even
with replication, are “all-or-nothing” operations.

How does concurrency affect secondaries?

In replication, MongoDB does not apply writes serially to
secondaries. Secondaries collect oplog entries in
batches and then apply those batches in parallel. Secondaries do not
allow reads while applying the write operations, and apply write
operations in the order that they appear in the oplog.

MongoDB can apply several writes in parallel on replica set
secondaries, in two phases:

	During the first prefer phase, under a read lock, the
mongod ensures that all documents affected by the
operations are in memory. During this phase, other clients may
execute queries against this member.

	A thread pool using write locks applies all write operations in the
batch as part of a coordinated write phase.

What kind of concurrency does MongoDB provide for JavaScript operations?

Changed in version 2.4: The V8 JavaScript engine added in 2.4 allows multiple JavaScript
operations to run at the same time. Prior to 2.4, a single
mongod could only run a single JavaScript operation at
once.

FAQ: Sharding with MongoDB

Frequently Asked Questions:

	Is sharding appropriate for a new deployment?

	How does sharding work with replication?

	Can I change the shard key after sharding a collection?

	What happens to unsharded collections in sharded databases?

	How does MongoDB distribute data across shards?

	What happens if a client updates a document in a chunk during a migration?

	What happens to queries if a shard is inaccessible or slow?

	How does MongoDB distribute queries among shards?

	How does MongoDB sort queries in sharded environments?

	How does MongoDB ensure unique _id field values when using a shard key other than _id?

	I’ve enabled sharding and added a second shard, but all the data is still on one server. Why?

	Is it safe to remove old files in the moveChunk directory?

	How does mongos use connections?

	Why does mongos hold connections open?

	Where does MongoDB report on connections used by mongos?

	What does writebacklisten in the log mean?

	How should administrators deal with failed migrations?

	What is the process for moving, renaming, or changing the number of config servers?

	When do the mongos servers detect config server changes?

	Is it possible to quickly update mongos servers after updating a replica set configuration?

	What does the maxConns setting on mongos do?

	How do indexes impact queries in sharded systems?

	Can shard keys be randomly generated?

	Can shard keys have a non-uniform distribution of values?

	Can you shard on the _id field?

	What do moveChunk commit failed errors mean?

	How does draining a shard affect the balancing of uneven chunk distribution?

This document answers common questions about horizontal scaling
using MongoDB’s sharding.

If you don’t find the answer you’re looking for, check
the complete list of FAQs or post your question to the
MongoDB User Mailing List [https://groups.google.com/forum/?fromgroups#!forum/mongodb-user].

Is sharding appropriate for a new deployment?

Sometimes.

If your data set fits on a single server, you should begin
with an unsharded deployment.

Converting an unsharded database to a sharded cluster is easy
and seamless, so there is little advantage in configuring sharding
while your data set is small.

Still, all production deployments should use replica sets to provide high availability and disaster recovery.

How does sharding work with replication?

To use replication with sharding, deploy each shard as a
replica set.

Can I change the shard key after sharding a collection?

No.

There is no automatic support in MongoDB for changing a shard key
after sharding a collection. This reality underscores
the importance of choosing a good shard key. If you
must change a shard key after sharding a collection, the best option is to:

	dump all data from MongoDB into an external format.

	drop the original sharded collection.

	configure sharding using a more ideal shard key.

	pre-split the shard
key range to ensure initial even distribution.

	restore the dumped data into MongoDB.

See shardCollection, sh.shardCollection(),
the Shard Key,
Deploy a Sharded Cluster, and SERVER-4000 [https://jira.mongodb.org/browse/SERVER-4000] for
more information.

What happens to unsharded collections in sharded databases?

In the current implementation, all databases in a sharded
cluster have a “primary shard.” All unsharded
collection within that database will reside on the same shard.

How does MongoDB distribute data across shards?

Sharding must be specifically enabled on a collection. After enabling
sharding on the collection, MongoDB will assign various ranges of
collection data to the different shards in the cluster. The cluster
automatically corrects imbalances between shards by migrating ranges
of data from one shard to another.

What happens if a client updates a document in a chunk during a migration?

The mongos routes the operation to the “old” shard, where
it will succeed immediately. Then the shard mongod
instances will replicate the modification to the “new” shard before
the sharded cluster updates that chunk’s “ownership,” which
effectively finalizes the migration process.

What happens to queries if a shard is inaccessible or slow?

If a shard is inaccessible or unavailable, queries will return
with an error.

However, a client may set the partial query bit, which will then
return results from all available shards, regardless of whether a
given shard is unavailable.

If a shard is responding slowly, mongos will merely wait
for the shard to return results.

How does MongoDB distribute queries among shards?

Changed in version 2.0.

The exact method for distributing queries to shards in a
cluster depends on the nature of the query and the configuration of
the sharded cluster. Consider a sharded collection, using the
shard key user_id, that has last_login and
email attributes:

	For a query that selects one or more values for the user_id
key:

mongos determines which shard or shards contains the
relevant data, based on the cluster metadata, and directs a query to
the required shard or shards, and returns those results to the
client.

	For a query that selects user_id and also performs a sort:

mongos can make a straightforward translation of this
operation into a number of queries against the relevant shards,
ordered by user_id. When the sorted queries return from all
shards, the mongos merges the sorted results and returns
the complete result to the client.

	For queries that select on last_login:

These queries must run on all shards: mongos must
parallelize the query over the shards and perform a merge-sort on
the email of the documents found.

How does MongoDB sort queries in sharded environments?

If you call the cursor.sort() method on a query in a sharded
environment, the mongod for each shard will sort its
results, and the mongos merges each shard’s results before returning
them to the client.

How does MongoDB ensure unique _id field values when using a shard key other than _id?

If you do not use _id as the shard key, then your
application/client layer must be responsible for keeping the _id
field unique. It is problematic for collections to have duplicate
_id values.

If you’re not sharding your collection by the _id field, then you
should be sure to store a globally unique identifier in that
field. The default BSON ObjectID works well in
this case.

I’ve enabled sharding and added a second shard, but all the data is still on one server. Why?

First, ensure that you’ve declared a shard key for your
collection. Until you have configured the shard key, MongoDB will not
create chunks, and sharding will not occur.

Next, keep in mind that the default chunk size is 64 MB. As a result,
in most situations, the collection needs to have at least 64 MB of data before a
migration will occur.

Additionally, the system which balances chunks among the servers
attempts to avoid superfluous migrations. Depending on the number of
shards, your shard key, and the amount of data, systems often require
at least 10 chunks of data to trigger migrations.

You can run db.printShardingStatus() to see all the chunks
present in your cluster.

Is it safe to remove old files in the moveChunk directory?

Yes. mongod creates these files as backups during normal
shard balancing operations.

Once these migrations are complete, you may delete these files.

How does mongos use connections?

Each client maintains a connection to a mongos instance.
Each mongos instance maintains a pool of connections to the
members of a replica set supporting the sharded cluster. Clients use
connections between mongos and mongod instances
one at a time. Requests are not multiplexed or pipelined. When client
requests complete, the mongos returns the connection to the
pool.

See the System Resource Utilization section of the
UNIX ulimit Settings document.

Why does mongos hold connections open?

mongos uses a set of connection pools to communicate with
each shard. These pools do not shrink when the number of
clients decreases.

This can lead to an unused mongos with a large number
of open connections. If the mongos is no longer in use,
it is safe to restart the process to close existing connections.

Where does MongoDB report on connections used by mongos?

Connect to the mongos with the mongo shell, and
run the following command:

db._adminCommand("connPoolStats");

What does writebacklisten in the log mean?

The writeback listener is a process that opens a long poll to relay
writes back from a mongod or mongos after
migrations to make sure they have not gone to the wrong server. The
writeback listener sends writes back to the correct server if
necessary.

These messages are a key part of the sharding infrastructure and should
not cause concern.

How should administrators deal with failed migrations?

Failed migrations require no administrative intervention. Chunk moves are
consistent and deterministic.

If a migration fails to complete for some reason, the cluster
will retry the operation. When the migration completes successfully,
the data will reside only on the new shard.

What is the process for moving, renaming, or changing the number of config servers?

See Sharded Cluster Tutorials for information on
migrating and replacing config servers.

When do the mongos servers detect config server changes?

mongos instances maintain a cache of the config
database that holds the metadata for the sharded cluster. This
metadata includes the mapping of chunks to
shards.

mongos updates its cache lazily by issuing a request to a
shard and discovering that its metadata is out of date. There is no
way to control this behavior from the client, but you can run the
flushRouterConfig command against any mongos
to force it to refresh its cache.

Is it possible to quickly update mongos servers after updating a replica set configuration?

The mongos instances will detect these changes without
intervention over time. However, if you want to force the
mongos to reload its configuration, run the
flushRouterConfig command against to each
mongos directly.

What does the maxConns setting on mongos do?

The maxConns option limits the number of connections
accepted by mongos.

If your client driver or application creates a large number of
connections but allows them to time out rather than closing them
explicitly, then it might make sense to limit the number of
connections at the mongos layer.

Set maxConns to a value slightly higher than the
maximum number of connections that the client creates, or the maximum
size of the connection pool. This setting prevents the
mongos from causing connection spikes on the individual
shards. Spikes like these may disrupt the operation
and memory allocation of the sharded cluster.

How do indexes impact queries in sharded systems?

If the query does not include the shard key, the
mongos must send the query to all shards as a
“scatter/gather” operation. Each shard will, in turn, use either the
shard key index or another more efficient index to fulfill the query.

If the query includes multiple sub-expressions that reference the
fields indexed by the shard key and the secondary index, the
mongos can route the queries to a specific shard and the
shard will use the index that will allow it to fulfill most
efficiently. See this presentation [http://www.slideshare.net/mongodb/how-queries-work-with-sharding]
for more information.

Can shard keys be randomly generated?

Shard keys can be random. Random keys ensure
optimal distribution of data across the cluster.

Sharded clusters, attempt to route queries to
specific shards when queries include the shard key as a parameter,
because these directed queries are more efficient. In many cases,
random keys can make it difficult to direct queries to specific
shards.

Can shard keys have a non-uniform distribution of values?

Yes. There is no requirement that documents be evenly distributed by
the shard key.

However, documents that have the shard key must reside in the same
chunk and therefore on the same server. If your sharded data set has
too many documents with the exact same shard key you will not be able
to distribute those documents across your sharded cluster.

Can you shard on the _id field?

You can use any field for the shard key. The _id field is a common
shard key.

Be aware that ObjectId() values, which are the default value of
the _id field, increment as a timestamp. As a result, when used as
a shard key, all new documents inserted into the collection will
initially belong to the same chunk on a single shard. Although the
system will eventually divide this chunk and migrate its contents to
distribute data more evenly, at any moment the cluster can only direct
insert operations at a single shard. This can limit the throughput of
inserts. If most of your write operations are updates, this limitation
should not impact your performance. However, if you have a high insert
volume, this may be a limitation.

To address this issue, MongoDB 2.4 provides hashed shard keys.

What do moveChunk commit failed errors mean?

Consider the following error message:

ERROR: moveChunk commit failed: version is at <n>|<nn> instead of <N>|<NN>" and "ERROR: TERMINATING"

mongod issues this message if, during a chunk
migration, the shard could not
connect to the config database to update chunk information at
the end of the migration process. If
the shard cannot update the config database after
moveChunk, the cluster will have an inconsistent
view of all chunks. In these situations, the primary member of
the shard will terminate
itself to prevent data inconsistency. If the secondary member
can access the config database, the shard’s data will be
accessible after an election. Administrators will need to resolve the
chunk migration failure independently.

If you encounter this issue, contact the MongoDB User Group [http://groups.google.com/group/mongodb-user] or MongoDB support to
address this issue.

How does draining a shard affect the balancing of uneven chunk distribution?

The sharded cluster balancing process controls both migrating chunks
from decommissioned shards (i.e. draining) and normal cluster
balancing activities. Consider the following behaviors for different
versions of MongoDB in situations where you remove a shard in a
cluster with an uneven chunk distribution:

	After MongoDB 2.2, the balancer first removes the chunks from the
draining shard and then balances the remaining uneven chunk
distribution.

	Before MongoDB 2.2, the balancer handles the uneven chunk
distribution and then removes the chunks from the draining shard.

FAQ: Replica Sets and Replication in MongoDB

Frequently Asked Questions:

	What kinds of replication does MongoDB support?

	What do the terms “primary” and “master” mean?

	What do the terms “secondary” and “slave” mean?

	How long does replica set failover take?

	Does replication work over the Internet and WAN connections?

	Can MongoDB replicate over a “noisy” connection?

	What is the preferred replication method: master/slave or replica sets?

	What is the preferred replication method: replica sets or replica pairs?

	Why use journaling if replication already provides data redundancy?

	Are write operations durable if write concern does not acknowledge writes?

	How many arbiters do replica sets need?

	What information do arbiters exchange with the rest of the replica set?

	Which members of a replica set vote in elections?

	Do hidden members vote in replica set elections?

	Is it normal for replica set members to use different amounts of disk space?

This document answers common questions about database replication
in MongoDB.

If you don’t find the answer you’re looking for, check
the complete list of FAQs or post your question to the
MongoDB User Mailing List [https://groups.google.com/forum/?fromgroups#!forum/mongodb-user].

What kinds of replication does MongoDB support?

MongoDB supports master-slave replication and a variation
on master-slave replication known as replica sets. Replica
sets are the recommended replication topology.

What do the terms “primary” and “master” mean?

Primary and master nodes are the nodes
that can accept writes. MongoDB’s replication is
“single-master:” only one node can accept write operations at a time.

In a replica set, if the current “primary” node fails or becomes
inaccessible, the other members can autonomously elect one of the other members of the set to be the new “primary”.

By default, clients send all reads to the primary;
however, read preference is configurable at the
client level on a per-connection basis, which makes it possible to
send reads to secondary nodes instead.

What do the terms “secondary” and “slave” mean?

Secondary and slave nodes are read-only nodes
that replicate from the primary.

Replication operates by way of an oplog, from which secondary/slave
members apply new operations to themselves. This replication process
is asynchronous, so secondary/slave nodes may not always reflect the
latest writes to the primary. But usually, the gap between the primary and
secondary nodes is just few milliseconds on a local network connection.

How long does replica set failover take?

It varies, but a replica set will select a new primary within a minute.

It may take 10-30 seconds for the members of a replica
set to declare a primary inaccessible. This
triggers an election. During the election, the cluster
is unavailable for writes.

The election itself may take another 10-30 seconds.

Note

Eventually consistent reads, like the ones that will return
from a replica set are only possible with a write concern
that permits reads from secondary members.

Does replication work over the Internet and WAN connections?

Yes.

For example, a deployment may maintain a primary and secondary
in an East-coast data center along with a secondary member for disaster
recovery in a West-coast data center.

See also

Deploy a Geographically Redundant Replica Set

Can MongoDB replicate over a “noisy” connection?

Yes, but not without connection failures and the obvious latency.

Members of the set will attempt to reconnect to the other members of
the set in response to networking flaps. This does not require
administrator intervention. However, if the network connections
among the nodes in the replica set are very slow, it might not be
possible for the members of the node to keep up with the replication.

If the TCP connection between the secondaries and the primary
instance breaks, a replica set will automatically
elect one of the secondary members of the set as primary.

What is the preferred replication method: master/slave or replica sets?

New in version 1.8.

Replica sets are the preferred
replication mechanism in MongoDB. However, if your deployment
requires more than 12 nodes, you must use master/slave replication.

What is the preferred replication method: replica sets or replica pairs?

Deprecated since version 1.6.

Replica sets replaced replica pairs in
version 1.6. Replica sets are the preferred
replication mechanism in MongoDB.

Why use journaling if replication already provides data redundancy?

Journaling facilitates faster crash recovery.
Prior to journaling, crashes often required database repairs
or full data resync. Both were slow, and the first was unreliable.

Journaling is particularly useful for protection
against power failures, especially if your replica set resides in a single data
center or power circuit.

When a replica set runs with journaling, mongod
instances can safely restart without any administrator intervention.

Note

Journaling requires some resource overhead for write
operations. Journaling has no effect on read performance, however.

Journaling is enabled by default on all 64-bit
builds of MongoDB v2.0 and greater.

Are write operations durable if write concern does not acknowledge writes?

Yes.

However, if you want confirmation that a given write has arrived at
the server, use write concern. The
getLastError command provides the facility for write
concern. However, after the default write concern change, the default write concern acknowledges
all write operations, and unacknowledged writes must be explicitly
configured. See the MongoDB Drivers and Client Libraries documentation for
your driver for more information.

How many arbiters do replica sets need?

Some configurations do not require any arbiter
instances. Arbiters vote in elections
for primary but do not replicate the data like
secondary members.

Replica sets require a majority of the
remaining nodes present to elect a primary. Arbiters allow you
to construct this majority without the overhead of adding replicating
nodes to the system.

There are many possible replica set architectures.

If you have a three node replica set, you don’t need an arbiter.

But a common configuration consists of two replicating nodes, one of which is
primary and the other is secondary, as well as an
arbiter for the third node. This configuration makes it possible for
the set to elect a primary in the event of a failure without requiring
three replicating nodes.

You may also consider adding an arbiter to a set if it has an equal
number of nodes in two facilities and network partitions between the
facilities are possible. In these cases, the arbiter will break
the tie between the two facilities and allow the set to elect a new
primary.

See also

Replica Set Deployment Architectures

What information do arbiters exchange with the rest of the replica set?

Arbiters never receive the contents of a collection but do exchange the
following data with the rest of the replica set:

	Credentials used to authenticate the arbiter with the replica set. All
MongoDB processes within a replica set use keyfiles. These exchanges
are encrypted.

	Replica set configuration data and voting data. This information is
not encrypted. Only credential exchanges are encrypted.

If your MongoDB deployment uses SSL, then all communications between
arbiters and the other members of the replica set are secure. See the
documentation for Connect to MongoDB with SSL for more
information. Run all arbiters on secure networks, as with all MongoDB
components.

See

The overview of Arbiter Members of Replica Sets.

Which members of a replica set vote in elections?

All members of a replica set, unless the value of votes is equal to 0, vote in
elections. This includes all delayed, hidden and secondary-only members, as well as the
arbiters.

Additionally, the state of the voting
members also determine whether the member can vote. Only voting members
in the following states are eligible to vote:

	PRIMARY

	SECONDARY

	RECOVERING

	ARBITER

	ROLLBACK

See also

Replica Set Elections

Do hidden members vote in replica set elections?

Hidden members of replica
sets do vote in elections. To exclude a member from voting in an
election, change the value of the member’s
votes configuration to 0.

See also

Replica Set Elections

Is it normal for replica set members to use different amounts of disk space?

Yes.

Factors including: different oplog sizes, different levels of storage
fragmentation, and MongoDB’s data file pre-allocation can lead to some
variation in storage utilization between nodes. Storage use
disparities will be most pronounced when you add members at different
times.

FAQ: MongoDB Storage

Frequently Asked Questions:

	What are memory mapped files?

	How do memory mapped files work?

	How does MongoDB work with memory mapped files?

	What are page faults?

	What is the difference between soft and hard page faults?

	What tools can I use to investigate storage use in MongoDB?

	What is the working set?

	Why are the files in my data directory larger than the data in my database?

	How can I check the size of a collection?

	How can I check the size of indexes?

	How do I know when the server runs out of disk space?

This document addresses common questions regarding MongoDB’s storage
system.

If you don’t find the answer you’re looking for, check
the complete list of FAQs or post your question to the
MongoDB User Mailing List [https://groups.google.com/forum/?fromgroups#!forum/mongodb-user].

What are memory mapped files?

A memory-mapped file is a file with data that the operating system
places in memory by way of the mmap() system call. mmap() thus
maps the file to a region of virtual memory. Memory-mapped files are
the critical piece of the storage engine in MongoDB. By using memory
mapped files MongoDB can treat the contents of its data files as if
they were in memory. This provides MongoDB with an extremely fast and
simple method for accessing and manipulating data.

How do memory mapped files work?

Memory mapping assigns files to a block of virtual memory with a
direct byte-for-byte correlation. Once mapped, the relationship
between file and memory allows MongoDB to interact with the data in
the file as if it were memory.

How does MongoDB work with memory mapped files?

MongoDB uses memory mapped files for managing and interacting with all
data. MongoDB memory maps data files to memory as it accesses
documents. Data that isn’t accessed is not mapped to memory.

What are page faults?

Page faults will occur if you’re attempting to access part of a
memory-mapped file that isn’t in memory.

If there is free memory, then the operating system can find the page
on disk and load it to memory directly. However, if there is no free
memory, the operating system must:

	find a page in memory that is stale or no longer needed, and write
the page to disk.

	read the requested page from disk and load it into memory.

This process, particularly on an active system can take a long time,
particularly in comparison to reading a page that is already in
memory.

What is the difference between soft and hard page faults?

Page faults occur when MongoDB needs access to
data that isn’t currently in active memory. A “hard” page fault
refers to situations when MongoDB must access a disk to access the
data. A “soft” page fault, by contrast, merely moves memory pages from
one list to another, such as from an operating system file
cache. In production, MongoDB will rarely encounter soft page faults.

What tools can I use to investigate storage use in MongoDB?

The db.stats() method in the mongo shell,
returns the current state of the “active” database. The
dbStats command document describes
the fields in the db.stats() output.

What is the working set?

Working set represents the total body of data that the application
uses in the course of normal operation. Often this is a subset of the
total data size, but the specific size of the working set depends on
actual moment-to-moment use of the database.

If you run a query that requires MongoDB to scan every document in a
collection, the working set will expand to include every
document. Depending on physical memory size, this may cause documents
in the working set to “page out,” or to be removed from physical memory by
the operating system. The next time MongoDB needs to access these
documents, MongoDB may incur a hard page fault.

If you run a query that requires MongoDB to scan every
document in a collection, the working set includes every
active document in memory.

For best performance, the majority of your active set should fit in
RAM.

Why are the files in my data directory larger than the data in my database?

The data files in your data directory, which is the /data/db
directory in default configurations, might be larger than the data set
inserted into the database. Consider the following possible causes:

	Preallocated data files.

In the data directory, MongoDB preallocates data files to a
particular size, in part to prevent file system
fragmentation. MongoDB names the first data file <databasename>.0,
the next <databasename>.1, etc. The first file mongod
allocates is 64 megabytes, the next 128 megabytes, and so on, up to
2 gigabytes, at which point all subsequent files are 2
gigabytes. The data files include files with allocated space but
that hold no data. mongod may allocate a 1 gigabyte data
file that may be 90% empty. For most larger databases, unused
allocated space is small compared to the database.

On Unix-like systems, mongod preallocates an additional data file and
initializes the disk space to 0. Preallocating data files in
the background prevents significant delays when a new database file
is next allocated.

You can disable preallocation with the noprealloc run time
option. However noprealloc is not intended for use in
production environments: only use noprealloc for testing
and with small data sets where you frequently drop databases.

On Linux systems you can use hdparm to get an idea of how costly
allocation might be:

time hdparm --fallocate $((1024*1024)) testfile

	The oplog.

If this mongod is a member of a replica set, the data
directory includes the oplog.rs file, which is a
preallocated capped collection in the local
database. The default allocation is approximately 5% of disk space
on 64-bit installations, see Oplog Sizing for more information. In most cases, you
should not need to resize the oplog. However, if you do, see
Change the Size of the Oplog.

	The journal.

The data directory contains the journal files, which store write
operations on disk prior to MongoDB applying them to databases. See
Journaling Mechanics.

	Empty records.

MongoDB maintains lists of empty records in data files when
deleting documents and collections. MongoDB can reuse this space,
but will never return this space to the operating system.

To de-fragment allocated storage, use compact, which
de-fragments allocated space which allows. By de-fragmenting
storage, MongoDB to can effectively use the allocated
space. compact requires up to 2 gigabytes of extra disk
space to run. Do not use compact if you are critically
low on disk space.

Important

compact only removes fragmentation
from MongoDB data files and does not return any disk space to
the operating system.

To reclaim deleted space, use repairDatabase, which
rebuilds the database which de-fragments the storage and may release
space to the operating system. repairDatabase requires
up to 2 gigabytes of extra disk space to run. Do not use
repairDatabase if you are critically low on disk space.

Warning

repairDatabase requires enough free disk space to
hold both the old and new database files while the repair is
running. Be aware that repairDatabase will block
all other operations and may take a long time to complete.

How can I check the size of a collection?

To view the size of a collection and other information, use the
db.collection.stats() method from the mongo shell.
The following example issues db.collection.stats() for the
orders collection:

db.orders.stats();

To view specific measures of size, use these methods:

	db.collection.dataSize(): data size in bytes for the collection.

	db.collection.storageSize(): allocation size in bytes, including unused space.

	db.collection.totalSize(): the data size plus the index size in bytes.

	db.collection.totalIndexSize(): the index size in bytes.

Also, the following scripts print the statistics for each database and
collection:

db._adminCommand("listDatabases").databases.forEach(function (d) {mdb = db.getSiblingDB(d.name); printjson(mdb.stats())})

db._adminCommand("listDatabases").databases.forEach(function (d) {mdb = db.getSiblingDB(d.name); mdb.getCollectionNames().forEach(function(c) {s = mdb[c].stats(); printjson(s)})})

How can I check the size of indexes?

To view the size of the data allocated for an index, use one of the
following procedures in the mongo shell:

	Use the db.collection.stats() method using the
index namespace. To retrieve a list of namespaces, issue the
following command:

db.system.namespaces.find()

	Check the value of indexSizes in the output of the
db.collection.stats() command.

Example

Issue the following command to retrieve index namespaces:

db.system.namespaces.find()

The command returns a list similar to the following:

{"name" : "test.orders"}
{"name" : "test.system.indexes"}
{"name" : "test.orders.$_id_"}

View the size of the data allocated for the orders.$_id_ index
with the following sequence of operations:

use test
db.orders.$_id_.stats().indexSizes

How do I know when the server runs out of disk space?

If your server runs out of disk space for data files, you will see
something like this in the log:

Thu Aug 11 13:06:09 [FileAllocator] allocating new data file dbms/test.13, filling with zeroes...
Thu Aug 11 13:06:09 [FileAllocator] error failed to allocate new file: dbms/test.13 size: 2146435072 errno:28 No space left on device
Thu Aug 11 13:06:09 [FileAllocator] will try again in 10 seconds
Thu Aug 11 13:06:19 [FileAllocator] allocating new data file dbms/test.13, filling with zeroes...
Thu Aug 11 13:06:19 [FileAllocator] error failed to allocate new file: dbms/test.13 size: 2146435072 errno:28 No space left on device
Thu Aug 11 13:06:19 [FileAllocator] will try again in 10 seconds

The server remains in this state forever, blocking all writes including
deletes. However, reads still work. To delete some data and compact,
using the compact command, you must restart the server
first.

If your server runs out of disk space for journal files, the server
process will exit. By default, mongod creates journal files
in a sub-directory of dbpath named journal. You may
elect to put the journal files on another storage device using a
filesystem mount or a symlink.

Note

If you place the journal files on a separate storage device you
will not be able to use a file system snapshot tool to capture a
consistent snapshot of your data files and journal files.

FAQ: Indexes

Frequently Asked Questions:

	Should you run ensureIndex() after every insert?

	How do you know what indexes exist in a collection?

	How do you determine the size of an index?

	What happens if an index does not fit into RAM?

	How do you know what index a query used?

	How do you determine what fields to index?

	How do write operations affect indexes?

	Will building a large index affect database performance?

	Can I use index keys to constrain query matches?

	Using $ne and $nin in a query is slow. Why?

	Can I use a multi-key index to support a query for a whole array?

	How can I effectively use indexes strategy for attribute lookups?

This document addresses common questions regarding MongoDB indexes.

If you don’t find the answer you’re looking for, check the
complete list of FAQs or post your question to the
MongoDB User Mailing List [https://groups.google.com/forum/?fromgroups#!forum/mongodb-user].
See also Indexing Tutorials.

Should you run ensureIndex() after every insert?

No. You only need to create an index once for a single
collection. After initial creation, MongoDB automatically updates the
index as data changes.

While running ensureIndex() is usually ok,
if an index doesn’t exist because of ongoing administrative work, a
call to ensureIndex() may disrupt database
availability. Running ensureIndex() can render
a replica set inaccessible as the index creation is happening. See
Build Indexes on Replica Sets.

How do you know what indexes exist in a collection?

To list a collection’s indexes, use the
db.collection.getIndexes() method or a similar method
for your driver [http://api.mongodb.org/].

How do you determine the size of an index?

To check the sizes of the indexes on a collection, use db.collection.stats().

What happens if an index does not fit into RAM?

When an index is too large to fit into RAM, MongoDB must read the index
from disk, which is a much slower operation than reading from RAM. Keep
in mind an index fits into RAM when your server has RAM available for
the index combined with the rest of the working set.

In certain cases, an index does not need to fit entirely into RAM. For
details, see Indexes that Hold Only Recent Values in RAM.

How do you know what index a query used?

To inspect how MongoDB processes a query, use the
explain() method in the mongo shell, or in
your application driver.

How do you determine what fields to index?

A number of factors determine what fields to index, including
selectivity, fitting indexes into RAM,
reusing indexes in multiple queries when possible, and creating indexes
that can support all the fields in a given query. For detailed
documentation on choosing which fields to index, see
Indexing Tutorials.

How do write operations affect indexes?

Any write operation that alters an indexed field requires an update to
the index in addition to the document itself. If you update a document
that causes the document to grow beyond the allotted record size, then
MongoDB must update all indexes that include this document as part of
the update operation.

Therefore, if your application is write-heavy, creating too many
indexes might affect performance.

Will building a large index affect database performance?

Building an index can be an IO-intensive operation, especially if you
have a large collection. This is true on any database system that
supports secondary indexes, including MySQL. If you need to build an
index on a large collection, consider building the index in the
background. See Index Creation.

If you build a large index without the background option, and if doing
so causes the database to stop responding,
do one of the following:

	Wait for the index to finish building.

	Kill the current operation (see db.killOp()). The partial
index will be deleted.

Can I use index keys to constrain query matches?

You can use the min() and max()
methods to constrain the results of the cursor returned from
find() by using index keys.

Using $ne and $nin in a query is slow. Why?

The $ne and $nin operators are not selective.
See Create Queries that Ensure Selectivity. If you need to use these,
it is often best to make sure that an additional, more selective
criterion is part of the query.

Can I use a multi-key index to support a query for a whole array?

Not entirely. The index can partially support these queries because
it can speed the selection of the first element of the array;
however, comparing all subsequent items in the array cannot use the
index and must scan the documents individually.

How can I effectively use indexes strategy for attribute lookups?

For simple attribute lookups that don’t require sorted result sets or
range queries, consider creating a field that contains an array of
documents where each document has a field (e.g. attrib) that
holds a specific type of attribute. You can index this attrib
field.

For example, the attrib field in the following document allows you
to add an unlimited number of attributes types:

{ _id : ObjectId(...),
 attrib : [
 { k: "color", v: "red" },
 { k: "shape": v: "rectangle" },
 { k: "color": v: "blue" },
 { k: "avail": v: true }
]
}

Both of the following queries could use the same { "attrib.k": 1,
"attrib.v": 1 } index:

db.mycollection.find({ attrib: { $elemMatch : { k: "color", v: "blue" } } })
db.mycollection.find({ attrib: { $elemMatch : { k: "avail", v: true } } })

FAQ: MongoDB Diagnostics

Frequently Asked Questions:

	Where can I find information about a mongod process that stopped running unexpectedly?

	Does TCP keepalive time affect sharded clusters and replica sets?

	What tools are available for monitoring MongoDB?

	Memory Diagnostics
	Do I need to configure swap space?

	What is “working set” and how can I estimate it’s size?

	Must my working set size fit RAM?

	How do I calculate how much RAM I need for my application?

	How do I read memory statistics in the UNIX top command

	Sharded Cluster Diagnostics
	In a new sharded cluster, why does all data remains on one shard?

	Why would one shard receive a disproportion amount of traffic in a sharded cluster?

	What can prevent a sharded cluster from balancing?

	Why do chunk migrations affect sharded cluster performance?

This document provides answers to common diagnostic questions and
issues.

If you don’t find the answer you’re looking for, check
the complete list of FAQs or post your question to the
MongoDB User Mailing List [https://groups.google.com/forum/?fromgroups#!forum/mongodb-user].

Where can I find information about a mongod process that stopped running unexpectedly?

If mongod shuts down unexpectedly on a UNIX or UNIX-based
platform, and if mongod fails to log a shutdown or error
message, then check your system logs for messages pertaining to MongoDB.
For example, for logs located in /var/log/messages, use the
following commands:

sudo grep mongod /var/log/messages
sudo grep score /var/log/messages

Does TCP keepalive time affect sharded clusters and replica sets?

If you experience socket errors between members of a sharded cluster
or replica set, that do not have other reasonable causes, check the
TCP keep alive value, which Linux systems store as the
tcp_keepalive_time value. A common keep alive period is 7200
seconds (2 hours); however, different distributions and OS X may have
different settings. For MongoDB, you will have better experiences with
shorter keepalive periods, on the order of 300 seconds (five minutes).

On Linux systems you can use the following operation to check the
value of tcp_keepalive_time:

cat /proc/sys/net/ipv4/tcp_keepalive_time

You can change the tcp_keepalive_time value with the following
operation:

echo 300 > /proc/sys/net/ipv4/tcp_keepalive_time

The new tcp_keepalive_time value takes effect without requiring
you to restart the mongod or mongos
servers. When you reboot or restart your system you will need to set
the new tcp_keepalive_time value, or see your operating system’s
documentation for setting the TCP keepalive value persistently.

For OS X systems, issue the following command to view the keep alive
setting:

sysctl net.inet.tcp.keepinit

To set a shorter keep alive period use the following invocation:

sysctl -w net.inet.tcp.keepinit=300

If your replica set or sharded cluster experiences keepalive-related
issues, you must alter the tcp_keepalive_time value on all machines
hosting MongoDB processes. This includes all machines hosting
mongos or mongod servers.

Windows users should consider the Windows Server Technet Article on
KeepAliveTime configuration [http://technet.microsoft.com/en-us/library/dd349797.aspx#BKMK_2]
for more information on setting keep alive for MongoDB deployments on
Windows systems.

What tools are available for monitoring MongoDB?

The MongoDB Management Services <http://mms.mongodb.com> includes
monitoring. MMS Monitoring is a free, hosted services for monitoring
MongoDB deployments. A full list of third-party tools is available as
part of the Monitoring for MongoDB documentation. Also
consider the MMS Documentation [http://mms.mongodb.com/help/].

Memory Diagnostics

Do I need to configure swap space?

Always configure systems to have swap space. Without swap, your system
may not be reliant in some situations with extreme memory constraints,
memory leaks, or multiple programs using the same memory. Think of
the swap space as something like a steam release valve that allows the
system to release extra pressure without affecting the overall
functioning of the system.

Nevertheless, systems running MongoDB do not need swap for routine
operation. Database files are memory-mapped and should constitute most of your
MongoDB memory use. Therefore, it is unlikely that mongod
will ever use any swap space in normal operation. The operating system
will release memory from the memory mapped files without needing
swap and MongoDB can write data to the data files without needing the swap
system.

What is “working set” and how can I estimate it’s size?

The working set for a MongoDB database is the portion of your data
that clients access most often. You can estimate size of the working
set, using the workingSet document in the output
of serverStatus. To return serverStatus with
the workingSet document, issue a command in the
following form:

db.runCommand({ serverStatus: 1, workingSet: 1 })

Must my working set size fit RAM?

Your working set should stay in memory to achieve good performance.
Otherwise many random disk IO’s will occur, and unless you are using
SSD, this can be quite slow.

One area to watch specifically in managing the size of your working set
is index access patterns. If you are inserting into indexes at random
locations (as would happen with id’s that are randomly
generated by hashes), you will continually be updating the whole index.
If instead you are able to create your id’s in approximately ascending
order (for example, day concatenated with a random id), all the updates
will occur at the right side of the b-tree and the working set size for
index pages will be much smaller.

It is fine if databases and thus virtual size are much larger than RAM.

How do I calculate how much RAM I need for my application?

The amount of RAM you need depends on several factors, including but not
limited to:

	The relationship between database storage and working set.

	The operating system’s cache strategy for LRU (Least Recently Used)

	The impact of journaling

	The number or rate of page faults and other MMS gauges to detect when
you need more RAM

MongoDB defers to the operating system when loading data into memory
from disk. It simply memory maps all
its data files and relies on the operating system to cache data. The OS
typically evicts the least-recently-used data from RAM when it runs low
on memory. For example if clients access indexes more frequently than
documents, then indexes will more likely stay in RAM, but it depends on
your particular usage.

To calculate how much RAM you need, you must calculate your working set
size, or the portion of your data that clients use most often. This
depends on your access patterns, what indexes you have, and the size of
your documents.

If page faults are infrequent, your
working set fits in RAM. If fault rates rise higher than that, you risk
performance degradation. This is less critical with SSD drives than
with spinning disks.

How do I read memory statistics in the UNIX top command

Because mongod uses memory-mapped files, the memory statistics in top
require interpretation in a special way. On a large database, VSIZE
(virtual bytes) tends to be the size of the entire database. If the
mongod doesn’t have other processes running, RSIZE
(resident bytes) is the total memory of the machine, as this counts
file system cache contents.

For Linux systems, use the vmstat command to help determine how
the system uses memory. On OS X systems use vm_stat.

Sharded Cluster Diagnostics

The two most important factors in maintaining a successful sharded cluster are:

	choosing an appropriate shard key and

	sufficient capacity to support current and future operations.

You can prevent most issues encountered with sharding by ensuring that
you choose the best possible shard key for your deployment and
ensure that you are always adding additional capacity to your cluster
well before the current resources become saturated. Continue reading
for specific issues you may encounter in a production environment.

In a new sharded cluster, why does all data remains on one shard?

Your cluster must have sufficient data for sharding to make
sense. Sharding works by migrating chunks between the shards until
each shard has roughly the same number of chunks.

The default chunk size is 64 megabytes. MongoDB will not begin
migrations until the imbalance of chunks in the cluster exceeds the
migration threshold. While the
default chunk size is configurable with the chunkSize
setting, these behaviors help prevent unnecessary chunk migrations,
which can degrade the performance of your cluster as a whole.

If you have just deployed a sharded cluster, make sure that you have
enough data to make sharding effective. If you do not have sufficient
data to create more than eight 64 megabyte chunks, then all data will
remain on one shard. Either lower the chunk size setting, or add more data to the cluster.

As a related problem, the system will split chunks only on
inserts or updates, which means that if you configure sharding and do not
continue to issue insert and update operations, the database will not
create any chunks. You can either wait until your application inserts
data or split chunks manually.

Finally, if your shard key has a low cardinality, MongoDB may not be able to create
sufficient splits among the data.

Why would one shard receive a disproportion amount of traffic in a sharded cluster?

In some situations, a single shard or a subset of the cluster will
receive a disproportionate portion of the traffic and workload. In
almost all cases this is the result of a shard key that does not
effectively allow write scaling.

It’s also possible that you have “hot chunks.” In this case, you may
be able to solve the problem by splitting and then migrating parts of
these chunks.

In the worst case, you may have to consider re-sharding your data
and choosing a different shard key
to correct this pattern.

What can prevent a sharded cluster from balancing?

If you have just deployed your sharded cluster, you may want to
consider the troubleshooting suggestions for a new cluster where
data remains on a single shard.

If the cluster was initially balanced, but later developed an uneven
distribution of data, consider the following possible causes:

	You have deleted or removed a significant amount of data from the
cluster. If you have added additional data, it may have a
different distribution with regards to its shard key.

	Your shard key has low cardinality
and MongoDB cannot split the chunks any further.

	Your data set is growing faster than the balancer can distribute
data around the cluster. This is uncommon and
typically is the result of:
	a balancing window that
is too short, given the rate of data growth.

	an uneven distribution of write operations that requires more data
migration. You may have to choose a different shard key to resolve
this issue.

	poor network connectivity between shards, which may lead to chunk
migrations that take too long to complete. Investigate your
network configuration and interconnections between shards.

Why do chunk migrations affect sharded cluster performance?

If migrations impact your cluster or application’s performance,
consider the following options, depending on the nature of the impact:

	If migrations only interrupt your clusters sporadically, you can
limit the balancing window to prevent balancing activity
during peak hours. Ensure that there is enough time remaining to
keep the data from becoming out of balance again.

	If the balancer is always migrating chunks to the detriment of
overall cluster performance:
	You may want to attempt decreasing the chunk size
to limit the size of the migration.

	Your cluster may be over capacity, and you may want to attempt to
add one or two shards to
the cluster to distribute load.

It’s also possible that your shard key causes your
application to direct all writes to a single shard. This kind of
activity pattern can require the balancer to migrate most data soon after writing
it. Consider redeploying your cluster with a shard key that provides
better write scaling.

Reference

	Operators

	Documentation of query, update, projection, and aggregation framework operators.

	Database Commands

	Documentation of all MongoDB database commands operations, syntax, and use.

	mongo Shell Methods

	Documentation of all JavaScript methods and helpers in the mongo shell.

	MongoDB Package Components

	Documentation of mongod and mongos and all other tools distributed with MongoDB.

	Configuration File Options

	Full documentation of the configuration file and available run-time operations.

	mongod Parameters

	Documentation of all mongod and mongos
parameters that are available in the setParameter
(command) and setParameter run-time interface.

	MongoDB Limits and Thresholds

	A list of important limits and thresholds imposed by MongoDB.

	Connection String URI Format

	The complete specification of the MongoDB connection string format
that the drivers use to describe connections to MongoDB
deployments.

	Glossary

	A glossary of common terms and concepts specific to MongoDB.

See also

The Index may provide useful insight into the
reference material in this manual. The MongoDB CRUD Reference
Data Model Reference, Sharding Reference,
Replication Reference, and Security Reference
contain additional reference material.

	Operators
	Query and Projection Operators
	Comparison Query Operators
	$gt

	$gte

	$in

	$lt

	$lte

	$ne

	$nin

	Logical Query Operators
	$or

	$and

	$not

	$nor

	Element Query Operators
	$exists

	$type

	Evaluation Query Operators
	$mod

	$regex

	$where

	Geospatial Query Operators
	$geoWithin

	$geoIntersects

	$near

	$nearSphere

	$geometry

	$maxDistance

	$center

	$centerSphere

	$box

	$polygon

	$uniqueDocs

	Query Operator Array
	$all

	$elemMatch (query)

	$size

	Projection Operators
	$ (projection)

	$elemMatch (projection)

	$slice (projection)

	Update Operators
	Field Update Operators
	$inc

	$mul

	$rename

	$setOnInsert

	$set

	$unset

	$min

	$max

	$currentDate

	Array Update Operators
	$ (update)

	$addToSet

	$pop

	$pullAll

	$pull

	$pushAll

	$push

	$each

	$slice

	$sort

	$position

	Bitwise Update Operator
	$bit

	Isolation Update Operator
	$isolated

	Aggregation Framework Operators
	Pipeline Aggregation Operators
	$project (aggregation)

	$match (aggregation)

	$limit (aggregation)

	$skip (aggregation)

	$unwind (aggregation)

	$group (aggregation)

	$sort (aggregation)

	$geoNear (aggregation)

	$out (aggregation)

	Group Aggregation Operators
	$addToSet (aggregation)

	$first (aggregation)

	$last (aggregation)

	$max (aggregation)

	$min (aggregation)

	$avg (aggregation)

	$push (aggregation)

	$sum (aggregation)

	Boolean Aggregation Operators
	$and (aggregation)

	$or (aggregation)

	$not (aggregation)

	Comparison Aggregation Operators
	$cmp (aggregation)

	$eq (aggregation)

	$gt (aggregation)

	$gte (aggregation)

	$lt (aggregation)

	$lte (aggregation)

	$ne (aggregation)

	Arithmetic Aggregation Operators
	$add (aggregation)

	$divide (aggregation)

	$mod (aggregation)

	$multiply (aggregation)

	$subtract (aggregation)

	String Aggregation Operators
	$concat (aggregation)

	$strcasecmp (aggregation)

	$substr (aggregation)

	$toLower (aggregation)

	$toUpper (aggregation)

	Array Aggregation Operators
	$size (aggregation)

	Aggregation Projection Expressions
	$map (aggregation)

	$let (aggregation)

	$literal (aggregation)

	Date Aggregation Operators
	$dayOfYear (aggregation)

	$dayOfMonth (aggregation)

	$dayOfWeek (aggregation)

	$year (aggregation)

	$month (aggregation)

	$week (aggregation)

	$hour (aggregation)

	$minute (aggregation)

	$second (aggregation)

	$millisecond (aggregation)

	Conditional Aggregation Operators
	$cond (aggregation)

	$ifNull (aggregation)

	Query Modifiers
	$comment

	$explain

	$hint

	$maxScan

	$maxTimeMS

	$max

	$min

	$orderby

	$returnKey

	$showDiskLoc

	$snapshot

	$query

	$natural

	Database Commands
	Aggregation Commands
	aggregate

	count

	distinct

	group

	mapReduce

	Geospatial Commands
	geoNear

	geoSearch

	geoWalk

	Query and Write Operation Commands
	insert

	update

	delete

	findAndModify

	text

	getLastError

	getPrevError

	resetError

	eval

	Authentication Commands
	logout

	authenticate

	copydbgetnonce

	getnonce

	User Management Commands
	createUser

	updateUser

	dropUser

	dropAllUsersFromDatabase

	grantRolesToUser

	revokeRolesFromUser

	usersInfo

	Role Management Commands
	createRole

	updateRole

	dropRole

	dropAllRolesFromDatabase

	grantPrivilegesToRole

	revokePrivilegesFromRole

	grantRolesToRole

	revokeRolesFromRole

	rolesInfo

	Replication Commands
	replSetFreeze

	replSetGetStatus

	replSetInitiate

	replSetMaintenance

	replSetReconfig

	replSetStepDown

	replSetSyncFrom

	resync

	applyOps

	isMaster

	getoptime

	Sharding Commands
	flushRouterConfig

	addShard

	cleanupOrphaned

	checkShardingIndex

	enableSharding

	listShards

	removeShard

	getShardMap

	getShardVersion

	mergeChunks

	setShardVersion

	shardCollection

	shardingState

	unsetSharding

	split

	splitChunk

	splitVector

	medianKey

	moveChunk

	movePrimary

	isdbgrid

	Administration Commands
	renameCollection

	copydb

	dropDatabase

	drop

	create

	clone

	cloneCollection

	cloneCollectionAsCapped

	closeAllDatabases

	convertToCapped

	filemd5

	dropIndexes

	fsync

	clean

	connPoolSync

	compact

	collMod

	reIndex

	setParameter

	getParameter

	repairDatabase

	touch

	shutdown

	logRotate

	Diagnostic Commands
	listDatabases

	dbHash

	driverOIDTest

	listCommands

	availableQueryOptions

	buildInfo

	collStats

	connPoolStats

	dbStats

	cursorInfo

	dataSize

	diagLogging

	getCmdLineOpts

	netstat

	ping

	profile

	validate

	top

	indexStats

	whatsmyuri

	getLog

	hostInfo

	serverStatus

	features

	isSelf

	Internal Commands
	handshake

	recvChunkAbort

	recvChunkCommit

	recvChunkStart

	recvChunkStatus

	replSetFresh

	mapreduce.shardedfinish

	transferMods

	replSetHeartbeat

	replSetGetRBID

	migrateClone

	replSetElect

	writeBacksQueued

	writebacklisten

	Testing Commands
	testDistLockWithSkew

	testDistLockWithSyncCluster

	captrunc

	emptycapped

	godinsert

	_hashBSONElement

	journalLatencyTest

	sleep

	replSetTest

	forceerror

	skewClockCommand

	configureFailPoint

	System Events Auditing Commands
	logApplicationMessage

	mongo Shell Methods
	Collection Methods
	db.collection.aggregate()

	db.collection.count()

	db.collection.copyTo()

	db.collection.createIndex()

	db.collection.getIndexStats()

	db.collection.indexStats()

	db.collection.dataSize()

	db.collection.distinct()

	db.collection.drop()

	db.collection.dropIndex()

	db.collection.dropIndexes()

	db.collection.ensureIndex()

	db.collection.find()

	db.collection.findAndModify()

	db.collection.findOne()

	db.collection.getIndexes()

	db.collection.getShardDistribution()

	db.collection.getShardVersion()

	db.collection.group()

	db.collection.insert()

	db.collection.isCapped()

	db.collection.mapReduce()

	db.collection.reIndex()

	db.collection.remove()

	db.collection.renameCollection()

	db.collection.save()

	db.collection.stats()

	db.collection.storageSize()

	db.collection.totalSize()

	db.collection.totalIndexSize()

	db.collection.update()

	db.collection.validate()

	Cursor Methods
	cursor.addOption()

	cursor.batchSize()

	cursor.count()

	cursor.explain()

	cursor.forEach()

	cursor.hasNext()

	cursor.hint()

	cursor.limit()

	cursor.map()

	cursor.maxTimeMS()

	cursor.max()

	cursor.min()

	cursor.next()

	cursor.objsLeftInBatch()

	cursor.readPref()

	cursor.showDiskLoc()

	cursor.size()

	cursor.skip()

	cursor.snapshot()

	cursor.sort()

	cursor.toArray()

	Database Methods
	db.addUser()

	db.auth()

	db.changeUserPassword()

	db.cloneCollection()

	db.cloneDatabase()

	db.commandHelp()

	db.copyDatabase()

	db.createCollection()

	db.currentOp()

	db.dropDatabase()

	db.eval()

	db.fsyncLock()

	db.fsyncUnlock()

	db.getCollection()

	db.getCollectionNames()

	db.getLastError()

	db.getLastErrorObj()

	db.getMongo()

	db.getName()

	db.getPrevError()

	db.getProfilingLevel()

	db.getProfilingStatus()

	db.getReplicationInfo()

	db.getSiblingDB()

	db.help()

	db.hostInfo()

	db.isMaster()

	db.killOp()

	db.listCommands()

	db.loadServerScripts()

	db.logout()

	db.printCollectionStats()

	db.printReplicationInfo()

	db.printShardingStatus()

	db.printSlaveReplicationInfo()

	db.removeUser()

	db.repairDatabase()

	db.resetError()

	db.runCommand()

	db.serverBuildInfo()

	db.serverStatus()

	db.setProfilingLevel()

	db.shutdownServer()

	db.stats()

	db.version()

	User Management Methods
	db.createUser()

	Definition

	Considerations

	Required Access

	Example

	db.dropAllUsers()

	db.dropUser()

	db.grantRolesToUser()

	db.revokeRolesFromUser()

	db.getUser()

	db.getUsers()

	Role Management Methods
	db.grantRolesToRole()

	db.revokeRolesFromRole()

	db.getRole()

	db.getRoles()

	Replication Methods
	rs.add()

	rs.addArb()

	rs.conf()

	rs.freeze()

	rs.help()

	rs.initiate()

	rs.printReplicationInfo()

	rs.printSlaveReplicationInfo()

	rs.reconfig()

	rs.remove()

	rs.slaveOk()

	rs.status()

	rs.stepDown()

	rs.syncFrom()

	Sharding Methods
	sh._adminCommand()

	sh._checkFullName()

	sh._checkMongos()

	sh._lastMigration()

	sh.addShard()

	sh.addShardTag()

	sh.addTagRange()

	sh.disableBalancing()

	sh.enableBalancing()

	sh.enableSharding()

	sh.getBalancerHost()

	sh.getBalancerState()

	sh.help()

	sh.isBalancerRunning()

	sh.moveChunk()

	sh.removeShardTag()

	sh.setBalancerState()

	sh.shardCollection()

	sh.splitAt()

	sh.splitFind()

	sh.startBalancer()

	sh.status()

	sh.stopBalancer()

	sh.waitForBalancer()

	sh.waitForBalancerOff()

	sh.waitForDLock()

	sh.waitForPingChange()

	Subprocess Methods
	clearRawMongoProgramOutput()

	rawMongoProgramOutput()

	run()

	runMongoProgram()

	runProgram()

	startMongoProgram()

	stopMongoProgram()

	stopMongoProgramByPid()

	stopMongod()

	waitMongoProgramOnPort()

	waitProgram()

	Object Constructors and Methods
	Date()

	UUID()

	ObjectId.getTimestamp()

	ObjectId.toString()

	ObjectId.valueOf()

	Connection Methods
	Mongo.getDB()

	Mongo.getReadPrefMode()

	Mongo.getReadPrefTagSet()

	Mongo.setReadPref()

	mongo.setSlaveOk()

	Mongo()

	connect()

	Native Methods
	cat()

	version()

	cd()

	copyDbpath()

	resetDbpath()

	fuzzFile()

	getHostName()

	getMemInfo()

	hostname()

	_isWindows()

	listFiles()

	load()

	ls()

	md5sumFile()

	mkdir()

	pwd()

	quit()

	rand()

	removeFile()

	_srand()

	MongoDB Package Components
	mongod

	mongos

	mongo

	mongod.exe

	mongos.exe

	mongodump

	mongorestore

	bsondump

	mongooplog

	mongoimport

	mongoexport

	mongostat

	mongotop

	mongosniff

	mongoperf

	mongofiles

	Configuration File Options

	mongod Parameters

	MongoDB Limits and Thresholds

	Connection String URI Format

	Glossary

Operators

	Query and Projection Operators

	Query operators provide ways to locate data within the database and
projection operators modify how data is presented.

	Update Operators

	Update operators are operators that enable you to modify the data in
your database or add additional data.

	Aggregation Framework Operators

	Aggregation pipeline operations have a collection of operators
available to define and manipulate documents in pipeline stages.

	Query Modifiers

	Query modifiers determine the way that queries will be executed.

	Query and Projection Operators
	Comparison Query Operators
	$gt

	$gte

	$in

	$lt

	$lte

	$ne

	$nin

	Logical Query Operators
	$or

	$and

	$not

	$nor

	Element Query Operators
	$exists

	$type

	Evaluation Query Operators
	$mod

	$regex

	$where

	Geospatial Query Operators
	$geoWithin

	$geoIntersects

	$near

	$nearSphere

	$geometry

	$maxDistance

	$center

	$centerSphere

	$box

	$polygon

	$uniqueDocs

	Query Operator Array
	$all

	$elemMatch (query)

	$size

	Projection Operators
	$ (projection)

	$elemMatch (projection)

	$slice (projection)

	Update Operators
	Field Update Operators
	$inc

	$mul

	$rename

	$setOnInsert

	$set

	$unset

	$min

	$max

	$currentDate

	Array Update Operators
	$ (update)

	$addToSet

	$pop

	$pullAll

	$pull

	$pushAll

	$push

	$each

	$slice

	$sort

	$position

	Bitwise Update Operator
	$bit

	Isolation Update Operator
	$isolated

	Aggregation Framework Operators
	Pipeline Aggregation Operators
	$project (aggregation)

	$match (aggregation)

	$limit (aggregation)

	$skip (aggregation)

	$unwind (aggregation)

	$group (aggregation)

	$sort (aggregation)

	$geoNear (aggregation)

	$out (aggregation)

	Group Aggregation Operators
	$addToSet (aggregation)

	$first (aggregation)

	$last (aggregation)

	$max (aggregation)

	$min (aggregation)

	$avg (aggregation)

	$push (aggregation)

	$sum (aggregation)

	Boolean Aggregation Operators
	$and (aggregation)

	$or (aggregation)

	$not (aggregation)

	Comparison Aggregation Operators
	$cmp (aggregation)

	$eq (aggregation)

	$gt (aggregation)

	$gte (aggregation)

	$lt (aggregation)

	$lte (aggregation)

	$ne (aggregation)

	Arithmetic Aggregation Operators
	$add (aggregation)

	$divide (aggregation)

	$mod (aggregation)

	$multiply (aggregation)

	$subtract (aggregation)

	String Aggregation Operators
	$concat (aggregation)

	$strcasecmp (aggregation)

	$substr (aggregation)

	$toLower (aggregation)

	$toUpper (aggregation)

	Array Aggregation Operators
	$size (aggregation)

	Aggregation Projection Expressions
	$map (aggregation)

	$let (aggregation)

	$literal (aggregation)

	Date Aggregation Operators
	$dayOfYear (aggregation)

	$dayOfMonth (aggregation)

	$dayOfWeek (aggregation)

	$year (aggregation)

	$month (aggregation)

	$week (aggregation)

	$hour (aggregation)

	$minute (aggregation)

	$second (aggregation)

	$millisecond (aggregation)

	Conditional Aggregation Operators
	$cond (aggregation)

	$ifNull (aggregation)

	Query Modifiers
	$comment

	$explain

	$hint

	$maxScan

	$maxTimeMS

	$max

	$min

	$orderby

	$returnKey

	$showDiskLoc

	$snapshot

	$query

	$natural

Query and Projection Operators

	Query Selectors
	Comparison

	Logical

	Element

	Evaluation

	Geospatial

	Array

	Projection Operators

Query Selectors

Comparison

	Comparison Query Operators
	$gt

	$gte

	$in

	$lt

	$lte

	$ne

	$nin

Logical

	Logical Query Operators
	$or

	$and

	$not

	$nor

Element

	Element Query Operators
	$exists

	$type

Evaluation

	Evaluation Query Operators
	$mod

	$regex

	$where

Geospatial

	Geospatial Query Operators
	$geoWithin

	$geoIntersects

	$near

	$nearSphere

	$geometry

	$maxDistance

	$center

	$centerSphere

	$box

	$polygon

	$uniqueDocs

Array

	Query Operator Array
	$all

	$elemMatch (query)

	$size

Projection Operators

	Projection Operators
	$ (projection)

	$elemMatch (projection)

	$slice (projection)

Comparison Query Operators

	Name
	Description

	$gt
	Matches values that are greater than the value specified in the query.

	$gte
	Matches values that are equal to or greater than the value specified in the query.

	$in
	Matches any of the values that exist in an array specified in the query.

	$lt
	Matches values that are less than the value specified in the query.

	$lte
	Matches values that are less than or equal to the value specified in the query.

	$ne
	Matches all values that are not equal to the value specified in the query.

	$nin
	Matches values that do not exist in an array specified to the query.

	$gt

	$gte

	$in

	$lt

	$lte

	$ne

	$nin

Logical Query Operators

	Name
	Description

	$or
	Joins query clauses with a logical OR returns all documents that match the conditions of either clause.

	$and
	Joins query clauses with a logical AND returns all documents that match the conditions of both clauses.

	$not
	Inverts the effect of a query expression and returns documents that do not match the query expression.

	$nor
	Joins query clauses with a logical NOR returns all documents that fail to match both clauses.

	$or

	$and

	$not

	$nor

Element Query Operators

	Name
	Description

	$exists
	Matches documents that have the specified field.

	$type
	Selects documents if a field is of the specified type.

	$exists

	$type

Evaluation Query Operators

	Name
	Description

	$mod
	Performs a modulo operation on the value of a field and selects documents with a specified result.

	$regex
	Selects documents where values match a specified regular expression.

	$where
	Matches documents that satisfy a JavaScript expression.

	$mod

	$regex

	$where

Geospatial Query Operators

Operators

Query Selectors

	Name
	Description

	$geoWithin
	Selects geometries within a bounding GeoJSON geometry.

	$geoIntersects
	Selects geometries that intersect with a GeoJSON geometry.

	$near
	Returns geospatial objects in proximity to a point.

	$nearSphere
	Returns geospatial objects in proximity to a point on a sphere.

	$geoWithin

	$geoIntersects

	$near

	$nearSphere

Geometry Specifiers

	Name
	Description

	$geometry
	Specifies a geometry in GeoJSON format to geospatial query operators.

	$maxDistance
	Specifies a distance to limit the results of $near and $nearSphere queries.

	$center
	Specifies a circle using legacy coordinate pairs to $geoWithin queries when using planar geometry.

	$centerSphere
	Specifies a circle using either legacy coordinate pairs or GeoJSON format for $geoWithin queries when using spherical geometry.

	$box
	Specifies a rectangular box using legacy coordinate pairs for $geoWithin queries.

	$polygon
	Specifies a polygon to using legacy coordinate pairs for $geoWithin queries.

	$uniqueDocs
	Modifies a $geoWithin and $near queries to ensure that even if a document matches the query multiple times, the query returns the document once.

	$geometry

	$maxDistance

	$center

	$centerSphere

	$box

	$polygon

	$uniqueDocs

Geospatial Query Compatibility

While numerous combinations of query operators are possible, the
following table shows the recommended operators for different types of
queries. The table uses the $geoWithin,
$geoIntersects and $near operators.

	Query Document
	Geometry of the Query Condition
	Surface Type for Query Calculation
	Units for Query Calculation
	Supported by this Index

	Returns points, lines and polygons
	
	
	
	

	{ $geoWithin : {
 $geometry : <GeoJSON Polygon>
} }

	polygon
	sphere
	meters
	2dsphere

	{ $geoIntersects : {
 $geometry : <GeoJSON>
} }

	point, line or polygon
	sphere
	meters
	2dsphere

	{ $near : {
 $geometry : <GeoJSON Point>,
 $maxDistance : d
} }

	point
	sphere
	meters
	2dsphere

The index is required.

	Returns points only
	
	
	
	

	{ $geoWithin : {
 $box : [[x1, y1], [x2, y2]]
} }

	rectangle
	flat
	flat units
	2d

	{ $geoWithin : {
 $polygon : [[x1, y1],
 [x1, y2],
 [x2, y2],
 [x2, y1]]
} }

	polygon
	flat
	flat units
	2d

	{ $geoWithin : {
 $center : [[x1, y1], r],
} }

	circular region
	flat
	flat units
	2d

	{ $geoWithin : {
 $centerSphere :
 [[x, y], radius]
} }

	circular region
	sphere
	radians
	2d

2dsphere

	{ $near : [x1, y1],
 $maxDistance : d
}

	point
	flat / flat units
	flat units
	2d

The index is required.

Query Operator Array

	Name
	Description

	$all
	Matches arrays that contain all elements specified in the query.

	$elemMatch
	Selects documents if element in the array field matches all the specified $elemMatch condition.

	$size
	Selects documents if the array field is a specified size.

	$all

	$elemMatch (query)

	$size

Projection Operators

	Name
	Description

	$
	Projects the first element in an array that matches the query condition.

	$elemMatch
	Projects only the first element from an array that matches the specified $elemMatch condition.

	$slice
	Limits the number of elements projected from an array. Supports skip and limit slices.

	$ (projection)

	$elemMatch (projection)

	$slice (projection)

Update Operators

Update Operators

Fields

	Field Update Operators
	$inc

	$mul

	$rename

	$setOnInsert

	$set

	$unset

	$min

	$max

	$currentDate

Array

	Array Update Operators
	$ (update)

	$addToSet

	$pop

	$pullAll

	$pull

	$pushAll

	$push

	$each

	$slice

	$sort

	$position

Bitwise

	Bitwise Update Operator
	$bit

Isolation

	Isolation Update Operator
	$isolated

Field Update Operators

	Name
	Description

	$inc
	Increments the value of the field by the specified amount.

	$mul
	Multiplies the value of the field by the specified amount.

	$rename
	Renames a field.

	$setOnInsert
	Sets the value of a field upon documentation creation during an upsert. Has no effect on update operations that modify existing documents.

	$set
	Sets the value of a field in an existing document.

	$unset
	Removes the specified field from an existing document.

	$min
	Only updates if the existing field value is less than the specified value.

	$max
	Only updates if the existing field value is greater than the specified value.

	$currentDate
	Sets the value of a field to current date, either as a Date or a Timestamp.

	$inc

	$mul

	$rename

	$setOnInsert

	$set

	$unset

	$min

	$max

	$currentDate

Array Update Operators

Update Operators

	Name
	Description

	$
	Acts as a placeholder to update the first element that matches the query condition in an update.

	$addToSet
	Adds elements to an existing array only if they do not already exist in the set.

	$pop
	Removes the first or last item of an array.

	$pullAll
	Removes multiple values from an array.

	$pull
	Removes items from an array that match a query statement.

	$pushAll
	Deprecated. Adds several items to an array.

	$push
	Adds an item to an array.

	$ (update)

	$addToSet

	$pop

	$pullAll

	$pull

	$pushAll

	$push

Update Operator Modifiers

	Name
	Description

	$each
	Modifies the $push and $addToSet operators to append multiple items for array updates.

	$slice
	Modifies the $push operator to limit the size of updated arrays.

	$sort
	Modifies the $push operator to reorder documents stored in an array.

	$position
	Modifies the $push operator to specify the position in the array to add elements.

	$each

	$slice

	$sort

	$position

Bitwise Update Operator

	Name
	Description

	$bit
	Performs bitwise AND, OR, and XOR updates of integer values.

	$bit

Isolation Update Operator

	Name
	Description

	$isolated
	Modifies behavior of multi-updates to improve the isolation of the operation.

	$isolated

Aggregation Framework Operators

New in version 2.2.

Pipeline Operators

Warning

The pipeline cannot operate on values of the following types:
Binary, Symbol, MinKey, MaxKey, DBRef,
Code, and CodeWScope.

Pipeline operators appear in an array. Documents pass through the
operators in a sequence.

	Name
	Description

	$project
	Reshapes a document stream. $project can rename, add, or remove fields as well as create computed values and sub-documents.

	$match
	Filters the document stream, and only allows matching documents to pass into the next pipeline stage. $match uses standard MongoDB queries.

	$limit
	Restricts the number of documents in an aggregation pipeline.

	$skip
	Skips over a specified number of documents from the pipeline and returns the rest.

	$unwind
	Takes an array of documents and returns them as a stream of documents.

	$group
	Groups documents together for the purpose of calculating aggregate values based on a collection of documents.

	$sort
	Takes all input documents and returns them in a stream of sorted documents.

	$geoNear
	Returns an ordered stream of documents based on proximity to a geospatial point.

	$out
	Writes documents from the pipeline to a collection. The $out operator must be the last stage in the pipeline.

	Pipeline Aggregation Operators
	$project (aggregation)

	$match (aggregation)

	$limit (aggregation)

	$skip (aggregation)

	$unwind (aggregation)

	$group (aggregation)

	$sort (aggregation)

	$geoNear (aggregation)

	$out (aggregation)

Expression Operators

Expression operators calculate values within the
Pipeline Operators.

$group Operators

	Group Aggregation Operators
	$addToSet (aggregation)

	$first (aggregation)

	$last (aggregation)

	$max (aggregation)

	$min (aggregation)

	$avg (aggregation)

	$push (aggregation)

	$sum (aggregation)

Boolean Operators

These operators accept Booleans as arguments and return Booleans as
results.

The operators convert non-Booleans to Boolean values according to the
BSON standards. Here, null, undefined, and 0 values become
false, while non-zero numeric values, and all other types, such as
strings, dates, objects become true.

	Boolean Aggregation Operators
	$and (aggregation)

	$or (aggregation)

	$not (aggregation)

Comparison Operators

These operators perform comparisons between two values and return a
Boolean, in most cases reflecting the result of the comparison.

All comparison operators take an array with a pair of values. You may
compare numbers, strings, and dates. Except for $cmp,
all comparison operators return a Boolean value. $cmp
returns an integer.

	Comparison Aggregation Operators
	$cmp (aggregation)

	$eq (aggregation)

	$gt (aggregation)

	$gte (aggregation)

	$lt (aggregation)

	$lte (aggregation)

	$ne (aggregation)

Arithmetic Operators

Arithmetic operators support only numbers.

	Arithmetic Aggregation Operators
	$add (aggregation)

	$divide (aggregation)

	$mod (aggregation)

	$multiply (aggregation)

	$subtract (aggregation)

String Operators

String operators that manipulate strings.

	String Aggregation Operators
	$concat (aggregation)

	$strcasecmp (aggregation)

	$substr (aggregation)

	$toLower (aggregation)

	$toUpper (aggregation)

Array Operators

Operators that manipulate arrays.

	Array Aggregation Operators
	$size (aggregation)

Projection Expressions

Operators that increase the flexibility within aggregation projection
and projection-like expressions. These operators are available in the
$project, $group, and $redact
pipeline stages.

	Aggregation Projection Expressions
	$map (aggregation)

	$let (aggregation)

	$literal (aggregation)

Date Operators

Date operators take a “Date” typed value as a single argument and return
a number.

	Date Aggregation Operators
	$dayOfYear (aggregation)

	$dayOfMonth (aggregation)

	$dayOfWeek (aggregation)

	$year (aggregation)

	$month (aggregation)

	$week (aggregation)

	$hour (aggregation)

	$minute (aggregation)

	$second (aggregation)

	$millisecond (aggregation)

Conditional Expressions

	Conditional Aggregation Operators
	$cond (aggregation)

	$ifNull (aggregation)

Pipeline Aggregation Operators

	Name
	Description

	$project
	Reshapes a document stream. $project can rename, add, or remove fields as well as create computed values and sub-documents.

	$match
	Filters the document stream, and only allows matching documents to pass into the next pipeline stage. $match uses standard MongoDB queries.

	$limit
	Restricts the number of documents in an aggregation pipeline.

	$skip
	Skips over a specified number of documents from the pipeline and returns the rest.

	$unwind
	Takes an array of documents and returns them as a stream of documents.

	$group
	Groups documents together for the purpose of calculating aggregate values based on a collection of documents.

	$sort
	Takes all input documents and returns them in a stream of sorted documents.

	$geoNear
	Returns an ordered stream of documents based on proximity to a geospatial point.

	$out
	Writes documents from the pipeline to a collection. The $out operator must be the last stage in the pipeline.

	$project (aggregation)

	$match (aggregation)

	$limit (aggregation)

	$skip (aggregation)

	$unwind (aggregation)

	$group (aggregation)

	$sort (aggregation)

	$geoNear (aggregation)

	$out (aggregation)

$skip (aggregation)

	
$skip

	Skips over the specified number of documents
that pass through the $skip in the pipeline
before passing all of the remaining input.

$skip takes a single numeric (positive whole number)
value as a parameter. Once the operation has skipped the specified
number of documents, it passes all the remaining documents along the
pipeline without alteration. Consider the following
example:

db.article.aggregate(
 { $skip : 5 }
);

This operation skips the first 5 documents passed to it by the
pipeline. $skip has no effect on the content of the
documents it passes along the pipeline.

$unwind (aggregation)

	
$unwind

	Peels off the elements of an array individually, and returns a
stream of documents. $unwind returns one document for
every member of the unwound array within every source
document. Take the following aggregation command:

db.article.aggregate(
 { $project : {
 author : 1 ,
 title : 1 ,
 tags : 1
 }},
 { $unwind : "$tags" }
);

Note

The dollar sign (i.e. $) must precede the field
specification handed to the $unwind operator.

In the above aggregation $project selects
(inclusively) the author, title, and tags fields, as
well as the _id field implicitly. Then the pipeline passes the
results of the projection to the $unwind operator,
which will unwind the tags field. This operation may return
a sequence of documents that resemble the following for a
collection that contains one document holding a tags field
with an array of 3 items.

{
 "result" : [
 {
 "_id" : ObjectId("4e6e4ef557b77501a49233f6"),
 "title" : "this is my title",
 "author" : "bob",
 "tags" : "fun"
 },
 {
 "_id" : ObjectId("4e6e4ef557b77501a49233f6"),
 "title" : "this is my title",
 "author" : "bob",
 "tags" : "good"
 },
 {
 "_id" : ObjectId("4e6e4ef557b77501a49233f6"),
 "title" : "this is my title",
 "author" : "bob",
 "tags" : "fun"
 }
],
 "OK" : 1
}

A single document becomes 3 documents: each document is identical
except for the value of the tags field. Each value of tags
is one of the values in the original “tags” array.

Note

$unwind has the following behaviors:

	$unwind is most useful in combination
with $group.

	You may undo the effects of unwind operation with the
$group pipeline operator.

	If you specify a target field for $unwind that
does not exist in an input document, the pipeline ignores the
input document, and will generate no result documents.

	If you specify a target field for $unwind that is
not an array, db.collection.aggregate() generates an error.

	If you specify a target field for $unwind that
holds an empty array ([]) in an input document, the
pipeline ignores the input document, and will generates no
result documents.

Group Aggregation Operators

	Name
	Description

	$addToSet
	Returns an array of all the unique values for the selected field among for each document in that group.

	$first
	Returns the first value in a group.

	$last
	Returns the last value in a group.

	$max
	Returns the highest value in a group.

	$min
	Returns the lowest value in a group.

	$avg
	Returns an average of all the values in a group.

	$push
	Returns an array of all values for the selected field among for each document in that group.

	$sum
	Returns the sum of all the values in a group.

	$addToSet (aggregation)

	$first (aggregation)

	$last (aggregation)

	$max (aggregation)

	$min (aggregation)

	$avg (aggregation)

	$push (aggregation)

	$sum (aggregation)

$min (aggregation)

	
$min

	The $min operator returns the lowest non-null value of a
field in the documents for a $group operation.

Changed in version 2.4: If some, but not all, documents for the $min
operation have either a null value for the field or are
missing the field, the $min operator only considers the
non-null and the non-missing values for the field. If all
documents for the $min operation have null value for
the field or are missing the field, the $min operator
returns null for the minimum value.

Before 2.4, if any of the documents for the $min
operation were missing the field, the $min operator
would not return any value. If any of the documents for the
$min had the value null, the $min operator
would return a null.

Example

The users collection contains the following documents:

{ "_id" : "abc001", "age" : 25 }
{ "_id" : "abe001", "age" : 35 }
{ "_id" : "efg001", "age" : 20 }
{ "_id" : "xyz001", "age" : 15 }

	To find the minimum value of the age field from all the
documents, use the $min operator:

db.users.aggregate([{ $group: { _id:0, minAge: { $min: "$age"} } }])

The operation returns the value of the age field in the
minAge field:

{ "result" : [{ "_id" : 0, "minAge" : 15 }], "ok" : 1 }

	To find the minimum value of the age field for only those
documents with _id starting with the letter a, use the
$min operator after a $match operation:

db.users.aggregate([{ $match: { _id: /^a/ } },
 { $group: { _id: 0, minAge: { $min: "$age"} } }
])

The operation returns the minimum value of the age field
for the two documents with _id starting with the letter
a:

{ "result" : [{ "_id" : 0, "minAge" : 25 }], "ok" : 1 }

Example

The users collection contains the following documents where
some of the documents are either missing the age field or the
age field contains null:

{ "_id" : "abc001", "age" : 25 }
{ "_id" : "abe001", "age" : 35 }
{ "_id" : "efg001", "age" : 20 }
{ "_id" : "xyz001", "age" : 15 }
{ "_id" : "xxx001" }
{ "_id" : "zzz001", "age" : null }

	The following operation finds the minimum value of the age
field in all the documents:

db.users.aggregate([{ $group: { _id:0, minAge: { $min: "$age"} } }])

Because only some documents for the $min operation are
missing the age field or have age field equal to
null, $min only considers the non-null and the
non-missing values and the operation returns the following
document:

{ "result" : [{ "_id" : 0, "minAge" : 15 }], "ok" : 1 }

	The following operation finds the minimum value of the age
field for only those documents where the _id equals
"xxx001" or "zzz001":

db.users.aggregate([{ $match: { _id: {$in: ["xxx001", "zzz001"] } } },
 { $group: { _id: 0, minAge: { $min: "$age"} } }
])

The $min operation returns null for the minimum
age since all documents for the $min operation
have null value for the field age or are missing the
field:

{ "result" : [{ "_id" : 0, "minAge" : null }], "ok" : 1 }

$avg (aggregation)

	
$avg

	Returns the average of all the values of the field in all documents
selected by this group.

Boolean Aggregation Operators

	Name
	Description

	$and
	Returns true only when all values in its input array are true.

	$or
	Returns true when any value in its input array are true.

	$not
	Returns the boolean value that is the opposite of the input value.

	$and (aggregation)

	$or (aggregation)

	$not (aggregation)

$and (aggregation)

	
$and

	Takes an array one or more values and returns true if all of
the values in the array are true. Otherwise $and
returns false.

Note

$and uses short-circuit logic: the operation
stops evaluation after encountering the first false
expression.

$not (aggregation)

	
$not

	Returns the boolean opposite value passed to it. When passed a
true value, $not returns false; when passed
a false value, $not returns true.

Comparison Aggregation Operators

	Name
	Description

	$cmp
	Compares two values and returns the result of the comparison as an integer.

	$eq
	Takes two values and returns true if the values are equivalent.

	$gt
	Takes two values and returns true if the first is larger than the second.

	$gte
	Takes two values and returns true if the first is larger than or equal to the second.

	$lt
	Takes two values and returns true if the second value is larger than the first.

	$lte
	Takes two values and returns true if the second value is larger than or equal to the first.

	$ne
	Takes two values and returns true if the values are not equivalent.

	$cmp (aggregation)

	$eq (aggregation)

	$gt (aggregation)

	$gte (aggregation)

	$lt (aggregation)

	$lte (aggregation)

	$ne (aggregation)

$eq (aggregation)

	
$eq

	Takes two values in an array and returns a boolean. The returned
value is:

	true when the values are equivalent.

	false when the values are not equivalent.

$lt (aggregation)

	
$lt

	Takes two values in an array and returns a boolean. The returned
value is:

	true when the first value is less than the second value.

	false when the first value is greater than or equal to the
second value.

$lte (aggregation)

	
$lte

	Takes two values in an array and returns a boolean. The returned
value is:

	true when the first value is less than or equal to the
second value.

	false when the first value is greater than the second
value.

Arithmetic Aggregation Operators

	Name
	Description

	$add
	Computes the sum of an array of numbers.

	$divide
	Takes two numbers and divides the first number by the second.

	$mod
	Takes two numbers and calculates the modulo of the first number divided by the second.

	$multiply
	Computes the product of an array of numbers.

	$subtract
	Takes two numbers and subtracts the second number from the first.

	$add (aggregation)

	$divide (aggregation)

	$mod (aggregation)

	$multiply (aggregation)

	$subtract (aggregation)

$add (aggregation)

	
$add

	Takes an array of one or more numbers and adds them together,
returning the sum.

$divide (aggregation)

	
$divide

	Takes an array that contains a pair of numbers and returns the
value of the first number divided by the second number.

$multiply (aggregation)

	
$multiply

	Takes an array of one or more numbers and multiples them, returning the
resulting product.

$subtract (aggregation)

	
$subtract

	Takes an array that contains a pair of numbers and subtracts the
second from the first, returning their difference.

String Aggregation Operators

	Name
	Description

	$concat
	Concatenates two strings.

	$strcasecmp
	Compares two strings and returns an integer that reflects the comparison.

	$substr
	Takes a string and returns portion of that string.

	$toLower
	Converts a string to lowercase.

	$toUpper
	Converts a string to uppercase.

	$concat (aggregation)

	$strcasecmp (aggregation)

	$substr (aggregation)

	$toLower (aggregation)

	$toUpper (aggregation)

$concat (aggregation)

	
$concat

	
New in version 2.4.

Takes an array of strings, concatenates the strings, and returns the
concatenated string. $concat can only accept an array
of strings.

Use $concat with the following syntax:

{ $concat: [<string>, <string>, ...] }

If array element has a value of null or refers to a field that
is missing, $concat will return null.

Example

Project new concatenated values.

A collection menu contains the documents that stores
information on menu items separately in the section, the
category and the type fields, as in the following:

{ _id: 1, item: { sec: "dessert", category: "pie", type: "apple" } }
{ _id: 2, item: { sec: "dessert", category: "pie", type: "cherry" } }
{ _id: 3, item: { sec: "main", category: "pie", type: "shepherd's" } }
{ _id: 4, item: { sec: "main", category: "pie", type: "chicken pot" } }

The following operation uses $concat to concatenate
the type field from the sub-document item, a space,
and the category field from the sub-document item to
project a new food field:

db.menu.aggregate({ $project: { food:
 { $concat: ["$item.type",
 " ",
 "$item.category"
]
 }
 }
 }
)

The operation returns the following result set where the food
field contains the concatenated strings:

{
 "result" : [
 { "_id" : 1, "food" : "apple pie" },
 { "_id" : 2, "food" : "cherry pie" },
 { "_id" : 3, "food" : "shepherd's pie" },
 { "_id" : 4, "food" : "chicken pot pie" }
],
 "ok" : 1
}

Example

Group by a concatenated string.

A collection menu contains the documents that stores
information on menu items separately in the section, the
category and the type fields, as in the following:

{ _id: 1, item: { sec: "dessert", category: "pie", type: "apple" } }
{ _id: 2, item: { sec: "dessert", category: "pie", type: "cherry" } }
{ _id: 3, item: { sec: "main", category: "pie", type: "shepherd's" } }
{ _id: 4, item: { sec: "main", category: "pie", type: "chicken pot" } }

The following aggregation uses $concat to
concatenate the sec field from the sub-document item, the
string ": ", and the category field from the sub-document
item to group by the new concatenated string and perform a
count:

db.menu.aggregate({ $group: { _id:
 { $concat: ["$item.sec",
 ": ",
 "$item.category"
]
 },
 count: { $sum: 1 }
 }
 }
)

The aggregation returns the following document:

{
 "result" : [
 { "_id" : "main: pie", "count" : 2 },
 { "_id" : "dessert: pie", "count" : 2 }
],
 "ok" : 1
}

Example

Concatenate null or missing values.

A collection menu contains the documents that stores
information on menu items separately in the section, the
category and the type fields. Not all documents have the
all three fields. For example, the document with _id equal to
5 is missing the category field:

{ _id: 1, item: { sec: "dessert", category: "pie", type: "apple" } }
{ _id: 2, item: { sec: "dessert", category: "pie", type: "cherry" } }
{ _id: 3, item: { sec: "main", category: "pie", type: "shepherd's" } }
{ _id: 4, item: { sec: "main", category: "pie", type: "chicken pot" } }
{ _id: 5, item: { sec: "beverage", type: "coffee" } }

The following aggregation uses the $concat to
concatenate the type field from the sub-document item, a
space, and the category field from the sub-document item:

db.menu.aggregate({ $project: { food:
 { $concat: ["$item.type",
 " ",
 "$item.category"
]
 }
 }
 }
)

Because the document with _id equal to 5 is missing the
type field in the item sub-document,
$concat returns the value null as the
concatenated value for the document:

{
 "result" : [
 { "_id" : 1, "food" : "apple pie" },
 { "_id" : 2, "food" : "cherry pie" },
 { "_id" : 3, "food" : "shepherd's pie" },
 { "_id" : 4, "food" : "chicken pot pie" },
 { "_id" : 5, "food" : null }
],
 "ok" : 1
}

To handle possible missing fields, you can use
$ifNull with $concat, as in the
following example which substitutes <unknown type> if the
field type is null or missing, and <unknown category>
if the field category is null or is missing:

db.menu.aggregate({ $project: { food:
 { $concat: [{ $ifNull: ["$item.type", "<unknown type>"] },
 " ",
 { $ifNull: ["$item.category", "<unknown category>"] }
]
 }
 }
 }
)

The aggregation returns the following result set:

{
 "result" : [
 { "_id" : 1, "food" : "apple pie" },
 { "_id" : 2, "food" : "cherry pie" },
 { "_id" : 3, "food" : "shepherd's pie" },
 { "_id" : 4, "food" : "chicken pot pie" },
 { "_id" : 5, "food" : "coffee <unknown category>" }
],
 "ok" : 1
}

$substr (aggregation)

	
$substr

	$substr takes a string and two numbers. The first
number represents the number of bytes in the string to skip,
and the second number specifies the number of bytes to return
from the string.

Note

$substr is not encoding aware and if used
improperly may produce a result string containing an invalid UTF-8
character sequence.

$toLower (aggregation)

	
$toLower

	Takes a single string and converts that string to lowercase,
returning the result. All uppercase letters become lowercase.

Note

$toLower may not make sense when applied to glyphs outside
the Roman alphabet.

Array Aggregation Operators

	Name
	Description

	$size
	Returns the size of the array.

	$size (aggregation)

$size (aggregation)

New in version 2.5.3.

Definition

	
$size

	Counts and returns the total the number of items in an array.
Consider the following syntax:

{ <field>: { $size: <array> } }

 Aggregation Projection Expressions

Aggregation Projection Expressions

	Name
	Description

	$map
	Applies a sub-expression to each item in an array and returns the result of the sub-expression.

	$let
	Defines variables for use within the scope of an aggregation expression.

	$literal
	Forces the aggregation pipeline to return a literal value without evaluating the expression.

	$map (aggregation)

	$let (aggregation)

	$literal (aggregation)

 $let (aggregation)

$let (aggregation)

Definition

	
$let

	$let binds variables for use in sub-expressions.

$let is available in the $project,
$group, and $redact pipeline stages.

Example

Consider the following $project pipeline stage:

{ $project: { remaining: { $let: {
 vars: { tally: 75, count: 50 },
 in: { $subtract: ["$$tally", "$$count"] }
 }
 }
 }
}

Would return a document with the following content:

{ remaining: 25 }

 $literal (aggregation)

$literal (aggregation)

Definition

	
$literal

	Wraps an expression to prevent the aggregation pipeline from
interpreting an object directly.

For example, use $literal with $project
statements to project fields with dollar signs (e.g.``$``) in
their values.

Example

Consider the following example to use the aggregation framework to
interact with a string that contains a dollar sign:

db.runCommand({ aggregate: "records",
 pipeline: [{ $project: { costsOneDollar:
 { $eq: ["$price", { $literal: "$1.00" }] } }
 }] })

This operation projects documents with a field named``costsOneDollar``
that holds a boolean value if the value of the field is the string
$1.00.

 Date Aggregation Operators

Date Aggregation Operators

	Name
	Description

	$dayOfYear
	Converts a date to a number between 1 and 366.

	$dayOfMonth
	Converts a date to a number between 1 and 31.

	$dayOfWeek
	Converts a date to a number between 1 and 7.

	$year
	Converts a date to the full year.

	$month
	Converts a date into a number between 1 and 12.

	$week
	Converts a date into a number between 0 and 53

	$hour
	Converts a date into a number between 0 and 23.

	$minute
	Converts a date into a number between 0 and 59.

	$second
	Converts a date into a number between 0 and 59. May be 60 to account for leap seconds.

	$millisecond
	Returns the millisecond portion of a date as an integer between 0 and 999.

	$dayOfYear (aggregation)

	$dayOfMonth (aggregation)

	$dayOfWeek (aggregation)

	$year (aggregation)

	$month (aggregation)

	$week (aggregation)

	$hour (aggregation)

	$minute (aggregation)

	$second (aggregation)

	$millisecond (aggregation)

 $dayOfWeek (aggregation)

$dayOfWeek (aggregation)

	
$dayOfWeek

	Takes a date and returns the day of the week as a number
between 1 (Sunday) and 7 (Saturday.)

 $hour (aggregation)

$hour (aggregation)

	
$hour

	Takes a date and returns the hour between 0 and 23.

 $minute (aggregation)

$minute (aggregation)

	
$minute

	Takes a date and returns the minute between 0 and 59.

 $millisecond (aggregation)

$millisecond (aggregation)

	
$millisecond

	Takes a date and returns the millisecond portion of the date as an
integer between 0 and 999.

 Conditional Aggregation Operators

Conditional Aggregation Operators

	Name
	Description

	$cond
	A ternary operator that evaluates one expression, and depending on the result returns the value of one following expressions.

	$ifNull
	Evaluates an expression and returns a value.

	$cond (aggregation)

	$ifNull (aggregation)

 $cond (aggregation)

$cond (aggregation)

Definition

	
$cond

	$cond is a ternary operator that takes three
expressions and evaluates the first express to determine which of
the subsequent expressions to return. $cond accepts
input either as an array with three items, or as an object.

New in version 2.5.3: $cond now accepts expressions in the form of documents.

Syntax

Document

New in version 2.5.3: $cond adds support for the document format.

When $cond takes a document, the document has three
fields: if, then, and else. Consider the following
example:

{ $cond: { if: <boolean-expression>,
 then: <true-case>,
 else: <false-case> } }

The if field takes an expression that evaluates to a Boolean
value. If the expression evaluates to true, then
$cond evaluates and returns the value of the then
field. Otherwise, $cond evaluates and returns the value
of the else field.

The expressions in the if, then, and else fields may be
valid MongoDB aggregation expressions. You cannot use
JavaScript in the expressions.

Array

When you specify $cond as an array of three expressions,
the first expression evaluates to a Boolean value. If the first
expression evaluates to``true``, then $cond evaluates
and returns the value of the second expression. If the first
expression evaluates to false, then $cond evaluates
and returns the third expression.

Use the $cond operator with the following syntax:

{ $cond: [<boolean-expression>, <true-case>, <false-case>] }

All three values in the array specified to $cond
must be valid MongoDB aggregation expressions or document fields. Do not use
JavaScript in any aggregation statements, including
$cond.

Examples

Specify $cond Expression as a Document

The following aggregation pipeline operation returns a
weightedCount for each item_id. The $sum operator
uses the $cond expression to add 2 if the value
stored in the level field is E and 1 otherwise.

db.survey.aggregate(
 [
 {
 $group: {
 _id: "$item_id",
 weightedCount: { $sum: { $cond: { if: { $eq: ["$level", "E"] } ,
 then: 2,
 else: 1
 } } }
 }
 }
]
)

Specify a $cond Expression using an Array

The following aggregation on the survey collection groups
by the item_id field and returns a weightedCount
for each item_id. The $sum operator uses the
$cond expression to add either 2 if the value
stored in the level field is E and 1 otherwise.

db.survey.aggregate(
 [
 {
 $group: {
 _id: "$item_id",
 weightedCount: { $sum: { $cond: [{ $eq: ["$level", "E"] } , 2, 1] } }
 }
 }
]
)

 $ifNull (aggregation)

$ifNull (aggregation)

	
$ifNull

	Takes an array with two expressions. $ifNull returns
the first expression if it evaluates to a non-null value.
Otherwise, $ifNull returns the second expression’s
value.

Use the $ifNull operator with the following syntax:

{ $ifNull: [<expression>, <replacement-if-null>] }

Both values in the array specified to $ifNull
must be valid MongoDB aggregation expressions or document fields. Do
not use JavaScript in any aggregation statements, including
$ifNull.

Example

The following aggregation on the offSite collection
groups by the location field and returns a count for each
location. If the location field contains null, the
$ifNull returns "Unspecified" as the value.
MongoDB assigns the returned value to _id in the aggregated
document.

db.offSite.aggregate(
 [
 {
 $group: {
 _id: { $ifNull: ["$location", "Unspecified"] },
 count: { $sum: 1 }
 }
 }
]
)

 Query Modifiers

Query Modifiers

Introduction

In addition to the MongoDB Query Operators, there are a number of “meta” operators that
you can modify the output or behavior of a query. On the server,
MongoDB treats the query and the options as a single object. The
mongo shell and driver interfaces may provide cursor methods that wrap these options. When possible, use these
methods; otherwise, you can add these options using either of the
following syntax:

db.collection.find({ <query> })._addSpecial(<option>)
db.collection.find({ $query: { <query> }, <option> })

Operators

Modifiers

Many of these operators have corresponding methods in the shell. These methods provide a straightforward and
user-friendly interface and are the preferred way to add these options.

	Name
	Description

	$comment
	Adds a comment to the query to identify queries in the database profiler output.

	$explain
	Forces MongoDB to report on query execution plans. See explain().

	$hint
	Forces MongoDB to use a specific index. See hint()

	$maxScan
	Limits the number of documents a cursor will return for a query. See limit().

	$maxTimeMS
	Specifies a cumulative time limit in milliseconds for processing operations on a cursor. See maxTimeMS().

	$max
	Specifies a minimum exclusive upper limit for the index to use in a query. See max().

	$min
	Specifies a minimum inclusive lower limit for the index to use in a query. See min().

	$orderby
	Returns a cursor with documents sorted according to a sort specification. See sort().

	$returnKey
	Forces the cursor to only return fields included in the index.

	$showDiskLoc
	Modifies the documents returned to include references to the on-disk location of each document.

	$snapshot
	Forces the query to use the index on the _id field. See snapshot().

	$query
	Wraps a query document.

	$comment

	$explain

	$hint

	$maxScan

	$maxTimeMS

	$max

	$min

	$orderby

	$returnKey

	$showDiskLoc

	$snapshot

	$query

Sort Order

	Name
	Description

	$natural
	A special sort order that orders documents using the order of documents on disk.

	$natural

 Database Commands

Database Commands

	User Commands
	Aggregation Commands

	Geospatial Commands

	Query and Write Operation Commands

	Database Operations
	Authentication Commands

	User Management Commands

	Role Management Commands

	Replication Commands

	Sharding Commands

	Instance Administration Commands

	Diagnostic Commands

	Internal Commands

	Testing Commands

	Auditing Commands

All command documentation outlined below describes a command and
its available parameters and provides a document template or prototype
for each command. Some command documentation also includes the relevant
mongo shell helpers.

User Commands

Aggregation Commands

	Aggregation Commands
	aggregate

	count

	distinct

	group

	mapReduce

Geospatial Commands

	Geospatial Commands
	geoNear

	geoSearch

	geoWalk

Query and Write Operation Commands

	Query and Write Operation Commands
	insert

	update

	delete

	findAndModify

	text

	getLastError

	getPrevError

	resetError

	eval

Database Operations

Authentication Commands

	Authentication Commands
	logout

	authenticate

	copydbgetnonce

	getnonce

User Management Commands

	User Management Commands
	createUser

	updateUser

	dropUser

	dropAllUsersFromDatabase

	grantRolesToUser

	revokeRolesFromUser

	usersInfo

Role Management Commands

	Role Management Commands
	createRole

	updateRole

	dropRole

	dropAllRolesFromDatabase

	grantPrivilegesToRole

	revokePrivilegesFromRole

	grantRolesToRole

	revokeRolesFromRole

	rolesInfo

Replication Commands

	Replication Commands
	replSetFreeze

	replSetGetStatus

	replSetInitiate

	replSetMaintenance

	replSetReconfig

	replSetStepDown

	replSetSyncFrom

	resync

	applyOps

	isMaster

	getoptime

See also

Replication for more information regarding
replication.

Sharding Commands

	Sharding Commands
	flushRouterConfig

	addShard

	cleanupOrphaned

	checkShardingIndex

	enableSharding

	listShards

	removeShard

	getShardMap

	getShardVersion

	mergeChunks

	setShardVersion

	shardCollection

	shardingState

	unsetSharding

	split

	splitChunk

	splitVector

	medianKey

	moveChunk

	movePrimary

	isdbgrid

See also

Sharding for more information about MongoDB’s
sharding functionality.

Instance Administration Commands

	Administration Commands
	renameCollection

	copydb

	dropDatabase

	drop

	create

	clone

	cloneCollection

	cloneCollectionAsCapped

	closeAllDatabases

	convertToCapped

	filemd5

	dropIndexes

	fsync

	clean

	connPoolSync

	compact

	collMod

	reIndex

	setParameter

	getParameter

	repairDatabase

	touch

	shutdown

	logRotate

Diagnostic Commands

	Diagnostic Commands
	listDatabases

	dbHash

	driverOIDTest

	listCommands

	availableQueryOptions

	buildInfo

	collStats

	connPoolStats

	dbStats

	cursorInfo

	dataSize

	diagLogging

	getCmdLineOpts

	netstat

	ping

	profile

	validate

	top

	indexStats

	whatsmyuri

	getLog

	hostInfo

	serverStatus

	features

	isSelf

Internal Commands

	Internal Commands
	handshake

	recvChunkAbort

	recvChunkCommit

	recvChunkStart

	recvChunkStatus

	replSetFresh

	mapreduce.shardedfinish

	transferMods

	replSetHeartbeat

	replSetGetRBID

	migrateClone

	replSetElect

	writeBacksQueued

	writebacklisten

Testing Commands

	Testing Commands
	testDistLockWithSkew

	testDistLockWithSyncCluster

	captrunc

	emptycapped

	godinsert

	_hashBSONElement

	journalLatencyTest

	sleep

	replSetTest

	forceerror

	skewClockCommand

	configureFailPoint

Auditing Commands

	System Events Auditing Commands
	logApplicationMessage

 mongo Shell Methods

mongo Shell Methods

	Collection

	Cursor

	Database

	User Management

	Role Management

	Replication

	Sharding

	Subprocess

	Constructors

	Connection

	Native

JavaScript in MongoDB

Although these methods use JavaScript, most interactions
with MongoDB do not use JavaScript but use an idiomatic driver in the language of the interacting
application.

Collection

	Collection Methods
	db.collection.aggregate()

	db.collection.count()

	db.collection.copyTo()

	db.collection.createIndex()

	db.collection.getIndexStats()

	db.collection.indexStats()

	db.collection.dataSize()

	db.collection.distinct()

	db.collection.drop()

	db.collection.dropIndex()

	db.collection.dropIndexes()

	db.collection.ensureIndex()

	db.collection.find()

	db.collection.findAndModify()

	db.collection.findOne()

	db.collection.getIndexes()

	db.collection.getShardDistribution()

	db.collection.getShardVersion()

	db.collection.group()

	db.collection.insert()

	db.collection.isCapped()

	db.collection.mapReduce()

	db.collection.reIndex()

	db.collection.remove()

	db.collection.renameCollection()

	db.collection.save()

	db.collection.stats()

	db.collection.storageSize()

	db.collection.totalSize()

	db.collection.totalIndexSize()

	db.collection.update()

	db.collection.validate()

Cursor

	Cursor Methods
	cursor.addOption()

	cursor.batchSize()

	cursor.count()

	cursor.explain()

	cursor.forEach()

	cursor.hasNext()

	cursor.hint()

	cursor.limit()

	cursor.map()

	cursor.maxTimeMS()

	cursor.max()

	cursor.min()

	cursor.next()

	cursor.objsLeftInBatch()

	cursor.readPref()

	cursor.showDiskLoc()

	cursor.size()

	cursor.skip()

	cursor.snapshot()

	cursor.sort()

	cursor.toArray()

Database

	Database Methods
	db.addUser()

	db.auth()

	db.changeUserPassword()

	db.cloneCollection()

	db.cloneDatabase()

	db.commandHelp()

	db.copyDatabase()

	db.createCollection()

	db.currentOp()

	db.dropDatabase()

	db.eval()

	db.fsyncLock()

	db.fsyncUnlock()

	db.getCollection()

	db.getCollectionNames()

	db.getLastError()

	db.getLastErrorObj()

	db.getMongo()

	db.getName()

	db.getPrevError()

	db.getProfilingLevel()

	db.getProfilingStatus()

	db.getReplicationInfo()

	db.getSiblingDB()

	db.help()

	db.hostInfo()

	db.isMaster()

	db.killOp()

	db.listCommands()

	db.loadServerScripts()

	db.logout()

	db.printCollectionStats()

	db.printReplicationInfo()

	db.printShardingStatus()

	db.printSlaveReplicationInfo()

	db.removeUser()

	db.repairDatabase()

	db.resetError()

	db.runCommand()

	db.serverBuildInfo()

	db.serverStatus()

	db.setProfilingLevel()

	db.shutdownServer()

	db.stats()

	db.version()

User Management

	User Management Methods
	db.createUser()

	Definition

	Considerations

	Required Access

	Example

	db.dropAllUsers()

	db.dropUser()

	db.grantRolesToUser()

	db.revokeRolesFromUser()

	db.getUser()

	db.getUsers()

Role Management

	Role Management Methods
	db.grantRolesToRole()

	db.revokeRolesFromRole()

	db.getRole()

	db.getRoles()

Replication

	Replication Methods
	rs.add()

	rs.addArb()

	rs.conf()

	rs.freeze()

	rs.help()

	rs.initiate()

	rs.printReplicationInfo()

	rs.printSlaveReplicationInfo()

	rs.reconfig()

	rs.remove()

	rs.slaveOk()

	rs.status()

	rs.stepDown()

	rs.syncFrom()

Sharding

	Sharding Methods
	sh._adminCommand()

	sh._checkFullName()

	sh._checkMongos()

	sh._lastMigration()

	sh.addShard()

	sh.addShardTag()

	sh.addTagRange()

	sh.disableBalancing()

	sh.enableBalancing()

	sh.enableSharding()

	sh.getBalancerHost()

	sh.getBalancerState()

	sh.help()

	sh.isBalancerRunning()

	sh.moveChunk()

	sh.removeShardTag()

	sh.setBalancerState()

	sh.shardCollection()

	sh.splitAt()

	sh.splitFind()

	sh.startBalancer()

	sh.status()

	sh.stopBalancer()

	sh.waitForBalancer()

	sh.waitForBalancerOff()

	sh.waitForDLock()

	sh.waitForPingChange()

Subprocess

	Subprocess Methods
	clearRawMongoProgramOutput()

	rawMongoProgramOutput()

	run()

	runMongoProgram()

	runProgram()

	startMongoProgram()

	stopMongoProgram()

	stopMongoProgramByPid()

	stopMongod()

	waitMongoProgramOnPort()

	waitProgram()

Constructors

	Object Constructors and Methods
	Date()

	UUID()

	ObjectId.getTimestamp()

	ObjectId.toString()

	ObjectId.valueOf()

Connection

	Connection Methods
	Mongo.getDB()

	Mongo.getReadPrefMode()

	Mongo.getReadPrefTagSet()

	Mongo.setReadPref()

	mongo.setSlaveOk()

	Mongo()

	connect()

Native

	Native Methods
	cat()

	version()

	cd()

	copyDbpath()

	resetDbpath()

	fuzzFile()

	getHostName()

	getMemInfo()

	hostname()

	_isWindows()

	listFiles()

	load()

	ls()

	md5sumFile()

	mkdir()

	pwd()

	quit()

	rand()

	removeFile()

	_srand()

 MongoDB Package Components

MongoDB Package Components

Core Processes

The core components in the MongoDB package are: mongod,
the core database process; mongos the controller and query
router for sharded clusters; and
mongo the interactive MongoDB Shell.

	mongod

	mongos

	mongo

Windows Services

The mongod.exe and mongos.exe describe the
options available for configuring MongoDB when running as a Windows
Service. The mongod.exe and mongos.exe binaries
provide a superset of the mongod and mongos
options.

	mongod.exe

	mongos.exe

Binary Import and Export Tools

mongodump provides a method for creating BSON
dump files from the mongod instances, while
mongorestore makes it possible to restore these
dumps. bsondump converts BSON dump files into
JSON. The mongooplog utility provides the ability
to stream oplog entries outside of normal replication.

	mongodump

	mongorestore

	bsondump

	mongooplog

Data Import and Export Tools

mongoimport provides a method for taking data in JSON,
CSV, or TSV and importing it into a mongod
instance. mongoexport provides a method to export data from
a mongod instance into JSON, CSV, or TSV.

Note

The conversion between BSON and other formats lacks full
type fidelity. Therefore you cannot use mongoimport and
mongoexport for round-trip import and export operations.

	mongoimport

	mongoexport

Diagnostic Tools

mongostat, mongotop, and mongosniff
provide diagnostic information related to the current operation of a
mongod instance.

Note

Because mongosniff depends on libpcap, most distributions of MongoDB do not include
mongosniff.

	mongostat

	mongotop

	mongosniff

	mongoperf

GridFS

mongofiles provides a command-line interact to a MongoDB
GridFS storage system.

	mongofiles

 Configuration File Options

Configuration File Options

Synopsis

Administrators and users can control mongod or
mongos instances at runtime either directly from
mongod’s command line arguments or using a
configuration file.

While both methods are functionally equivalent and all settings are
similar, the configuration file method is preferable. If you
installed from a package and have started MongoDB using your system’s
control script, you’re already using a configuration file.

To start mongod or mongos using a config file,
use one of the following forms:

mongod --config /etc/mongodb.conf
mongod -f /etc/mongodb.conf
mongos --config /srv/mongodb/mongos.conf
mongos -f /srv/mongodb/mongos.conf

Declare all settings in this file using the following form:

<setting> = <value>

New in version 2.0: Before version 2.0, Boolean (i.e. true|false) or “flag”
parameters, register as true, if they appear in the configuration
file, regardless of their value.

Note

Ensure the configuration file uses ASCII
encoding. mongod does not support configuration files
with non-ASCII encoding, including UTF-8.

Settings

	
verbose

	Default: false

Increases the amount of internal reporting returned on standard
output or in the log file generated by logpath. To
enable verbose or to enable increased verbosity with
vvvv, set these options as in the following example:

verbose = true
vvvv = true

MongoDB has the following levels of verbosity:

	
v

	Default: false

Alternate form of verbose.

	
vv

	Default: false

Additional increase in verbosity of output and logging.

	
vvv

	Default: false

Additional increase in verbosity of output and logging.

	
vvvv

	Default: false

Additional increase in verbosity of output and logging.

	
vvvvv

	Default: false

Additional increase in verbosity of output and logging.

	
port

	Default: 27017

Specifies a TCP port for the mongod or mongos
instance to listen for client connections. UNIX-like systems
require root access for ports with numbers lower than 1024.

	
bind_ip

	Default: All interfaces.

Set this option to configure the mongod or
mongos process to bind to and listen for connections
from applications on this address. You may attach mongod
or mongos instances to any interface; however, if you
attach the process to a publicly accessible interface, implement
proper authentication or firewall restrictions to protect the
integrity of your database.

You may concatenate a list of comma separated values to bind
mongod to multiple IP addresses.

	
maxConns

	Default: depends on system (i.e. ulimit and file descriptor)
limits. Unless set, MongoDB will not limit its own connections.

Specifies a value to set the maximum number of simultaneous
connections that mongod or mongos will
accept. This setting has no effect if it is higher than your
operating system’s configured maximum connection tracking
threshold.

This is particularly useful for mongos if you have a
client that creates a number of connections but allows them to
timeout rather than close the connections. When you set
maxConns, ensure the value is slightly higher than the
size of the connection pool or the total number of connections to
prevent erroneous connection spikes from propagating to the members
of a shard cluster.

Note

Changed in version 2.5.0: MongoDB removed the upward limit on the maxConns
setting.

	
objcheck

	Default: true

Changed in version 2.4: The default setting for objcheck became true in
2.4. In earlier versions objcheck was false by
default.

Forces the mongod to validate all requests from clients
upon receipt to ensure that clients never insert invalid documents
into the database. For objects with a high degree of sub-document
nesting, objcheck can have a small impact on
performance. You can set noobjcheck to disable object
checking at run-time.

	
noobjcheck

	
New in version 2.4.

Default: false

Disables the default object validation that MongoDB performs on all
incoming BSON documents.

	
logpath

	Default: None. (i.e. /dev/stdout)

Specify the path to a file name for the log file that will hold all
diagnostic logging information.

Unless specified, mongod will output all log information
to the standard output. Unless logappend is true,
the logfile will be overwritten when the process restarts.

Note

Currently, MongoDB will overwrite the contents of the log file
if the logappend is not used. This behavior may
change in the future depending on the outcome of
SERVER-4499 [https://jira.mongodb.org/browse/SERVER-4499].

	
logappend

	Default: false

Set to true to add new entries to the end of the logfile rather
than overwriting the content of the log when the process restarts.

If this setting is not specified, then MongoDB will overwrite the
existing logfile upon start up.

Note

The behavior of the logging system may change in the near
future in response to the SERVER-4499 [https://jira.mongodb.org/browse/SERVER-4499] case.

	
syslog

	
New in version 2.2.

Sends all logging output to the host’s syslog system rather
than to standard output or a log file as with logpath.

Important

You cannot use syslog with logpath.

	
pidfilepath

	Default: None.

Specify a file location to hold the PID or process ID of the
mongod process. Useful for tracking the mongod process in
combination with the fork setting.

Without a specified pidfilepath, mongos
creates no PID file.

Without this option, mongod creates no PID file.

	
keyFile

	Default: None.

Specify the path to a key file to store authentication
information. This option is only useful for the connection between
replica set members.

See also

Replica Set Security

	
nounixsocket

	Default: false

Set to true to disable listening on the UNIX
socket.

MongoDB always creates and listens on the UNIX socket, unless
nounixsocket is set, or bind_ip is not set,
or bind_ip does not specify 127.0.0.1.

	
unixSocketPrefix

	Default: /tmp

Specifies a path for the UNIX socket. Unless this option has a
value mongod creates a socket with /tmp as a
prefix.

MongoDB will always create and listen on a UNIX socket, unless
nounixsocket is set, bind_ip is not set.
or bind_ip does not specify 127.0.0.1.

	
fork

	Default: false

Set to true to enable a daemon mode for
mongod that runs the process in the background.

	
auth

	Default: false

Set to true to enable database authentication for users
connecting from remote hosts. Configure users via the mongo
shell. If no users exist, the localhost
interface will continue to have access to the database until you
create the first user.

	
saslServiceName

	
New in version 2.4.6: Allows users to override the default Kerberos
service name component of the Kerberos
principal name, on a per-instance basis. If unspecified, the
default value is mongodb.

MongoDB only permits setting saslServiceName at
startup. The setParameter command can not change
this setting.

Only available in MongoDB Enterprise.

Important

Ensure that your driver supports alternate service names.

	
cpu

	Default: false

Set to true to force mongod to report every four
seconds CPU utilization and the amount of time that the processor
waits for I/O operations to complete (i.e. I/O wait.) MongoDB writes
this data to standard output, or the logfile if using the
logpath option.

	
dbpath

	Default: /data/db/

Set this value to designate a directory for the mongod
instance to store its data. Typical locations include:
/srv/mongodb, /var/lib/mongodb or /opt/mongodb

Unless specified, mongod will look for data files in the
default /data/db directory. (Windows systems use the
\data\db directory.) If you installed using a package
management system. Check the /etc/mongodb.conf file provided by
your packages to see the configuration of the dbpath.

	
diaglog

	Default: 0

Creates a very verbose diagnostic log for troubleshooting and
recording various errors. MongoDB writes these log files in the
dbpath directory and names them diaglog.<time in
hex>, where <time-in-hex> is the initiation time of logging as a
hexadecimal string.

The value of this setting configures the level of
verbosity. Possible values, and their impact are as follows.

	Value
	Setting

	0
	Off. No logging.

	1
	Log write operations.

	2
	Log read operations.

	3
	Log both read and write operations.

	7
	Log write and some read operations.

You can use the mongosniff tool to replay this output
for investigation. Given a typical diaglog file, located at
/data/db/diaglog.4f76a58c, you might use a command in the
following form to read these files:

mongosniff --source DIAGLOG /data/db/diaglog.4f76a58c

diaglog is for internal use and not intended for most
users.

Warning

Setting the diagnostic level to 0 will cause mongod
to stop writing data to the diagnostic log file. However,
the mongod instance will continue to keep the file open,
even if it is no longer writing data to the file. If you want to
rename, move, or delete the diagnostic log you must cleanly shut
down the mongod instance before doing so.

	
directoryperdb

	Default: false

Set to true to modify the storage pattern of the data directory
to store each database’s files in a distinct folder. This option
will create directories within the dbpath named for each
database.

Use this option in conjunction with your file system and device
configuration so that MongoDB will store data on a number of
distinct disk devices to increase write throughput or disk
capacity.

Warning

If you have an existing mongod instance and
dbpath, and you want to enable
directoryperdb, you must migrate your existing
databases to directories before setting directoryperdb
to access those databases.

Example

Given a dbpath directory with the following items:

journal
mongod.lock
local.0
local.1
local.ns
test.0
test.1
test.ns

To enable directoryperdb you would need to modify the
dbpath to resemble the following:

journal
mongod.lock
local/local.0
local/local.1
local/local.ns
test/test.0
test/test.1
test/test.ns

	
journal

	Default: (on 64-bit systems) true

Default: (on 32-bit systems) false

Set to true to enable operation journaling to ensure write
durability and data consistency.

Set to false to prevent the overhead of journaling in situations
where durability is not required. To reduce the impact of the
journaling on disk usage, you can leave journal
enabled, and set smallfiles to true to reduce the size
of the data and journal files.

Note

You must use nojournal to disable journaling
on 64-bit systems.

	
journalCommitInterval

	Default: 100 or 30

Set this value to specify the maximum amount of time for
mongod to allow between journal operations. Lower
values increase the durability of the journal, at the possible
expense of disk performance.

The default journal commit interval is 100 milliseconds if a single
block device (e.g. physical volume, RAID device, or LVM volume)
contains both the journal and the data files.

If the journal is on a different block device than the data files the
default journal commit interval is 30 milliseconds.

This option accepts values between 2 and 300 milliseconds.

To force mongod to commit to the journal more frequently,
you can specify j:true. When a write operation with j:true
is pending, mongod will reduce
journalCommitInterval to a third of the set value.

	
ipv6

	Default: false

Set to true to IPv6 support to allow clients to connect to
mongod using IPv6 networks. mongod disables
IPv6 support by default in mongod and all utilities.

	
jsonp

	Default: false

Set to true to permit JSONP access via an HTTP
interface. Consider the security implications of allowing this
activity before setting this option.

	
noauth

	Default: true

Disable authentication. Currently the default. Exists for future
compatibility and clarity.

For consistency use the auth option.

	
nohttpinterface

	Default: false

Set to true to disable the HTTP interface. This command will
override the rest and disable the HTTP interface if you
specify both.

Note

In MongoDB Enterprise, the HTTP Console does not support Kerberos
Authentication.

Changed in version 2.1.2: The nohttpinterface option is not available for mongos instances before 2.1.2

	
nojournal

	Default: (on 64-bit systems) false

Default: (on 32-bit systems) true

Set nojournal = true to disable durability journaling. By
default, mongod enables journaling in 64-bit versions
after v2.0.

Note

You must use journal to enable journaling
on 32-bit systems.

	
noprealloc

	Default: false

Set noprealloc = true to disable the preallocation of data
files. This will shorten the start up time in some cases, but can
cause significant performance penalties during normal operations.

	
noscripting

	Default: false

Set noscripting = true to disable the scripting engine.

	
notablescan

	Default: false

Set notablescan = true to forbid operations that require a
table scan.

	
nssize

	Default: 16

Specify this value in megabytes. The maximum size is 2047 megabytes.

Use this setting to control the default size for all newly created
namespace files (i.e .ns). This option has no impact on the
size of existing namespace files.

See Limits on namespaces.

	
profile

	Default: 0

Modify this value to changes the level of database profiling, which
inserts information about operation performance into output of
mongod or the log file if specified by
logpath. The following levels are available:

	Level
	Setting

	0
	Off. No profiling.

	1
	On. Only includes slow operations.

	2
	On. Includes all operations.

By default, mongod disables profiling. Database profiling
can impact database performance because the profiler must record
and process all database operations. Enable this option only after
careful consideration.

	
quota

	Default: false

Set to true to enable a maximum limit for the number data files
each database can have. The default quota is 8 data files, when
quota is true. Adjust the quota size with the with the
quotaFiles setting.

	
quotaFiles

	Default: 8

Modify limit on the number of data files per database. This option
requires the quota setting.

	
rest

	Default: false

Set to true to enable a simple REST interface.

	
repair

	Default: false

Set to true to run a repair routine on all databases following
start up. In general you should set this option on the command line
and not in the configuration file or in a control script.

Use the mongod --repair option to access this
functionality.

Note

Because mongod rewrites all of the database files
during the repair routine, if you do not run repair
under the same user account as mongod usually runs,
you will need to run chown on your database files to correct
the permissions before starting mongod again.

	
repairpath

	Default: A _tmp directory in the dbpath.

Specify the path to the directory containing MongoDB data files, to
use in conjunction with the repair setting or
mongod --repair operation. Defaults to a _tmp
directory within the dbpath.

	
slowms

	Default: 100

Specify values in milliseconds.

Sets the threshold for mongod to consider a query “slow”
for the database profiler. The database logs all slow queries to
the log, even when the profiler is not turned on. When the database
profiler is on, mongod the profiler writes to the
system.profile collection.

See also

profile

	
smallfiles

	Default: false

Set to true to modify MongoDB to use a smaller default data
file size. Specifically, smallfiles reduces the initial
size for data files and limits them to 512
megabytes. The smallfiles setting also reduces the size of each
journal files from 1 gigabyte to 128 megabytes.

Use the smallfiles setting if you have a large number of databases
that each hold a small quantity of data. The smallfiles setting can
lead mongod to create many files,
which may affect performance for larger databases.

	
syncdelay

	Default: 60

mongod writes data very quickly to the journal, and
lazily to the data files. syncdelay controls how much
time can pass before MongoDB flushes data to the database files via an
fsync operation. The default setting is 60 seconds. In
almost every situation you should not set this value and use the
default setting.

The serverStatus command reports the background flush
thread’s status via the backgroundFlushing field.

syncdelay has no effect on the journal
files or journaling.

Warning

If you set syncdelay to 0, MongoDB will not sync
the memory mapped files to disk. Do not set this value on
production systems.

	
sysinfo

	Default: false

When set to true, mongod returns diagnostic system
information regarding the page size, the number of physical pages,
and the number of available physical pages to standard output.

More typically, run this operation by way of the mongod --sysinfo
command. When running with the sysinfo, only
mongod only outputs the page information and no database
process will start.

	
upgrade

	Default: false

When set to true this option upgrades the on-disk data format
of the files specified by the dbpath to the latest
version, if needed.

This option only affects the operation of mongod if the
data files are in an old format.

When specified for a mongos instance, this option updates
the meta data format used by the config database.

Note

In most cases you should not set this value, so you can
exercise the most control over your upgrade process. See the MongoDB
release notes [http://www.mongodb.org/downloads] (on the
download page) for more information about the upgrade process.

	
traceExceptions

	Default: false

For internal diagnostic use only.

	
quiet

	Default: false

Runs the mongod or mongos instance in a quiet
mode that attempts to limit the amount of output. This option suppresses:

	output from database commands,
including drop, dropIndexes,
diagLogging, validate, and
clean.

	replication activity.

	connection accepted events.

	connection closed events.

Note

For production systems this option is not recommended as it may make
tracking problems during particular connections much more difficult.

	
setParameter

	
New in version 2.4.

Specifies an option to configure on startup. Specify multiple
options with multiple setParameter options. See
mongod Parameters for full documentation of these
parameters. The setParameter database command provides
access to many of these parameters.

Declare all setParameter settings in this file using the following form:

setParameter = <parameter>=<value>

For mongod the following options are available using
setParameter:

	enableLocalhostAuthBypass

	enableTestCommands

	journalCommitInterval

	logLevel

	logUserIds

	notablescan

	quiet

	replApplyBatchSize

	replIndexPrefetch

	supportCompatibilityFormPrivilegeDocuments

	syncdelay

	textSearchEnabled

	traceExceptions

	saslauthdPath

	authenticationMechanisms

	sslMode

	clusterAuthMode

For mongos the following options are available using
setParameter:

	enableLocalhostAuthBypass

	enableTestCommands

	logLevel

	logUserIds

	notablescan

	quiet

	supportCompatibilityFormPrivilegeDocuments

	syncdelay

	textSearchEnabled

	
noIndexBuildRetry

	By default, mongod will attempt to rebuild indexes upon
start-up if mongod shuts down or stops in the middle
of an index build. When you specify --noIndexBuildRetry,
mongod will not attempt to rebuild the index.

Replication Options

	
replSet

	Default: <none>

Form: <setname>

Use this setting to configure replication with replica
sets. Specify a replica set name as an argument to this set. All
hosts must have the same set name.

See also

Replication,
Replica Set Deployment Tutorials, and
Replica Set Configuration

	
oplogSize

	Specifies a maximum size in megabytes for the replication operation
log (e.g. oplog.) mongod creates an oplog
based on the maximum amount of space available. For 64-bit systems,
the oplog is typically 5% of available disk space.

Once the mongod has created the oplog for the first
time, changing oplogSize will not affect the size of the
oplog.

	
fastsync

	Default: false

In the context of replica set replication, set this option
to true if you have seeded this member with a snapshot of the
dbpath of another member of the set. Otherwise the
mongod will attempt to perform an initial sync, as though the member were a new member.

Warning

If the data is not perfectly synchronized and
mongod starts with fastsync, then the
secondary or slave will be permanently out of sync with the
primary, which may cause significant consistency problems.

	
replIndexPrefetch

	
New in version 2.2.

Default: all

Values: all, none, and _id_only

You can only use replIndexPrefetch in conjunction with
replSet.

By default secondary members of a replica set will
load all indexes related to an operation into memory before
applying operations from the oplog. You can modify this behavior so
that the secondaries will only load the _id index. Specify
_id_only or none to prevent the mongod from
loading any index into memory.

Master/Slave Replication

	
master

	Default: false

Set to true to configure the current instance to act as
master instance in a replication configuration.

	
slave

	Default: false

Set to true to configure the current instance to act as
slave instance in a replication configuration.

	
source

	Default: <>

Form: <host><:port>

Used with the slave setting to specify the
master instance from which this slave instance will
replicate

	
only

	Default: <>

Used with the slave option, only
specifies only a single database to replicate.

	
slavedelay

	Default: 0

Used with the slave setting, slavedelay
configures a “delay” in seconds, for this slave to wait to apply
operations from the master instance.

	
autoresync

	Default: false

Used with the slave setting, set autoresync to
true to force the slave to automatically resync if it
is more than 10 seconds behind the master. This setting may be
problematic if the oplogSize of the
oplog is too small.
If the oplog is not large
enough to store the difference in changes between the master’s
current state and the state of the slave, this instance will forcibly
resync itself unnecessarily. When you set the autoresync
option to false, the slave will not attempt an automatic resync more than
once in a ten minute period.

Sharded Cluster Options

	
configsvr

	Default: false

Set this value to true to configure this mongod
instance to operate as the config database of a shard
cluster. When running with this option, clients will not be able to
write data to any database other than config and admin. The
default port for a mongod with this option is 27019
and the default dbpath directory is /data/configdb,
unless specified.

Changed in version 2.2: configsvr also sets smallfiles.

Changed in version 2.4: configsvr creates a local oplog.

Do not use configsvr with replSet or
shardsvr. Config servers cannot be a shard
server or part of a replica set.

default port for mongod with this option is 27019
and mongod writes all data files to the /configdb
sub-directory of the dbpath directory.

	
shardsvr

	Default: false

Set this value to true to configure this mongod
instance as a shard in a partitioned cluster. The default port for
these instances is 27018. The only effect of
shardsvr is to change the port number.

	
configdb

	Default: None.

Format: <config1>,<config2><:port>,<config3>

Set this option to specify a configuration database
(i.e. config database) for the sharded cluster. You
must specify either 1 configuration server or 3 configuration
servers, in a comma separated list.

This setting only affects mongos processes.

Note

mongos instances read from the first config
server in the list provided. All
mongos instances must specify the hosts to the
configdb setting in the same order.

If your configuration databases reside in more that one data
center, order the hosts in the configdb setting so
that the config database that is closest to the majority of your
mongos instances is first servers in the list.

Warning

Never remove a config server from the configdb parameter, even if
the config server or servers are not available, or offline.

	
test

	Default: false

Only runs unit tests and does not start a mongos instance.

This setting only affects mongos processes and is for
internal testing use only.

	
chunkSize

	Default: 64

The value of this option determines the size of each chunk
of data distributed around the sharded cluster. The default
value is 64 megabytes. Larger chunks may lead to an uneven
distribution of data, while smaller chunks may lead to frequent and
unnecessary migrations. However, in some circumstances it may be
necessary to set a different chunk size.

This setting only affects mongos processes. Furthermore,
chunkSize only sets the chunk size when initializing
the cluster for the first time. If you modify the run-time option
later, the new value will have no effect. See the
Modify Chunk Size in a Sharded Cluster procedure if you
need to change the chunk size on an existing sharded cluster.

	
localThreshold

	
New in version 2.2.

localThreshold affects the logic that mongos
uses when selecting replica set members to pass reads
operations to from clients. Specify a value to
localThreshold in milliseconds. The default value is
15, which corresponds to the default value in all of the client
drivers.

This setting only affects mongos processes.

When mongos receives a request that permits reads to
secondary members, the mongos will:

	find the member of the set with the lowest ping time.

	construct a list of replica set members that is within a ping
time of 15 milliseconds of the nearest suitable member of the
set.

If you specify a value for localThreshold,
mongos will construct the list of replica members
that are within the latency allowed by this value.

	The mongos will select a member to read from at
random from this list.

The ping time used for a set member compared by the
localThreshold setting is a moving average of recent
ping times, calculated, at most, every 10 seconds. As a result,
some queries may reach members above the threshold until the
mongos recalculates the average.

See the Member Selection
section of the read preference
documentation for more information.

	
noAutoSplit

	noAutoSplit is for internal use and is only available on
mongos instances.

New in version 2.0.7.

noAutoSplit prevents mongos from
automatically inserting metadata splits in a sharded
collection. If set on all mongos, this will prevent
MongoDB from creating new chunks as the data in a collection
grows.

Because any mongos in a cluster can create a split,
to totally disable splitting in a cluster you must
set noAutoSplit on all mongos.

Warning

With noAutoSplit enabled, the data in your sharded
cluster may become imbalanced over time. Enable with caution.

	
moveParanoia

	
New in version 2.4.

During chunk migrations, moveParanoia forces the
mongod instances to save all documents migrated from this
shard in the moveChunk directory of the dbpath. MongoDB
does not delete data from this directory.

Prior to 2.4, moveParanoia was the default behavior of
MongoDB.

SSL Options

	
sslOnNormalPorts

	
Deprecated since version 2.5.3.

New in version 2.2.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Enables SSL for mongod or mongos. With sslOnNormalPorts,
a mongod or mongos requires SSL encryption for all connections on the
default MongoDB port, or the port specified by port. By
default, sslOnNormalPorts is disabled.

	
sslMode

	
New in version 2.5.3.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Use the --sslMode option to enable SSL or use mixed SSL modes on
a port. The sslMode option can have one of the following
values:

	Value
	Description

	disabled
	The server does not use SSL.

	allowSSL
	Connections between servers do not use SSL. For incoming
connections, the server accepts both SSL and non-SSL.

	preferSSL
	Connections between servers use SSL. For incoming
connections, the server accepts both SSL and non-SSL.

	requireSSL
	The server uses and accepts only SSL encrypted connections.

	
sslPEMKeyFile

	
New in version 2.2.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Specifies the .pem file that contains both the SSL
certificate and key. Specify the file name of the .pem
file using relative or absolute paths

When SSL is enabled, you must specify sslPEMKeyFile.

	
sslPEMKeyPassword

	
New in version 2.2.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Specifies the password to de-crypt the certificate-key file
(i.e. sslPEMKeyFile). Only use
sslPEMKeyPassword if the certificate-key file is
encrypted. In all cases, mongod or mongos will redact the password from
all logging and reporting output.

Changed in version 2.6: If the private key in the PEM file is encrypted and you do not
specify sslPEMKeyPassword, mongod or mongos will prompt
for a passphrase. See SSL Certificate Passphrase.

Changed in version 2.4: sslPEMKeyPassword is only needed when the private
key is encrypted. In earlier versions mongod or mongos would require
sslPEMKeyPassword whenever using
sslOnNormalPorts, even when the private key was not
encrypted.

	
sslCAFile

	
New in version 2.4.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Specifies the .pem file that contains the root certificate
chain from the Certificate Authority. Specify the file name of the .pem
file using relative or absolute paths

	
sslCRLFile

	
New in version 2.4.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Specifies the .pem file that contains the Certificate
Revocation List. Specify the file name of the .pem
file using relative or absolute paths

	
sslWeakCertificateValidation

	
New in version 2.4.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Disables the requirement for SSL certificate validation, that
sslCAFile enables. With
sslWeakCertificateValidation, mongod or mongos will accept
connections if the client does not present a certificate when
establishing the connection.

If the client presents a certificate and mongod or mongos has
sslWeakCertificateValidation enabled, mongod or mongos
will validate the certificate using the root certificate chain
specified by sslCAFile, and reject clients with invalid
certificates.

Use sslWeakCertificateValidation if you have a mixed
deployment that includes clients that do not or cannot present
certificates to mongod or mongos.

	
sslFIPSMode

	
New in version 2.4.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

When specified, mongod or mongos will use the FIPS mode of the
installed OpenSSL library. Your system must have a FIPS compliant
OpenSSL library to use sslFIPSMode.

	
clusterAuthMode

	
New in version 2.6.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Use the --clusterAuthMode option to enable internal x.509
authentication for membership to the
cluster or the replica set. The clusterAuthMode option
can have one of the following values:

	Value
	Description

	keyFile
	Default value. Use keyfile for authentication.

	sendKeyFile
	For rolling upgrade purposes. Send the keyfile for
authentication but can accept either keyfile or x.509
certificate.

	sendX509
	For rolling upgrade purposes. Send the x.509 certificate for
authentication but can accept either keyfile or x.509
certificate.

	x509
	Recommended. Send the x.509 certificate for authentication and
accept only x.509 certificate.

	
sslClusterFile

	
New in version 2.6.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Specifies the .pem file that contains the x.509
certificate-key file for membership authentication for the cluster or replica set.

	
sslClusterPassword

	
New in version 2.6.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Specifies the password to de-crypt the x.509 certificate-key file
specified with sslClusterFile. Only use
sslClusterPassword if the certificate-key file is
encrypted. In all cases, mongod or mongos will redact the password from
all logging and reporting output.

Changed in version 2.6: If the x.509 key file is encrypted and you do not specify
sslClusterPassword, mongod or mongos will prompt for
a passphrase. See SSL Certificate Passphrase.

	
sslAllowInvalidCertificates

	
New in version 2.5.4.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Bypasses the validation checks for SSL certificates on other servers
in the cluster and allows the use of invalid certificates. When
using the sslAllowInvalidCertificates setting, MongoDB
logs as a warning the use of the invalid certificate.

System Audit Options

	
auditLog

	
Note

The audit system is
available only in MongoDB Enterprise [http://www.mongodb.com/products/mongodb-enterprise].

Enable auditing. The auditLog
option can have one of the following values:

	Value
	Description

	syslog
	Output the audit log to syslog in JSON format. Not available on
Windows. Audit messages have a syslog severity level of info
and a facility level of user.

The syslog message limit can result in the truncation of the audit
messages. The auditing system will neither detect the truncation nor
error upon its occurrence.

	console
	Output the audit log to stdout in JSON format.

	jsonfile
	Output the audit log in JSON format to the file specified in
auditPath.

	bsonfile
	Output the audit log in BSON binary format to the file
specified in auditPath.

	
auditPath

	
Note

The audit system is
available only in MongoDB Enterprise [http://www.mongodb.com/products/mongodb-enterprise].

Specify the output file for auditing if auditLog has
value of either jsonfile or bsonfile. The
auditPath option can take either a full path name or a
relative path name.

	
auditFilter

	
Note

The audit system is
available only in MongoDB Enterprise [http://www.mongodb.com/products/mongodb-enterprise].

Specify the filter to limit the types of operations the audit system logs. The option takes a
document of the form:

{ atype: <expression> }

For authentication operations, the option can also take a document of
the form:

{ atype: <expression>, "param.db": <database> }

 mongod Parameters

mongod Parameters

Changed in version 2.4.

Synopsis

MongoDB provides a number of configuration options that are accessible
via the --setParameter option to
mongod. This document documents all of these options.

For additional run time configuration options, see
Configuration File Options and Manual Page for
mongod.

Parameters

	
enableLocalhostAuthBypass

	
New in version 2.4.

Specify 0 to disable localhost authentication bypass. Enabled
by default.

enableLocalhostAuthBypass is not available using
setParameter database command. Use the
setParameter option in the configuration file or the
--setParameter option on the
command line.

	
enableTestCommands

	
New in version 2.4.

enableTestCommands enables a set of internal commands
useful for internal testing
operations. enableTestCommands is only available when
starting mongod and you cannot use
setParameter to modify this parameter. Consider the
following mongod innovation, which sets
enableTestCommands:

mongod --setParameter enableTestCommands=1

enableTestCommands provides access to the following
internal commands:

	captrunc

	configureFailPoint

	emptycapped

	godinsert

	_hashBSONElement

	journalLatencyTest

	replSetTest

	_skewClockCommand

	sleep

	_testDistLockWithSkew

	_testDistLockWithSyncCluster

	
journalCommitInterval

	Specify an integer between 1 and 500 signifying the number
of milliseconds (ms) between journal commits.

Consider the following example which sets the
journalCommitInterval to 200 ms:

use admin
db.runCommand({ setParameter: 1, journalCommitInterval: 200 })

See also

journalCommitInterval.

	
logUserIds

	
New in version 2.4.

Specify 1 to enable logging of userids.

Disabled by default.

	
logLevel

	Specify an integer between 0 and 5 signifying the verbosity
of the logging, where 5 is the most verbose.

Consider the following example which sets the
logLevel to 2:

use admin
db.runCommand({ setParameter: 1, logLevel: 2 })

See also

verbose.

	
notablescan

	Specify whether queries must use indexes. If 1, queries that
perform a table scan instead of using an index will fail.

Consider the following example which sets notablescan to
true:

use admin
db.runCommand({ setParameter: 1, notablescan: 1 })

See also

notablescan

	
replIndexPrefetch

	
New in version 2.2.

Use replIndexPrefetch in conjunction with
replSet. The default value is all and available
options are:

	none

	all

	_id_only

By default secondary members of a replica set will
load all indexes related to an operation into memory before
applying operations from the oplog. You can modify this behavior so
that the secondaries will only load the _id index. Specify
_id_only or none to prevent the mongod from
loading any index into memory.

	
replApplyBatchSize

	
New in version 2.4.

Specify the number of oplog entries to apply as a single batch.
replApplyBatchSize must be an integer between 1 and 1024.
This option only applies to replica set members when they are in the secondary state.

Batch sizes must be 1 for members with slaveDelay
configured.

	
saslHostName

	
New in version 2.4.

saslHostName overrides MongoDB’s default hostname
detection for the purpose of configuring SASL and Kerberos
authentication.

saslHostName does not affect the hostname of the
mongod or mongos instance for any purpose
beyond the configuration of SASL and Kerberos.

You can only set saslHostName during start-up, and
cannot change this setting using the setParameter
database command.

Note

saslHostName supports Kerberos authentication and
is only included in MongoDB Enterprise. See
Deploy MongoDB with Kerberos Authentication
for more information.

	
supportCompatibilityFormPrivilegeDocuments

	
New in version 2.4.

supportCompatibilityFormPrivilegeDocuments is not
available using setParameter database command. Use the
setParameter option in the configuration file or the
--setParameter option on the
command line.

	
syncdelay

	Specify the interval in seconds between fsync operations
where mongod flushes its working memory to disk. By
default, mongod flushes memory to disk every 60
seconds. In almost every situation you should not set this value
and use the default setting.

Consider the following example which sets the syncdelay to
60 seconds:

db = db.getSiblingDB("admin")
db.runCommand({ setParameter: 1, syncdelay: 60 })

See also

syncdelay and
journalCommitInterval.

	
traceExceptions

	
New in version 2.2.

Configures mongod log full stack traces on assertions or
errors. If 1, mongod will log full stack
traces on assertions or errors.

Consider the following example which sets the
traceExceptions to true:

use admin
db.runCommand({ setParameter: 1, traceExceptions: true })

See also

traceExceptions

	
quiet

	Sets quiet logging mode. If
1, mongod will go into a quiet logging
mode which will not log the following events/activities:

	connection events;

	the drop command, the
dropIndexes command, the
diagLogging command, the
validate command, and the
clean command; and

	replication synchronization activities.

Consider the following example which sets the
quiet to 1:

db = db.getSiblingDB("admin")
db.runCommand({ setParameter: 1, quiet: 1 })

See also

quiet

	
textSearchEnabled

	
New in version 2.4.

Warning

	Do not enable or use text search on production systems.

	Text indexes have significant storage requirements and performance
costs. See Storage Requirements and Performance Costs for more
information.

Enables the text search feature.
You must enable the feature before creating or accessing a text
index.

mongod --setParameter textSearchEnabled=true

If the flag is not enabled, you cannot create new text
indexes, and you cannot perform text searches. However, MongoDB
will continue to maintain existing text indexes.

	
releaseConnectionsAfterResponse

	
New in version 2.2.4: and 2.4.2

Changes the behavior of the connection pool that mongos uses
to connect to the shards. As a result, each mongos
should need to maintain fewer connections to each shard. When
enabled, the mongos will release a connection into the
thread pool after each read operation or command.

Warning

For applications that do not use the default, journaled, or replica
acknowledged write concern
modes of the driver, releaseConnectionsAfterResponse
will affect the meaning of getLastError.

If an application allows read operations in between
write operations and getLastError calls,
the resulting getLastError will not report on
the success of the proceeding write operation.

Use with caution.

To enable, use the following command while connected to a
mongos:

use admin
db.runCommand({ setParameter: 1, releaseConnectionsAfterResponse: true })

Alternately, you may start the mongos instance with the
following run-time option:

mongos --setParameter releaseConnectionsAfterResponse=true

To change this policy for the entire cluster, you must set
releaseConnectionsAfterResponse on each
mongos instance in the cluster.

	
authenticationMechanisms

	
Note

Available only in MongoDB Enterprise.

Specify the authentication mechanism.

For example, to specify PLAIN as the authentication mechanism,
use the following command:

mongod --setParameter authenticationMechanisms=PLAIN --auth

	
saslauthdPath

	
Note

Available only in MongoDB Enterprise (except MongoDB Enterprise for Windows).

Specify the path to the Unix Domain Socket of the saslauthd
instance to use for proxy authentication.

	
sslMode

	
New in version 2.5.4.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Set the sslMode to either preferSSL or
requireSSL. Useful during rolling upgrade to SSL to minimize downtime.

db.getSiblingDB('admin').runCommand({ setParameter: 1, sslMode: "preferSSL" })

	
clusterAuthMode

	
New in version 2.5.4.

Note

The default distribution of MongoDB [http://www.mongodb.org/downloads] does not contain support
for SSL. To use SSL you can either compile MongoDB with SSL support
or use MongoDB Enterprise. See Connect to MongoDB with SSL for
more information about SSL and MongoDB.

Set the clusterAuthMode to either sendX509 or
x509. Useful during rolling upgrade to use x509 for
membership authentication
to minimize downtime.

db.getSiblingDB('admin').runCommand({ setParameter: 1, clusterAuthMode: "sendX509" })

 MongoDB Limits and Thresholds

MongoDB Limits and Thresholds

This document provides a collection of hard and soft limitations of
the MongoDB system.

BSON Documents

	
BSON Document Size

	The maximum BSON document size is 16 megabytes.

The maximum document size helps ensure that a single document cannot
use excessive amount of RAM or, during transmission, excessive amount
of bandwidth. To store documents larger than the maximum size, MongoDB
provides the GridFS API. See mongofiles and the
documentation for your driver for more
information about GridFS.

	
Nested Depth for BSON Documents

	
Changed in version 2.2.

MongoDB supports no more than 100 levels of nesting for BSON
documents.

Namespaces

	
Namespace Length

	Each namespace, including database and collection name, must be
shorter than 123 bytes.

	
Number of Namespaces

	The limitation on the number of namespaces is the size of the
namespace file divided by 628.

A 16 megabyte namespace file can support approximately 24,000
namespaces. Each index also counts as a namespace.

	
Size of Namespace File

	Namespace files can be no larger than 2047 megabytes.

By default namespace files are 16 megabytes. You can configure the
size using the nssize option.

Indexes

	
Index Key

	The total size of an indexed value must be less than 1024
bytes. MongoDB will not add that value to an index if it is longer
than 1024 bytes.

	
Number of Indexes per Collection

	A single collection can have no more than 64 indexes.

	
Index Name Length

	The names of indexes, including their namespace (i.e database and
collection name) cannot be longer than 125 characters. The default
index name is the concatenation of the field names and index
directions.

You can explicitly specify an index name to the
ensureIndex() helper if the default index
name is too long.

	
Number of Indexed Fields in a Compound Index

	There can be no more than 31 fields in a compound index.

	
Queries cannot use both text and Geospatial Indexes

	You cannot combine the text command, which requires a
special text index, with a query operator
that requires a different type of special index. For example you
cannot combine text with the $near operator.

See also

The unique indexes limit in Sharding Operational Restrictions.

Capped Collections

	
Maximum Number of Documents in a Capped Collection

	
Changed in version 2.4.

If you specify a maximum number of documents for a capped
collection using the max parameter to
create, the limit must be less than 232
documents. If you do not specify a maximum number of documents when
creating a capped collection, there is no limit on the number of
documents.

Data Size

	
Data Size

	A single mongod instance cannot manage a data set that
exceeds maximum virtual memory address space provided by the
underlying operating system.

Virtual Memory Limitations

	Operating System
	Journaled
	Not Journaled

	Linux
	64 terabytes
	128 terabytes

	Windows
	4 terabytes
	8 terabytes

Replica Sets

	
Number of Members of a Replica Set

	Replica sets can have no more than 12 members.

	
Number of Voting Members of a Replica Set

	Only 7 members of a replica set can have votes at any given
time. See can vote Non-Voting Members for more information

Sharded Clusters

Sharded clusters have the restrictions and thresholds described here.

Sharding Operational Restrictions

	
Operations Unavailable in Sharded Environments

	The group does not work with sharding. Use
mapReduce or aggregate instead.

db.eval() is incompatible with sharded collections. You may
use db.eval() with un-sharded collections in a shard
cluster.

$where does not permit references to the db object
from the $where function. This is uncommon in
un-sharded collections.

The $isolated update modifier does not work in sharded
environments.

$snapshot queries do not work in sharded environments.

The geoSearch command is not supported in sharded
environments.

	
Sharding Existing Collection Data Size

	For existing collections that hold documents, MongoDB supports
enabling sharding on any collections that contains less than 256
gigabytes of data. MongoDB may be able to shard collections with as
many as 400 gigabytes depending on the distribution of document
sizes. The precise size of the limitation is a function of the
chunk size and the data size.

Important

Sharded collections may have any size, after
successfully enabling sharding.

	
Single Document Modification Operations in Sharded Collections

	All single update() and
remove() operations must include the
shard key or the _id field in the query
specification. update() or
remove() operations that affect a single
document in a sharded collection without the shard key or
the _id field return an error.

	
Unique Indexes in Sharded Collections

	MongoDB does not support unique indexes across shards, except when
the unique index contains the full shard key as a prefix of the
index. In these situations MongoDB will enforce uniqueness across
the full key, not a single field.

See

Enforce Unique Keys for Sharded Collections
for an alternate approach.

Shard Key Limitations

	
Shard Key Size

	A shard key cannot exceed 512 bytes.

	
Shard Key is Immutable

	You cannot change a shard key after sharding the collection. If
you must change a shard key:

	Dump all data from MongoDB into an external format.

	Drop the original sharded collection.

	Configure sharding using the new shard key.

	Pre-split the shard
key range to ensure initial even distribution.

	Restore the dumped data into MongoDB.

	
Shard Key Value in a Document is Immutable

	After you insert a document into a sharded collection, you cannot
change the document’s value for the field or fields that comprise
the shard key. The update() operation will
not modify the value of a shard key in an existing document.

	
Monotonically Increasing Shard Keys Can Limit Insert Throughput

	For clusters with high insert volumes, a shard keys with
monotonically increasing and decreasing keys can affect insert
throughput. If you use the _id field that holds default as the
shard key, be aware that the default value of the _id field,
ObjectID values, this shard key will be monotonically
increasing because ObjectID values increment as time-stamps.

When inserting documents with monotonically increasing shard keys, all
inserts belong to the same chunk on a single
shard. The system will eventually divide the
chunk range that receives all write operations
and migrate its contents to distribute data more evenly. However, at any
moment the cluster can direct insert operations only to a single
shard, which creates an insert throughput bottleneck.

If the operations on the cluster are predominately read operations
and updates, this limitation may not affect the cluster.

To avoid this constraint, use a hashed shard key or select a field that does not
increase or decrease monotonically.

Changed in version 2.4: Hashed shard keys and
hashed indexes store hashes of keys
with ascending values.

Operations

	
Sorted Documents

	MongoDB will only return sorted results on fields without an index
if the sort operation uses less than 32 megabytes of memory.

	
Aggregation Pipeline Operation

	
Changed in version 2.5.3.

Pipeline stages have a limit of 100 megabytes of RAM. If a stage
exceeds this limit, MongoDB will produce an error. To allow for the
handling of large datasets, use the allowDiskUsage option to enable
aggregation pipeline stages to write data to temporary files.

See also

$sort and Memory Restrictions and $group Operator and Memory.

	
2d Geospatial queries cannot use the $or operator

	
See

$or and 2d Index Internals.

	
Spherical Polygons must fit within a hemisphere.

	Any geometry specified with GeoJSON to $geoIntersects or $geoWithin
queries, must fit within a single hemisphere. MongoDB interprets
geometries larger than half of the sphere as queries for the smaller
of the complementary geometries.

	
Combination Limit with Multiple $in Expressions

	Querying with two or more $in expressions (e.g. { a: { $in:
["a", "b", "c"] }, b: { $in: ["b", "c"] } }) can hit a
combinatorial limit if the query uses a compound index on these fields
(e.g. { a: 1, b: 1 }). Specifically, if the number of combinations
(i.e. the product of the number of distinct elements in the
respective arrays) is equal to or greater than 4000000, MongoDB will
throw an exception of "combinatorial limit of $in partitioning of
result set exceeded".

Naming Restrictions

	
Database Name Case Sensitivity

	Database names are case sensitive even if the underlying file
system is case insensitive. MongoDB does not permit database names
that differ only by the case of the characters.

	
Restrictions on Database Names for Windows

	
Changed in version 2.2: Restrictions on Database Names for Windows.

For MongoDB deployments running on Windows, MongoDB will not permit
database names that include any of the following characters:

/\. "*<>:|?

Also, database names cannot contain the null character.

	
Restrictions on Database Names for Unix and Linux Systems

	For MongoDB deployments running on Unix and Linux systems, MongoDB
will not permit database names that include any of the following
characters:

/\. "

Also, database names cannot contain the null character.

	
Length of Database Names

	Database names cannot be empty and must have fewer than 64
characters.

	
Restriction on Collection Names

	
New in version 2.2.

Collection names should begin with an underscore or a letter
character, and cannot:

	contain the $.

	be an empty string (e.g. "").

	contain the null character.

	begin with the system. prefix. (Reserved for internal use.)

In the mongo shell, use db.getCollection() to
specify collection names that might interact with the shell or are
not valid JavaScript.

	
Restrictions on Field Names

	Field names cannot contain dots (i.e. .), dollar signs
(i.e. $), or null characters. See
Dollar Sign Operator Escaping for an alternate approach.

 Connection String URI Format

Connection String URI Format

This document describes the URI format for defining connections between
applications and MongoDB instances in the official MongoDB drivers.

Standard Connection String Format

This section describes the standard format of the MongoDB connection URI
used to connect to a MongoDB database server. The format is the same for
all official MongoDB drivers. For a list of drivers and links to driver
documentation, see MongoDB Drivers and Client Libraries.

The following is the standard URI connection scheme:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]

The components of this string are:

	mongodb://

A required prefix to identify that this is a string in the standard
connection format.

	username:password@

Optional. If specified, the client will attempt to log in to the
specific database using these credentials after connecting to the
mongod instance.

	host1

This the only required part of the URI. It identifies a server
address to connect to. It identifies either a hostname, IP address,
or UNIX domain socket.

	:port1

Optional. The default value is :27017 if not specified.

	hostX

Optional. You can specify as many hosts as necessary. You would
specify multiple hosts, for example, for connections to replica
sets.

	:portX

Optional. The default value is :27017 if not specified.

	/database

Optional. The name of the database to authenticate if the
connection string includes authentication credentials in the form
of username:password@. If /database is not specified and
the connection string includes credentials, the driver will
authenticate to the admin database.

	?options

Connection specific options. See
Connection String Options for a full description of
these options.

If the connection string does not specify a database/ you must
specify a slash (i.e. /) between the last hostN and the
question mark that begins the string of options.

Example

To describe a connection to a replica set named test,
with the following mongod hosts:

	db1.example.net on port 27017 and

	db2.example.net on port 2500.

You would use a connection string that resembles the following:

mongodb://db1.example.net,db2.example.net:2500/?replicaSet=test

Connection String Options

This section lists all connection options used in the
Standard Connection String Format.The options are
not case-sensitive.

Connection options are pairs in the following form:
name=value. Separate options with the ampersand (i.e. &)
character. In the following example, a connection uses the
replicaSet and connectTimeoutMS options:

mongodb://db1.example.net,db2.example.net:2500/?replicaSet=test&connectTimeoutMS=300000

Semi-colon separator for connection string arguments

To provide backwards compatibility, drivers currently accept
semi-colons (i.e. ;) as option separators.

Replica Set Option

	
uri.replicaSet

	Specifies the name of the replica set, if the
mongod is a member of a replica set.

When connecting to a replica set it is important to give a seed
list of at least two mongod instances. If you only
provide the connection point of a single mongod
instance, and omit the replicaSet, the client will create a
standalone connection.

Connection Options

	
uri.ssl

	true: Initiate the connection with SSL.

false: Initiate the connection without SSL.

The default value is false.

Note

The ssl option is not supported by all
drivers. See your driver
documentation and the Connect to MongoDB with SSL
document.

	
uri.connectTimeoutMS

	The time in milliseconds to attempt a connection before timing out.
The default is never to timeout, though different drivers might
vary. See the driver documentation.

	
uri.socketTimeoutMS

	The time in milliseconds to attempt a send or receive on a socket
before the attempt times out. The default is never to timeout,
though different drivers might vary. See the driver documentation.

Connection Pool Options

Most drivers implement some kind of connection pooling handle this for
you behind the scenes. Some drivers do not support connection
pools. See your driver documentation
for more information on the connection pooling implementation. These
options allow applications to configure the connection pool when
connecting to the MongoDB deployment.

	
uri.maxPoolSize

	The maximum number of connections in the connection pool. The default
value is 100.

	
uri.minPoolSize

	The minimum number of connections in the connection pool. The default
value is 0.

Note

The minPoolSize option is not supported by all
drivers. For information on your driver, see the drivers documentation.

	
uri.maxIdleTimeMS

	The maximum number of milliseconds that a connection can remain
idle in the pool before being removed and closed.

This option is not supported by all drivers.

	
uri.waitQueueMultiple

	A number that the driver multiples the maxPoolSize value
to, to provide the maximum number of threads allowed to wait for a
connection to become available from the pool. For default values,
see the MongoDB Drivers and Client Libraries documentation.

	
uri.waitQueueTimeoutMS

	The maximum time in milliseconds that a thread can wait for a
connection to become available. For default values, see the
MongoDB Drivers and Client Libraries documentation.

Write Concern Options

Write concern describes the kind of assurances
that the program:mongod and the driver provide to the application
regarding the success and durability of the write operation. For a
full explanation of write concern and write operations in general see
the: Write Operations:

	
uri.w

	Defines the level and kind of write concern, that the driver uses
when calling getLastError. This option can take either
a number or a string as a value.

	Option
	Type
	Description

	-1
	number
	The driver will not acknowledge write operations and will suppress
all network or socket errors.

	0
	number
	The driver will not acknowledge write operations but will pass or
handle any network and socket errors that it receives to the client.
If you disable write concern but enable the getLastError
command’s w option, w overrides the w option.

	1
	number
	Provides basic acknowledgment of write operations. By specifying
1, you require that a standalone mongod instance, or
the primary for replica sets, acknowledge all
write operations. For drivers released after the default write
concern change, this is the
default write concern setting.

	majority
	string
	For replica sets, if you specify the special majority value to
w option, write operations will only return successfully
after a majority of the configured replica set members have
acknowledged the write operation.

	n
	number
	For replica sets, if you specify a number n greater than 1,
operations with this write concern return only after n members of
the set have acknowledged the write. If you set n to a number that
is greater than the number of available set members or members that
hold data, MongoDB will wait, potentially indefinitely, for these
members to become available.

	tags
	string
	For replica sets, you can specify a tag set to require that all members of
the set that have these tags configured return confirmation of the
write operation. See Replica Set Tag Set Configuration for more information.

	option number -1:

		The driver will not acknowledge write operations and will suppress all
network or socket errors.

	option number 0:

		The driver will not acknowledge write operations but will pass or
handle any network and socket errors that it receives to the
client. If you disable write concern but enable the
getLastError command’s w option, w overrides
the w option.

	option number 1:

		Provides basic acknowledgment of write operations. By specifying 1,
you require that a standalone mongod instance, or the
primary for replica sets, acknowledge all
write operations. For drivers released after the default
write concern change, this
is the default write concern setting.

	option string majority:

		For replica sets, if you specify the special majority value to
w option, write operations will only return
successfully after a majority of the configured replica set
members have acknowledged the write operation.

	option number n:

		For replica sets, if you specify a number n greater than 1,
operations with this write concern return only after n members
of the set have acknowledged the write. If you set n to a
number that is greater than the number of available set members or
members that hold data, MongoDB will wait, potentially
indefinitely, for these members to become available.

	option string tags:

		For replica sets, you can specify a tag set to require that all members
of the set that have these tags configured return confirmation of
the write operation. See Replica Set Tag Set Configuration for more information.

	
uri.wtimeoutMS

	The time in milliseconds to wait for replication to succeed, as
specified in the w option, before timing out. When wtimeoutMS is 0,
write operations will never time out.

	
uri.journal

	Controls whether write operations will wait until the
mongod acknowledges the write operations and commits the
data to the on disk journal.

	Option
	Type
	Description

	true
	Boolean
	Enables journal commit acknowledgment write concern. Equivalent to specifying
the getLastError command with the j option enabled.

	false
	Boolean
	Does not require that mongod commit write operations to the
journal before acknowledging the write operation. This is the default
option for the journal parameter.

	option Boolean true:

		Enables journal commit acknowledgment write concern. Equivalent to
specifying the getLastError command with the j
option enabled.

	option Boolean false:

		Does not require that mongod commit write operations to the
journal before acknowledging the write operation. This is the
default option for the journal parameter.

If you set journal to true, and specify a w
value less than 1, journal prevails.

If you set journal to true, and the mongod does
not have journaling enabled, as with nojournal, then
getLastError will provide basic receipt
acknowledgment (i.e. w:1), and will include a jnote field
in its return document.

Read Preference Options

Read preferences describe the
behavior of read operations with regards to replica sets. These parameters allow you to specify read preferences
on a per-connection basis in the connection string:

	
uri.readPreference

	Specifies the replica set read preference for this
connection. This setting overrides any slaveOk value. The read
preference values are the following:

	primary

	primaryPreferred

	secondary

	secondaryPreferred

	nearest

For descriptions of each value, see
Read Preference Modes.

The default value is primary, which sends all read
operations to the replica set’s primary.

	
uri.readPreferenceTags

	Specifies a tag set as a comma-separated list of
colon-separated key-value pairs. For example:

dc:ny,rack:1

To specify a list of tag sets, use multiple readPreferenceTags.
The following specifies two tag sets and an empty tag set:

readPreferenceTags=dc:ny,rack:1&readPreferenceTags=dc:ny&readPreferenceTags=

Order matters when using multiple readPreferenceTags.

Miscellaneous Configuration

	
uri.uuidRepresentation

	

	Option
	Description

	standard
	The standard binary representation.

	csharpLegacy
	The default representation for the C# driver.

	javaLegacy
	The default representation for the Java driver.

	pythonLegacy
	The default representation for the Python driver.

	option standard:

		The standard binary representation.

	option csharpLegacy:

		The default representation for the C# driver.

	option javaLegacy:

		The default representation for the Java driver.

	option pythonLegacy:

		The default representation for the Python driver.

For the default, see the drivers
documentation for your driver.

Note

Not all drivers support the uuidRepresentation
option. For information on your driver, see the drivers documentation.

Examples

The following provide example URI strings for common connection targets.

Database Server Running Locally

The following connects to a database server running locally on the
default port:

mongodb://localhost

admin Database

The following connects and logs in to the admin database as user
sysop with the password moon:

mongodb://sysop:moon@localhost

records Database

The following connects and logs in to the records database as user
sysop with the password moon:

mongodb://sysop:moon@localhost/records

UNIX Domain Socket

The following connects to a UNIX domain socket:

mongodb:///tmp/mongodb-27017.sock

Note

Not all drivers support UNIX domain sockets. For information
on your driver, see the drivers
documentation.

Replica Set with Members on Different Machines

The following connects to a replica set with two members, one on
db1.example.net and the other on db2.example.net:

mongodb://db1.example.net,db2.example.com

Replica Set with Members on localhost

The following connects to a replica set with three members running on localhost on
ports 27017, 27018, and 27019:

mongodb://localhost,localhost:27018,localhost:27019

Replica Set with Read Distribution

The following connects to a replica set with three members and
distributes reads to the secondaries:

mongodb://example1.com,example2.com,example3.com/?readPreference=secondary

Replica Set with a High Level of Write Concern

The following connects to a replica set with write concern configured to wait for
replication to succeed on at least two members, with a two-second
timeout.

mongodb://example1.com,example2.com,example3.com/?w=2&wtimeoutMS=2000

 Glossary

Glossary

	$cmd

	A special virtual collection that exposes MongoDB’s
database commands.
To use database commands, see Issue Commands.

	_id

	A field required in every MongoDB document. The _id
field must have a unique value. You can
think of the _id field as the document’s primary key.
If you create a new document without an _id field, MongoDB
automatically creates the field and assigns a unique
BSON ObjectId.

	accumulator

	An expression in the aggregation framework that
maintains state between documents in the aggregation
pipeline. For a list of accumulator operations, see
$group.

	admin database

	A privileged database. Users
must have access to the admin database to run certain
administrative commands. For a list of administrative commands,
see Instance Administration Commands.

	aggregation

	Any of a variety of operations that reduces and summarizes large
sets of data. MongoDB’s aggregate() and
mapReduce() methods are two
examples of aggregation operations. For more information, see
Aggregation Concepts.

	aggregation framework

	The set of MongoDB operators that let you calculate aggregate
values without having to use map-reduce. For a list of
operators, see Aggregation Reference.

	arbiter

	A member of a replica set that exists solely to vote in
elections. Arbiters do not replicate data. See
Replica Set Arbiter.

	B-tree

	A data structure commonly used by database management systems to
store indexes. MongoDB uses B-trees for its indexes.

	balancer

	An internal MongoDB process that runs in the context of a
sharded cluster and manages the migration of chunks. Administrators must disable the balancer for all
maintenance operations on a sharded cluster. See
Sharded Collection Balancing.

	BSON

	A serialization format used to store documents and make remote
procedure calls in MongoDB. “BSON” is a portmanteau of the words
“binary” and “JSON”. Think of BSON as a binary representation
of JSON (JavaScript Object Notation) documents.

See also

Documents, BSON Types and
Data Type Fidelity

	BSON types

	The set of types supported by the BSON serialization
format. For a list of BSON types, see BSON Types.

	CAP Theorem

	Given three properties of computing systems, consistency,
availability, and partition tolerance, a distributed computing
system can provide any two of these features, but never all
three.

	capped collection

	A fixed-sized collection that automatically
overwrites its oldest entries when it reaches its maximum size.
The MongoDB oplog that is used in replication is a
capped collection. See Capped Collections.

	checksum

	A calculated value used to ensure data integrity.
The md5 algorithm is sometimes used as a checksum.

	chunk

	A contiguous range of shard key values within a particular
shard. Chunk ranges are inclusive of the lower boundary
and exclusive of the upper boundary. MongoDB splits chunks when
they grow beyond the configured chunk size, which by default is
64 megabytes. MongoDB migrates chunks when a shard contains too
many chunks of a collection relative to other shards. See
Data Partitioning and Sharding Mechanics.

	client

	The application layer that uses a database for data persistence
and storage. Drivers provide the interface
level between the application layer and the database server.

	cluster

	See sharded cluster.

	collection

	A grouping of MongoDB documents. A collection
is the equivalent of an RDBMS table. A collection exists
within a single database. Collections do not enforce a
schema. Documents within a collection can have different fields.
Typically, all documents in a collection have a similar or related
purpose. See What is a namespace in MongoDB?.

	compound index

	An index consisting of two or more keys. See
Compound Indexes.

	config database

	An internal database that holds the metadata associated with a
sharded cluster. Applications and administrators should
not modify the config database in the course of normal
operation. See Config Database.

	config server

	A mongod instance that stores all the metadata
associated with a sharded cluster. A production sharded
cluster requires three config servers, each on a separate machine.
See Config Servers.

	control script

	A simple shell script, typically located in the /etc/rc.d or
/etc/init.d directory, and used by the system’s initialization
process to start, restart or stop a daemon process.

	CRUD

	An acronym for the fundamental operations of a database: Create,
Read, Update, and Delete. See MongoDB CRUD Operations.

	CSV

	A text-based data format consisting of comma-separated values.
This format is commonly used to exchange data between relational
databases since the format is well-suited to tabular data. You can
import CSV files using mongoimport.

	cursor

	A pointer to the result set of a query. Clients can
iterate through a cursor to retrieve results. By default, cursors
timeout after 10 minutes of inactivity. See
Cursors.

	daemon

	The conventional name for a background, non-interactive
process.

	data-center awareness

	A property that allows clients to address members in a system
based on their locations. Replica sets
implement data-center awareness using tagging. See
Data Center Awareness.

	database

	A physical container for collections.
Each database gets its own set of files on the file
system. A single MongoDB server typically has multiple
databases.

	database command

	A MongoDB operation, other than an insert, update, remove, or
query. For a list of database commands, see
Database Commands. To use database commands, see
Issue Commands.

	database profiler

	A tool that, when enabled, keeps a record on all long-running
operations in a database’s system.profile collection. The
profiler is most often used to diagnose slow queries. See
Database Profiling.

	datum

	A set of values used to define measurements on the earth. MongoDB
uses the WGS84 datum in certain geospatial
calculations. See Geospatial Indexes and Queries.

	dbpath

	The location of MongoDB’s data file storage. See
dbpath.

	delayed member

	A replica set member that cannot become primary and
applies operations at a specified delay. The delay is useful for
protecting data from human error (i.e. unintentionally deleted
databases) or updates that have unforeseen effects on the
production database. See Delayed Replica Set Members.

	diagnostic log

	A verbose log of operations stored in the dbpath.
See diaglog.

	document

	A record in a MongoDB collection and the basic unit of
data in MongoDB. Documents are analogous to JSON objects
but exist in the database in a more type-rich format known as
BSON. See Documents.

	dot notation

	MongoDB uses the dot notation to access the elements of an array
and to access the fields of a subdocument. See
Dot Notation.

	draining

	The process of removing or “shedding” chunks from
one shard to another. Administrators must drain shards
before removing them from the cluster. See
Remove Shards from an Existing Sharded Cluster.

	driver

	A client library for interacting with MongoDB in a particular
language. See MongoDB Drivers and Client Libraries.

	election

	The process by which members of a replica set select a
primary on startup and in the event of a failure. See
Replica Set Elections.

	eventual consistency

	A property of a distributed system that allows changes to the
system to propagate gradually. In a database system, this means
that readable members are not required to reflect the latest
writes at all times. In MongoDB, reads to a primary have
strict consistency; reads to secondaries have eventual
consistency.

	expression

	In the context of aggregation framework, expressions are
the stateless transformations that operate on the data that passes
through a pipeline. See Aggregation Concepts.

	failover

	The process that allows a secondary member of a
replica set to become primary in the event of a
failure. See Replica Set High Availability.

	field

	A name-value pair in a document. A document has
zero or more fields. Fields are analogous to columns in relational
databases.

	firewall

	A system level networking filter that restricts access based on,
among other things, IP address. Firewalls form a part of an
effective network security strategy. See
Firewalls.

	fsync

	A system call that flushes all dirty, in-memory pages to
disk. MongoDB calls fsync() on its database files at least
every 60 seconds. See fsync.

	geohash

	A geohash value is a binary representation of the location on a
coordinate grid. See Calculation of Geohash Values for 2d Indexes.

	GeoJSON

	A geospatial data interchange format based on JavaScript
Object Notation (JSON). GeoJSON is used in
geospatial queries. For
supported GeoJSON objects, see Location Data.
For the GeoJSON format specification, see
http://geojson.org/geojson-spec.html.

	geospatial

	Data that relates to geographical location. In MongoDB, you may
store, index, and query data according to geographical parameters.
See Geospatial Indexes and Queries.

	GridFS

	A convention for storing large files in a MongoDB database. All of
the official MongoDB drivers support this convention, as does the
mongofiles program. See GridFS.

	hashed shard key

	A special type of shard key that uses a hash of the value
in the shard key field to distribute documents among members of
the sharded cluster. See Hashed Index.

	haystack index

	A geospatial index that enhances searches by creating
“buckets” of objects grouped by a second criterion. See
Haystack Indexes.

	hidden member

	A replica set member that cannot become primary
and are invisible to client applications. See
Hidden Replica Set Members.

	idempotent

	The quality of an operation to produce the same result given the
same input, whether run once or run multiple times.

	index

	A data structure that optimizes queries. See Index Concepts.

	initial sync

	The replica set operation that replicates data from an
existing replica set member to a new or restored replica set
member. See Initial Sync.

	Interrupt Point

	A time in an operation’s lifecycle when it can
safely abort. MongoDB only terminates an operation
at one of its designated interrupt points. See
Terminate Running Operations.

	IPv6

	A revision to the IP (Internet Protocol) standard that
provides a significantly larger address space to more effectively
support the number of hosts on the contemporary Internet.

	ISODate

	The international date format used by mongo
to display dates. The format is: YYYY-MM-DD HH:MM.SS.millis.

	JavaScript

	A popular scripting language originally designed for web
browsers. The MongoDB shell and certain server-side functions use
a JavaScript interpreter. See
Server-side JavaScript for more information.

	journal

	A sequential, binary transaction log used to bring the database
into a consistent state in the event of a hard shutdown.
Journaling writes data first to the journal and then to the core
data files. MongoDB enables journaling by default for 64-bit
builds of MongoDB version 2.0 and newer. Journal files are
pre-allocated and exist as files in the data directory. See
Journaling Mechanics.

	JSON

	JavaScript Object Notation. A human-readable, plain text format
for expressing structured data with support in many programming
languages. For more information, see http://www.json.org.
Certain MongoDB tools render an approximation of MongoDB
BSON documents in JSON format. See
MongoDB Extended JSON.

	JSON document

	A JSON document is a collection of fields and values in a
structured format. For sample JSON documents, see
http://json.org/example.html.

	JSONP

	JSON with Padding. Refers to a method of injecting JSON
into applications. Presents potential security concerns.

	legacy coordinate pairs

	The format used for geospatial data prior to MongoDB
version 2.4. This format stores geospatial data as points on a
planar coordinate system (e.g. [x, y]). See
Geospatial Indexes and Queries.

	LineString

	A LineString is defined by an array of two or more positions. A
closed LineString with four or more positions is called a
LinearRing, as described in the GeoJSON LineString specification:
http://geojson.org/geojson-spec.html#linestring. To use a
LineString in MongoDB, see
Store GeoJSON Objects.

	LVM

	Logical volume manager. LVM is a program that abstracts disk
images from physical devices and provides a number of raw disk
manipulation and snapshot capabilities useful for system
management. For information on LVM and MongoDB, see
Backup and Restore Using LVM on a Linux System.

	map-reduce

	A data processing and aggregation paradigm consisting of a “map”
phase that selects data and a “reduce” phase that transforms the
data. In MongoDB, you can run arbitrary aggregations over data
using map-reduce. For map-reduce implementation, see
Map-Reduce. For all approaches to aggregation,
see Aggregation Concepts.

	mapping type

	A Structure in programming languages that associate keys with
values, where keys may nest other pairs of keys and values
(e.g. dictionaries, hashes, maps, and associative arrays).
The properties of these structures depend on the language
specification and implementation. Generally the order of keys in
mapping types is arbitrary and not guaranteed.

	master

	The database that receives all writes in a conventional
master-slave replication. In MongoDB, replica
sets replace master-slave replication for most use
cases. For more information on master-slave replication, see
Master Slave Replication.

	md5

	A hashing algorithm used to efficiently provide
reproducible unique strings to identify and checksum
data. MongoDB uses md5 to identify chunks of data for
GridFS. See filemd5.

	MIME

	Multipurpose Internet Mail Extensions. A standard set of type and
encoding definitions used to declare the encoding and type of data
in multiple data storage, transmission, and email contexts. The
mongofiles tool provides an option to specify a MIME
type to describe a file inserted into GridFS storage.

	mongo

	The MongoDB shell. The mongo process starts the MongoDB
shell as a daemon connected to either a mongod or
mongos instance. The shell has a JavaScript interface.
See mongo and mongo Shell Methods.

	mongod

	The MongoDB database server. The mongod process starts
the MongoDB server as a daemon. The MongoDB server manages data
requests and formats and manages background operations. See
mongod.

	MongoDB

	An open-source document-based database system. “MongoDB” derives
from the word “humongous” because of the database’s ability to
scale up with ease and hold very large amounts of data. MongoDB
stores documents in collections within databases.

	mongos

	The routing and load balancing process that acts an interface
between an application and a MongoDB sharded cluster. See
mongos.

	namespace

	The canonical name for a collection or index in MongoDB.
The namespace is a combination of the database name and
the name of the collection or index, like so:
[database-name].[collection-or-index-name]. All documents
belong to a namespace. See What is a namespace in MongoDB?.

	natural order

	The order that a database stores documents on disk. Typically,
the order of documents on disks reflects insertion order, except
when a document moves internally because an update operation
increases its size. In capped collections, documents do not move internally, and therefore
insertion order and natural order are identical in capped
collections. MongoDB returns documents in forward natural order
for a find() query with no parameters.
MongoDB returns documents in reverse natural order for a
find() query sorted with a parameter of $natural:-1. See
$natural.

	ObjectId

	A special 12-byte BSON type that guarantees uniqueness
within the collection. The ObjectID is generated based on
timestamp, machine ID, process ID, and a process-local incremental
counter. MongoDB uses ObjectId values as the default values for
_id fields.

	operator

	A keyword beginning with a $ used to express an update,
complex query, or data transformation. For example, $gt is the
query language’s “greater than” operator. For available operators,
see Operators.

	oplog

	A capped collection that stores an ordered history of
logical writes to a MongoDB database. The oplog is the
basic mechanism enabling replication in MongoDB.
See Replica Set Oplog.

	ordered query plan

	A query plan that returns results in the order consistent with the
sort() order. See
Query Plans.

	orphaned document

	In a sharded cluster, an orphaned documents are those documents
on a shard that exist in chunks on other shards. Delete orphaned
documents using cleanupOrphaned to reclaim
disk space and reduce confusion.

	padding

	The extra space allocated to document on the disk to prevent
moving a document when it grows as the result of
update()
operations. See Padding Factor.

	padding factor

	An automatically-calibrated constant used to determine how much
extra space MongoDB should allocate per document container on disk.
A padding factor of 1 means that MongoDB will allocate only the
amount of space needed for the document. A padding factor of 2
means that MongoDB will allocate twice the amount of space
required by the document. See
Padding Factor.

	page fault

	The event that occurs when a process requests stored data
(i.e. a page) from memory that the operating system has moved to
disk. See What are page faults?.

	partition

	A distributed system architecture that splits data into ranges.
Sharding uses partitioning. See
Data Partitioning.

	passive member

	A member of a replica set that cannot become primary
because its priority is
0. See Priority 0 Replica Set Members.

	pcap

	A packet-capture format used by mongosniff to record
packets captured from network interfaces and display them as
human-readable MongoDB operations. See Options.

	PID

	A process identifier. UNIX-like systems assign a unique-integer
PID to each running process. You can use a PID to inspect a
running process and send signals to it. See
/proc File System.

	pipe

	A communication channel in UNIX-like systems allowing independent
processes to send and receive data. In the UNIX shell, piped
operations allow users to direct the output of one command into
the input of another.

	pipeline

	A series of operations in an aggregation process.
See Aggregation Concepts.

	Point

	A single coordinate pair as described in the GeoJSON Point
specification: http://geojson.org/geojson-spec.html#point. To
use a Point in MongoDB, see
Store GeoJSON Objects.

	Polygon

	An array of LinearRing coordinate arrays, as
described in the GeoJSON Polygon specification:
http://geojson.org/geojson-spec.html#polygon. For Polygons
with multiple rings, the first must be the exterior ring and
any others must be interior rings or holes.

MongoDB does not permit the exterior ring to self-intersect.
Interior rings must be fully contained within the outer loop and
cannot intersect or overlap with each other. See
Store GeoJSON Objects.

	powerOf2Sizes

	A per-collection setting that changes and normalizes the way
MongoDB allocates space for each document, in an effort to
maximize storage reuse and to reduce fragmentation. This is the
default for TTL Collections. See
collMod and
usePowerOf2Sizes.

	pre-splitting

	An operation performed before inserting data that divides the
range of possible shard key values into chunks to facilitate easy
insertion and high write throughput. In some cases pre-splitting
expedites the initial distribution of documents in sharded
cluster by manually dividing the collection rather than waiting
for the MongoDB balancer to do so. See
Create Chunks in a Sharded Cluster.

	primary

	In a replica set, the primary member is the current
master instance, which receives all write operations.
See Primary.

	primary key

	A record’s unique immutable identifier. In an RDBMS, the primary
key is typically an integer stored in each row’s id field.
In MongoDB, the _id field holds a document’s primary
key which is usually a BSON ObjectId.

	primary shard

	The shard that holds all the un-sharded collections. See
Primary Shard.

	priority

	A configurable value that helps determine which members in
a replica set are most likely to become primary.
See priority.

	projection

	A document given to a query that specifies which fields
MongoDB returns in the result set. See Limit Fields to Return from a Query. For a
list of projection operators, see
Projection Operators.

	query

	A read request. MongoDB uses a JSON-like query language
that includes a variety of query operators with
names that begin with a $ character. In the mongo
shell, you can issue queries using the
find() and
findOne() methods. See
Read Operations.

	query optimizer

	A process that generates query plans. For each query, the
optimizer generates a plan that matches the query to the index
that will return results as efficiently as possible. The
optimizer reuses the query plan each time the query runs. If a
collection changes significantly, the optimizer creates a new
query plan. See Query Plans.

	RDBMS

	Relational Database Management System. A database management
system based on the relational model, typically using
SQL as the query language.

	read lock

	In the context of a reader-writer lock, a lock that while held
allows concurrent readers but no writers. See
What type of locking does MongoDB use?.

	read preference

	A setting that determines how clients direct read operations. Read
preference affects all replica sets, including shards. By default,
MongoDB directs reads to primaries for
strict consistency. However, you may also direct reads to
secondaries for eventually consistent reads. See Read Preference.

	record size

	The space allocated for a document including the padding. For more
information on padding, see Padding Factor
and compact.

	recovering

	A replica set member status indicating that a member
is not ready to begin normal activities of a secondary or primary.
Recovering members are unavailable for reads.

	replica pairs

	The precursor to the MongoDB replica sets.

Deprecated since version 1.6.

	replica set

	A cluster of MongoDB servers that implements master-slave
replication and automated failover. MongoDB’s recommended
replication strategy. See Replication.

	replication

	A feature allowing multiple database servers to share the same
data, thereby ensuring redundancy and facilitating load balancing.
See Replication.

	replication lag

	The length of time between the last operation in the
primary’s oplog and the last operation
applied to a particular secondary. In general, you want to
keep replication lag as small as possible. See Replication
Lag.

	resident memory

	The subset of an application’s memory currently stored in
physical RAM. Resident memory is a subset of virtual memory,
which includes memory mapped to physical RAM and to disk.

	REST

	An API design pattern centered around the idea of resources and the
CRUD operations that apply to them. Typically REST is
implemented over HTTP. MongoDB provides a simple HTTP REST
interface that allows HTTP clients to run commands against the
server. See REST Interface and REST API.

	rollback

	A process that reverts writes operations to ensure the consistency
of all replica set members. See Rollbacks During Replica Set Failover.

	secondary

	A replica set member that replicates the contents of the
master database. Secondary members may handle read requests, but
only the primary members can handle write operations. See
Secondaries.

	secondary index

	A database index that improves query performance by
minimizing the amount of work that the query engine must perform
to fulfill a query. See Indexes.

	set name

	The arbitrary name given to a replica set. All members of a
replica set must have the same name specified with the
replSet setting or the --replSet option.

	shard

	A single mongod instance or replica set that
stores some portion of a sharded cluster’s total data set. In production, all shards should be
replica sets. See Shards.

	shard key

	The field MongoDB uses to distribute documents among members of a
sharded cluster. See Shard Keys.

	sharded cluster

	The set of nodes comprising a sharded MongoDB
deployment. A sharded cluster consists of three config processes,
one or more replica sets, and one or more mongos
routing processes. See Sharded Cluster Components.

	sharding

	A database architecture that partitions data by key ranges and
distributes the data among two or more database instances.
Sharding enables horizontal scaling. See Sharding.

	shell helper

	A method in the mongo shell that provides a more concise
syntax for a database command. Shell helpers
improve the general interactive experience. See
mongo Shell Methods.

	single-master replication

	A replication topology where only a single database
instance accepts writes. Single-master replication ensures
consistency and is the replication topology employed by MongoDB.
See Replica Set Primary.

	slave

	A read-only database that replicates operations from a
master database in conventional master/slave replication.
In MongoDB, replica sets replace
master/slave replication for most use cases. However, for
information on master/slave replication, see
Master Slave Replication.

	split

	The division between chunks in a sharded
cluster. See Chunk Splits in a Sharded Cluster.

	SQL

	Structured Query Language (SQL) is a common special-purpose
programming language used for interaction with a relational
database, including access control, insertions,
updates, queries, and deletions. There are some similar
elements in the basic SQL syntax supported by different database
vendors, but most implementations have their own dialects, data
types, and interpretations of proposed SQL standards. Complex
SQL is generally not directly portable between major
RDBMS products. SQL is often used as
metonym for relational databases.

	SSD

	Solid State Disk. A high-performance disk drive that uses solid
state electronics for persistence, as opposed to the rotating platters
and movable read/write heads used by traditional mechanical hard drives.

	stale

	Refers to the amount of time a secondary member of a
replica set trails behind the current state of the
primary’soplog. If a secondary
becomes too stale, it can no longer use replication to catch up
to the current state of the primary. See
Replica Set Oplog and Replica Set Data Synchronization
for more information.

	standalone

	An instance of mongod that is running as a single
server and not as part of a replica set. To convert a
standalone into a replica set, see
Convert a Standalone to a Replica Set.

	strict consistency

	A property of a distributed system requiring that all members
always reflect the latest changes to the system. In a database
system, this means that any system that can provide data must
reflect the latest writes at all times. In MongoDB, reads from a
primary have strict consistency; reads from secondary
members have eventual consistency.

	sync

	The replica set operation where members replicate data
from the primary. Sync first occurs when MongoDB creates
or restores a member, which is called initial sync. Sync
then occurs continually to keep the member updated with changes to
the replica set’s data. See Replica Set Data Synchronization.

	syslog

	On UNIX-like systems, a logging process that provides a uniform
standard for servers and processes to submit logging information.
MongoDB provides an option to send output to the host’s syslog
system. See syslog.

	tag

	A label applied to a replica set member or shard and used by
clients to issue data-center-aware operations. For more information
on using tags with replica sets and with shards, see the following
sections of this manual: Tag Sets
and Behavior and Operations.

	TSV

	A text-based data format consisting of tab-separated values.
This format is commonly used to exchange data between relational
databases, since the format is well-suited to tabular data. You can
import TSV files using mongoimport.

	TTL

	Stands for “time to live” and represents an expiration time or
period for a given piece of information to remain in a cache or
other temporary storage before the system deletes it or ages it
out. MongoDB has a TTL collection feature. See
Expire Data from Collections by Setting TTL.

	unique index

	An index that enforces uniqueness for a particular field across
a single collection. See Unique Indexes.

	unordered query plan

	A query plan that returns results in an order inconsistent with the
sort() order.
See Query Plans.

	upsert

	An operation that will either update the first document matched by
a query or insert a new document if none matches. The new document
will have the fields implied by the operation. You perform upserts
with the update() operation. See
Upsert Parameter.

	virtual memory

	An application’s working memory, typically residing on both
disk an in physical RAM.

	WGS84

	The default datum MongoDB uses to calculate geometry over
an Earth-like sphere. MongoDB uses the WGS84 datum for
geospatial queries on GeoJSON objects. See
the “EPSG:4326: WGS 84” specification:
http://spatialreference.org/ref/epsg/4326/.

	working set

	The data that MongoDB uses most often. This data is preferably
held in RAM, solid-state drive (SSD), or other fast media. See
What is the working set?.

	write concern

	Specifies whether a write operation has succeeded. Write concern
allows your application to detect insertion errors or unavailable
mongod instances. For replica sets, you can configure write concern to confirm replication to a
specified number of members. See Write Concern.

	write lock

	A lock on the database for a given writer. When a process writes
to the database, it takes an exclusive write lock to prevent other
processes from writing or reading. For more information on locks,
see FAQ: Concurrency.

	writeBacks

	The process within the sharding system that ensures that writes
issued to a shard that is not responsible for the
relevant chunk get applied to the proper shard. For related
information, see What does writebacklisten in the log mean? and
writeBacksQueued.

 Release Notes

Release Notes

Always install the latest, stable version of MongoDB. See
MongoDB Version Numbers for more information.

See the following release notes for an account of the changes in major
versions. Release notes also include instructions for upgrade.

Current Stable Release

(2.4-series)

	Release Notes for MongoDB 2.4

See Changes in MongoDB 2.4 for an overview of all changes
in 2.4.

Previous Stable Releases

	Release Notes for MongoDB 2.2

	Release Notes for MongoDB 2.0

	Release Notes for MongoDB 1.8

	Release Notes for MongoDB 1.6

	Release Notes for MongoDB 1.4

	Release Notes for MongoDB 1.2.x

Current Development Series

	Release Notes for MongoDB 2.6 (Development Series 2.5.x)

Other MongoDB Release Notes

	Default Write Concern Change
	Changes

	Releases

MongoDB Version Numbers

For MongoDB 2.4.1, 2.4 refers to the release series and .1 refers
to the revision. The second component of the release series (e.g. 4
in 2.4.1) describes the type of release series. Release series ending
with even numbers (e.g. 4 above) are stable and ready for
production, while odd numbers are for development and testing only.

Generally, changes in the release series (e.g. 2.2 to 2.4)
mark the introduction of new features that may break backwards
compatibility. Changes to the revision number mark the release bug
fixes and backwards-compatible changes.

Important

Always upgrade to the latest stable revision of your
release series.

The version numbering system for MongoDB differs from the system
used for the MongoDB drivers. Drivers use only the first number to indicate
a major version. For details, see Driver Version Numbers.

Example

Version numbers

	2.0.0 : Stable release.

	2.0.1 : Revision.

	2.1.0 : Development release for testing only. Includes new features and changes for
testing. Interfaces and stability may not be compatible in
development releases.

	2.2.0 : Stable release. This is a culmination of the 2.1.x
development series.

 Release Notes for MongoDB 2.4

Release Notes for MongoDB 2.4

March 19, 2013

Changes for 2.4

	Minor Releases

	Major New Features

	Security Enhancements

	Performance Improvements

	Enterprise

	Additional Information

MongoDB 2.4 includes enhanced geospatial support, switch to V8 JavaScript
engine, security enhancements, and text search (beta) and hashed index.

Minor Releases

2.4.7 - October 21, 2013

	Fixed over-aggressive caching of V8 Isolates SERVER-10596 [https://jira.mongodb.org/browse/SERVER-10596].

	Removed extraneous initial count during mapReduce
SERVER-9907 [https://jira.mongodb.org/browse/SERVER-9907].

	Cache results of dbhash command SERVER-11021 [https://jira.mongodb.org/browse/SERVER-11021].

	Fixed memory leak in aggregation SERVER-10554 [https://jira.mongodb.org/browse/SERVER-10554].

	All 2.4.7 improvements [https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.7%22%20AND%20project%20%3D%20SERVER].

2.4.6 - August 20, 2013

	Fix for possible loss of documents during the chunk migration process
if a document in the chunk is very large SERVER-10478 [https://jira.mongodb.org/browse/SERVER-10478].

	Fix for C++ client shutdown issues SERVER-8891 [https://jira.mongodb.org/browse/SERVER-8891].

	Improved replication robustness in presence of high network latency
SERVER-10085 [https://jira.mongodb.org/browse/SERVER-10085].

	Improved Solaris support SERVER-9832 [https://jira.mongodb.org/browse/SERVER-9832], SERVER-9786 [https://jira.mongodb.org/browse/SERVER-9786],
and SERVER-7080 [https://jira.mongodb.org/browse/SERVER-7080].

	All 2.4.6 improvements [https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.6%22%20AND%20project%20%3D%20SERVER].

2.4.5 - July 3, 2013

	Fix for CVE-2013-4650 Improperly grant user system privileges on
databases other than local SERVER-9983 [https://jira.mongodb.org/browse/SERVER-9983].

	Fix for CVE-2013-3969 Remotely triggered segmentation fault in Javascript engine
SERVER-9878 [https://jira.mongodb.org/browse/SERVER-9878].

	Fix to prevent identical background indexes from being built
SERVER-9856 [https://jira.mongodb.org/browse/SERVER-9856].

	Config server performance improvements SERVER-9864 [https://jira.mongodb.org/browse/SERVER-9864] and
SERVER-5442 [https://jira.mongodb.org/browse/SERVER-5442].

	Improved initial sync resilience to network failure SERVER-9853 [https://jira.mongodb.org/browse/SERVER-9853].

	All 2.4.5 improvements [https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.5%22%20AND%20project%20%3D%20SERVER].

2.4.4 - June 4, 2013

	Performance fix for Windows version SERVER-9721 [https://jira.mongodb.org/browse/SERVER-9721]

	Fix for config upgrade failure SERVER-9661 [https://jira.mongodb.org/browse/SERVER-9661].

	Migration to Cyrus SASL library for MongoDB Enterprise SERVER-8813 [https://jira.mongodb.org/browse/SERVER-8813].

	All 2.4.4 improvements [https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.4%22%20AND%20project%20%3D%20SERVER].

2.4.3 - Apr 23, 2013

	Fix for mongo shell ignoring modified object’s _id field
SERVER-9385 [https://jira.mongodb.org/browse/SERVER-9385].

	Fix for race condition in log rotation SERVER-4739 [https://jira.mongodb.org/browse/SERVER-4739].

	Fix for copydb command with authorization in a sharded cluster
SERVER-9093 [https://jira.mongodb.org/browse/SERVER-9093].

	All 2.4.3 improvements [https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.3%22%20AND%20project%20%3D%20SERVER].

2.4.2 - Apr 17, 2013

	Several V8 memory leak and performance fixes SERVER-9267 [https://jira.mongodb.org/browse/SERVER-9267] and
SERVER-9230 [https://jira.mongodb.org/browse/SERVER-9230].

	Fix for upgrading sharded clusters SERVER-9125 [https://jira.mongodb.org/browse/SERVER-9125].

	Fix for high volume connection crash SERVER-9014 [https://jira.mongodb.org/browse/SERVER-9014].

	All 2.4.2 improvements [https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.2%22%20AND%20project%20%3D%20SERVER]

2.4.1 - Apr 17, 2013

	Fix for losing index changes during initial sync SERVER-9087 [https://jira.mongodb.org/browse/SERVER-9087]

	All 2.4.1 improvements [https://jira.mongodb.org/issues/?jql=fixVersion%20%3D%20%222.4.1%22%20AND%20project%20%3D%20SERVER].

Major New Features

The following changes in MongoDB affect both standard and Enterprise
editions:

Text Search

Add support for text search of content in MongoDB databases as a
beta feature. See Text Indexes for more information.

Geospatial Support Enhancements

	Add new 2dsphere index. The new index
supports GeoJSON [http://geojson.org/geojson-spec.html] objects
Point, LineString, and Polygon. See
2dsphere Indexes and Geospatial Indexes and Queries.

	Introduce operators $geometry, $geoWithin and
$geoIntersects to work with the GeoJSON data.

Hashed Index

Add new hashed index to index documents
using hashes of field values. When used to index a shard key, the
hashed index ensures an evenly distributed shard key. See also
Hashed Shard Keys.

Improvements to the Aggregation Framework

	Improve support for geospatial queries. See the
$geoWithin operator and the $geoNear pipeline
stage.

	Improve sort efficiency when the $sort stage immediately
precedes a $limit in the pipeline.

	Add new operators $millisecond and
$concat and modify how $min operator processes
null values.

Changes to Update Operators

	Add new $setOnInsert operator for use with
upsert .

	Enhance functionality of the $push operator, supporting
its use with the $each, the $sort, and the
$slice modifiers.

Additional Limitations for Map-Reduce and $where Operations

The mapReduce command, group command, and
the $where operator expressions cannot access certain
global functions or properties, such as db, that are available
in the mongo shell. See the individual command or
operator for details.

Improvements to serverStatus Command

Provide additional metrics and customization for the
serverStatus command. See db.serverStatus()
and serverStatus for more information.

Security Enhancements

	Introduce a role-based access control system
/reference/user-privileges [http://docs.mongodb.org/v2.4/reference/user-privileges] using new
system.users Privilege Documents.

	Enforce uniqueness of the user in user privilege documents per
database. Previous versions of MongoDB did not enforce this
requirement, and existing databases may have duplicates.

	Support encrypted connections using SSL certificates signed by a
Certificate Authority. See Connect to MongoDB with SSL.

For more information on security and risk management strategies, see
MongoDB Security Practices and Procedures.

Performance Improvements

V8 JavaScript Engine

Change default JavaScript engine from SpiderMonkey to V8. The change
provides improved concurrency for JavaScript operations, modernized
JavaScript implementation, and the removal of non-standard
SpiderMonkey features, and affects all JavaScript behavior including
the commands mapReduce, group, and
eval and the query operator $where.

See JavaScript Changes in MongoDB 2.4 for more information about
all changes .

BSON Document Validation Enabled by Default for mongod and mongorestore

Enable basic BSON object validation for mongod
and mongorestore when writing to MongoDB data files. See
objcheck for details.

Index Build Enhancements

	Add support for multiple concurrent index builds in the background by
a single mongod instance. See building indexes in
the background for more information on
background index builds.

	Allow the db.killOp() method to terminate a foreground
index build.

	Improve index validation during index creation. See
Compatibility and Index Type Changes in MongoDB 2.4 for more information.

Set Parameters as Command Line Options

Provide --setParameter as a command line option for
mongos and mongod. See mongod and
mongos for list of available options for
setParameter.

Increased Chunk Migration Write Concern

The default write concern for insert and delete operations that
occur as part of a chunk migration in a sharded
cluster now ensures that at least one secondary acknowledges each
insert and deletion operation. See
Chunk Migration Write Concern.

Improved Chunk Migration Queue Behavior

Increase performance for moving multiple chunks off an overloaded
shard. The balancer no longer waits for the current migration’s
delete phase to complete before starting the next chunk migration.
See Chunk Migration Queuing for details.

Enterprise

The following changes are specific to MongoDB Enterprise Editions:

SASL Library Change

In 2.4.4, MongoDB Enterprise uses Cyrus SASL. Earlier 2.4 Enterprise
versions use GNU SASL (libgsasl). To upgrade to 2.4.4 MongoDB
Enterprise or greater, you must install all package dependencies
related to this change, including the appropriate Cyrus SASL GSSAPI
library. See Install MongoDB Enterprise for details of
the dependencies.

New Modular Authentication System with Support for Kerberos

In 2.4, the MongoDB Enterprise now supports authentication via a
Kerberos mechanism. See
Deploy MongoDB with Kerberos Authentication
for more information. For drivers that provide support for
Kerberos authentication to MongoDB, refer to Use MongoDB Drivers to Authenticate with Kerberos.

For more information on security and risk management strategies, see
MongoDB Security Practices and Procedures.

Additional Information

Platform Notes

For OS X, MongoDB 2.4 only supports OS X versions 10.6 (Snow Leopard)
and later. There are no other platform support changes in MongoDB
2.4. See the downloads page [http://www.mongodb.org/downloads/] for
more information on platform support.

Upgrade Process

See Upgrade MongoDB to 2.4 for full upgrade instructions.

Other Resources

	MongoDB Downloads [http://mongodb.org/downloads].

	All JIRA issues resolved in 2.4 [https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.3.2%22,+%222.3.1%22,+%222.3.0%22,+%222.4.0-rc0%22,+%222.4.0-rc1%22,+%222.4.0-rc2%22,+%222.4.0-rc3%22%29].

	All Backwards incompatible changes [https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.3.2%22%2C+%222.3.1%22%2C+%222.3.0%22%2C+%222.4.0-rc0%22%2C+%222.4.0-rc1%22%2C+%222.4.0-rc2%22%2C+%222.4.0-rc3%22%29+AND+%22Backward+Breaking%22+in+%28+Rarely+%2C+sometimes%2C+yes+%29+ORDER+BY+votes+DESC%2C+issuetype+DESC%2C+key+DESC].

	All Third Party License Notices [https://github.com/mongodb/mongo/blob/v2.4/distsrc/THIRD-PARTY-NOTICES].

 JavaScript Changes in MongoDB 2.4

JavaScript Changes in MongoDB 2.4

Consider the following impacts of V8 JavaScript Engine in
MongoDB 2.4:

Tip

Use the new interpreterVersion() method in the
mongo shell and the javascriptEngine
field in the output of db.serverBuildInfo() to determine
which JavaScript engine a MongoDB binary uses.

Improved Concurrency

Previously, MongoDB operations that required the JavaScript interpreter
had to acquire a lock, and a single mongod could only run a
single JavaScript operation at a time. The switch to V8 improves
concurrency by permitting multiple JavaScript operations to run at the
same time.

Modernized JavaScript Implementation (ES5)

The 5th edition of ECMAscript [http://www.ecma-international.org/publications/standards/Ecma-262.htm],
abbreviated as ES5, adds many new language features, including:

	standardized JSON [http://www.ecma-international.org/ecma-262/5.1/#sec-15.12.1],

	strict mode [http://www.ecma-international.org/ecma-262/5.1/#sec-4.2.2],

	function.bind() [http://www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.5],

	array extensions [http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.16], and

	getters and setters.

With V8, MongoDB supports the ES5 implementation of Javascript with the
following exceptions.

Note

The following features do not work as expected on documents
returned from MongoDB queries:

	Object.seal() throws an exception on documents returned from
MongoDB queries.

	Object.freeze() throws an exception on documents returned from
MongoDB queries.

	Object.preventExtensions() incorrectly allows the addition of
new properties on documents returned from MongoDB queries.

	enumerable properties, when added to documents returned from
MongoDB queries, are not saved during write operations.

See SERVER-8216 [https://jira.mongodb.org/browse/SERVER-8216], SERVER-8223 [https://jira.mongodb.org/browse/SERVER-8223],
SERVER-8215 [https://jira.mongodb.org/browse/SERVER-8215], and SERVER-8214 [https://jira.mongodb.org/browse/SERVER-8214] for more information.

For objects that have not been returned from MongoDB queries, the
features work as expected.

Removed Non-Standard SpiderMonkey Features

V8 does not support the following non-standard SpiderMonkey [https://developer.mozilla.org/en-US/docs/SpiderMonkey] JavaScript
extensions, previously supported by MongoDB’s use of SpiderMonkey as
its JavaScript engine.

E4X Extensions

V8 does not support the non-standard E4X [https://developer.mozilla.org/en-US/docs/E4X] extensions. E4X
provides a native XML [https://developer.mozilla.org/en-US/docs/E4X/Processing_XML_with_E4X]
object to the JavaScript language and adds the syntax for embedding
literal XML documents in JavaScript code.

You need to use alternative XML processing if you used any of the
following constructors/methods:

	XML()

	Namespace()

	QName()

	XMLList()

	isXMLName()

Destructuring Assignment

V8 does not support the non-standard destructuring assignments.
Destructuring assignment “extract[s] data from arrays or objects using
a syntax that mirrors the construction of array and object literals.” -
Mozilla docs [https://developer.mozilla.org/en-US/docs/JavaScript/New_in_JavaScript/1.7#Destructuring_assignment_(Merge_into_own_page.2Fsection)]

Example

The following destructuring assignment is invalid with V8 and
throws a SyntaxError:

original = [4, 8, 15];
var [b, ,c] = a; // <== destructuring assignment
print(b) // 4
print(c) // 15

Iterator(), StopIteration(), and Generators

V8 does not support Iterator(), StopIteration(), and generators [https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Iterators_and_Generators].

InternalError()

V8 does not support InternalError(). Use Error() instead.

for each...in Construct

V8 does not support the use of for each...in [https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Statements/for_each...in]
construct. Use for (var x in y) construct
instead.

Example

The following for each (var x in y) construct is invalid
with V8:

var o = { name: 'MongoDB', version: 2.4 };

for each (var value in o) {
 print(value);
}

Instead, in version 2.4, you can use the for (var x in y)
construct:

var o = { name: 'MongoDB', version: 2.4 };

for (var prop in o) {
 var value = o[prop];
 print(value);
}

You can also use the array instance method forEach() with the
ES5 method Object.keys():

Object.keys(o).forEach(function (key) {
 var value = o[key];
 print(value);
});

Array Comprehension

V8 does not support Array comprehensions [https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Predefined_Core_Objects#Array_comprehensions].

Use other methods such as the Array instance methods map(),
filter(), or forEach().

Example

With V8, the following array comprehension is invalid:

var a = { w: 1, x: 2, y: 3, z: 4 }

var arr = [i * i for each (i in a) if (i > 2)]
printjson(arr)

Instead, you can implement using the Array instance method
forEach() and the ES5 method Object.keys() :

var a = { w: 1, x: 2, y: 3, z: 4 }

var arr = [];
Object.keys(a).forEach(function (key) {
 var val = a[key];
 if (val > 2) arr.push(val * val);
})
printjson(arr)

Note

The new logic uses the Array instance method forEach() and
not the generic method Array.forEach(); V8 does not
support Array generic methods. See Array Generic Methods for
more information.

Multiple Catch Blocks

V8 does not support multiple catch blocks and will throw a
SyntaxError.

Example

The following multiple catch blocks is invalid with V8 and will
throw "SyntaxError: Unexpected token if":

try {
 something()
} catch (err if err instanceof SomeError) {
 print('some error')
} catch (err) {
 print('standard error')
}

Conditional Function Definition

V8 will produce different outcomes than SpiderMonkey with conditional
function definitions [https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Functions].

Example

The following conditional function definition produces different
outcomes in SpiderMonkey versus V8:

function test () {
 if (false) {
 function go () {};
 }
 print(typeof go)
}

With SpiderMonkey, the conditional function outputs undefined,
whereas with V8, the conditional function outputs function.

If your code defines functions this way, it is highly recommended
that you refactor the code. The following example refactors the
conditional function definition to work in both SpiderMonkey and V8.

function test () {
 var go;
 if (false) {
 go = function () {}
 }
 print(typeof go)
}

The refactored code outputs undefined in both SpiderMonkey and V8.

Note

ECMAscript prohibits conditional function definitions. To force V8
to throw an Error, enable strict mode [http://www.nczonline.net/blog/2012/03/13/its-time-to-start-using-javascript-strict-mode/].

function test () {
 'use strict';

 if (false) {
 function go () {}
 }
}

The JavaScript code throws the following syntax error:

SyntaxError: In strict mode code, functions can only be declared at top level or immediately within another function.

String Generic Methods

V8 does not support String generics [https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/String#String_generic_methods].
String generics are a set of methods on the String class that
mirror instance methods.

Example

The following use of the generic method
String.toLowerCase() is invalid with V8:

var name = 'MongoDB';

var lower = String.toLowerCase(name);

With V8, use the String instance method toLowerCase() available
through an instance of the String class instead:

var name = 'MongoDB';

var lower = name.toLowerCase();
print(name + ' becomes ' + lower);

With V8, use the String instance methods instead of following
generic methods:

	String.charAt()
	String.quote()
	String.toLocaleLowerCase()

	String.charCodeAt()
	String.replace()
	String.toLocaleUpperCase()

	String.concat()
	String.search()
	String.toLowerCase()

	String.endsWith()
	String.slice()
	String.toUpperCase()

	String.indexOf()
	String.split()
	String.trim()

	String.lastIndexOf()
	String.startsWith()
	String.trimLeft()

	String.localeCompare()
	String.substr()
	String.trimRight()

	String.match()
	String.substring()
	

Array Generic Methods

V8 does not support Array generic methods [https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array#Array_generic_methods].
Array generics are a set of methods on the Array class that mirror
instance methods.

Example

The following use of the generic method Array.every() is
invalid with V8:

var arr = [4, 8, 15, 16, 23, 42];

function isEven (val) {
 return 0 === val % 2;
}

var allEven = Array.every(arr, isEven);
print(allEven);

With V8, use the Array instance method every() available through
an instance of the Array class instead:

var allEven = arr.every(isEven);
print(allEven);

With V8, use the Array instance methods instead of the following
generic methods:

	Array.concat()
	Array.lastIndexOf()
	Array.slice()

	Array.every()
	Array.map()
	Array.some()

	Array.filter()
	Array.pop()
	Array.sort()

	Array.forEach()
	Array.push()
	Array.splice()

	Array.indexOf()
	Array.reverse()
	Array.unshift()

	Array.join()
	Array.shift()
	

Array Instance Method toSource()

V8 does not support the Array instance method toSource() [https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array/toSource].
Use the Array instance method toString() instead.

uneval()

V8 does not support the non-standard method uneval(). Use the
standardized JSON.stringify() [https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/JSON/stringify]
method instead.

 Upgrade MongoDB to 2.4

Upgrade MongoDB to 2.4

In the general case, the upgrade from MongoDB 2.2 to 2.4 is a
binary-compatible “drop-in” upgrade: shut down the mongod
instances and replace them with mongod instances running
2.4. However, before you attempt any upgrade please familiarize
yourself with the content of this document, particularly the procedure
for upgrading sharded clusters and the
considerations for reverting to 2.2 after running 2.4.

Content

	Upgrade Recommendations and Checklist

	Upgrade Standalone mongod Instance to MongoDB 2.4

	Upgrade a Replica Set from MongoDB 2.2 to MongoDB 2.4

	Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4

	Rolling Upgrade Limitation for 2.2.0 Deployments Running with auth Enabled

	Upgrade from 2.3 to 2.4

	Downgrade MongoDB from 2.4 to Previous Versions

Upgrade Recommendations and Checklist

When upgrading, consider the following:

	For all deployments using authentication, upgrade the
drivers (i.e. client libraries), before upgrading the
mongod instance or instances.

	To upgrade to 2.4 sharded clusters must upgrade following the
meta-data upgrade procedure.

	If you’re using 2.2.0 and running with auth enabled, you
will need to upgrade first to 2.2.1 and then upgrade to 2.4. See
Rolling Upgrade Limitation for 2.2.0 Deployments Running with auth Enabled.

	If you have system.users documents
(i.e. for auth) that you created before 2.4 you must
ensure that there are no duplicate values for the user field in
the system.users collection in
any database. If you do have documents with duplicate user
fields, you must remove them before upgrading.

See Security Enhancements for more information.

Upgrade Standalone mongod Instance to MongoDB 2.4

	Download binaries of the latest release in the 2.4 series from the
MongoDB Download Page [http://www.mongodb.org/downloads]. See Install MongoDB for more
information.

	Shutdown your mongod instance. Replace the existing
binary with the 2.4 mongod binary and restart mongod.

Upgrade a Replica Set from MongoDB 2.2 to MongoDB 2.4

You can upgrade to 2.4 by performing a “rolling”
upgrade of the set by upgrading the members individually while the
other members are available to minimize downtime. Use the following
procedure:

	Upgrade the secondary members of the set one at a time by
shutting down the mongod and replacing the 2.2 binary
with the 2.4 binary. After upgrading a mongod instance,
wait for the member to recover to SECONDARY state
before upgrading the next instance.
To check the member’s state, issue rs.status() in the
mongo shell.

	Use the mongo shell method rs.stepDown() to
step down the primary to allow the normal failover procedure. rs.stepDown()
expedites the failover procedure and is preferable to shutting down
the primary directly.

Once the primary has stepped down and another member has assumed
PRIMARY state, as observed in the output of
rs.status(), shut down the previous primary and replace
mongod binary with the 2.4 binary and start the new
process.

Note

Replica set failover is not instant but will
render the set unavailable to read or accept writes
until the failover process completes. Typically this takes
10 seconds or more. You may wish to plan the upgrade during
a predefined maintenance window.

Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4

Important

Only upgrade sharded clusters to 2.4 if all members
of the cluster are currently running instances of 2.2. The only
supported upgrade path for sharded clusters running 2.0 is via 2.2.

Upgrading a sharded cluster from MongoDB version 2.2 to 2.4
(or 2.3) requires that you run a 2.4 mongos
with the --upgrade option, described in
this procedure. The upgrade process does not require downtime.

The upgrade to MongoDB 2.4 adds epochs to the meta-data for all
collections and chunks in the existing cluster. MongoDB 2.2 processes
are capable of handling epochs, even though 2.2 did not require them.

This procedure applies only to upgrades from version 2.2. Earlier
versions of MongoDB do not correctly handle epochs.

Warning

	Before you start the upgrade, ensure that the amount of free space on
the filesystem for the config database is 4 to 5 times the amount of space
currently used by the config database data files.

Additionally, ensure that all indexes in the config database are {v:1} indexes. If a critical
index is a {v:0} index, chunk splits can fail due to known issues
with the {v:0} format. {v:0} indexes are present on clusters created with
MongoDB 2.0 or earlier.

The duration of the metadata upgrade depends on the network latency
between the node performing the upgrade and the three config servers.
Ensure low latency between the upgrade process and the config servers.

	While the upgrade is in progress, you cannot make changes to the
collection meta-data. For example, during the upgrade, do not
perform:

	sh.enableSharding(),

	sh.shardCollection(),

	sh.addShard(),

	db.createCollection(),

	db.collection.drop(),

	db.dropDatabase(),

	any operation that creates a database, or

	any other operation that modifies the cluster meta-data in any
way. See Sharding Reference for a complete list
of sharding commands. Note, however, that not all commands on
the Sharding Reference page modifies the
cluster meta-data.

	Once you upgrade to 2.4 and complete the upgrade procedure do
not use 2.0 mongod and mongos processes in
your cluster. 2.0 process may re-introduce old meta-data formats
into cluster meta-data.

Note

The upgraded config database will require more storage space than
before, to make backup and working copies of the
config.chunks and config.collections collections.
As always, if storage requirements increase, the mongod
might need to pre-allocate additional data files. See
What tools can I use to investigate storage use in MongoDB? for more information.

Meta-Data Upgrade Procedure

Changes to the meta-data format for sharded clusters, stored in the
config database, require a special
meta-data upgrade procedure when moving to 2.4.

Do not perform operations that modify meta-data while performing this
procedure. See Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4 for examples of prohibited
operations.

	Before you start the upgrade, ensure that the amount of free space on
the filesystem for the config database is 4 to 5 times the amount of space
currently used by the config database data files.

Additionally, ensure that all indexes in the config database are {v:1} indexes. If a critical
index is a {v:0} index, chunk splits can fail due to known issues
with the {v:0} format. {v:0} indexes are present on clusters created with
MongoDB 2.0 or earlier.

The duration of the metadata upgrade depends on the network latency
between the node performing the upgrade and the three config servers.
Ensure low latency between the upgrade process and the config servers.

To check the version of your indexes, use db.collection.getIndexes().

If any index on the config database is {v:0}, you should
rebuild those indexes by connecting to the mongos and
either: rebuild all indexes using the
db.collection.reIndex() method, or drop and rebuild
specific indexes using db.collection.dropIndex() and then
db.collection.ensureIndex(). If you need to upgrade the
_id index to {v:1} use db.collection.reIndex().

You may have {v:0} indexes on other databases in the cluster.

	Turn off the balancer in the
sharded cluster, as described in
Disable the Balancer.

Optional

For additional security during the upgrade, you can make a
backup of the config database using mongodump or
other backup tools.

	Ensure there are no version 2.0 mongod or
mongos processes still active in the sharded
cluster. The automated upgrade process checks for 2.0 processes,
but network availability can prevent a definitive check. Wait 5
minutes after stopping or upgrading version 2.0 mongos
processes to confirm that none are still active.

	Start a single 2.4 mongos process with
configdb pointing to the sharded cluster’s config
servers and with the --upgrade option. The upgrade process happens before the
process becomes a daemon (i.e. before
--fork.)

You can upgrade an existing
mongos instance to 2.4 or you can start a new mongos
instance that can reach all config servers if you need to avoid
reconfiguring a production mongos.

Start the mongos with a command that resembles the
following:

mongos --configdb <config servers> --upgrade

Without the --upgrade option 2.4
mongos processes will fail to start until the upgrade
process is complete.

The upgrade will prevent any chunk moves or splits from occurring
during the upgrade process. If there are very many sharded
collections or there are stale locks held by other failed processes,
acquiring the locks for all collections can take
seconds or minutes. See the log for progress updates.

	When the mongos process starts successfully, the upgrade is
complete. If the mongos process fails to start, check the
log for more information.

If the mongos terminates or loses its connection to the
config servers during the upgrade, you may always safely retry the
upgrade.

However, if the upgrade failed during the short critical section,
the mongos will exit and report that the upgrade will
require manual intervention. To continue the upgrade process, you
must follow the Resync after an Interruption of the Critical Section procedure.

Optional

If the mongos logs show the upgrade waiting for the
upgrade lock, a previous upgrade process may still be active or
may have ended abnormally. After 15 minutes of no remote
activity mongos will force the upgrade lock. If you
can verify that there are no running upgrade processes, you may
connect to a 2.2 mongos process and force the lock
manually:

mongo <mongos.example.net>

db.getMongo().getCollection("config.locks").findOne({ _id : "configUpgrade" })

If the process specified in the process field of this document
is verifiably offline, run the following operation to force the
lock.

db.getMongo().getCollection("config.locks").update({ _id : "configUpgrade" }, { $set : { state : 0 } })

It is always more safe to wait for the mongos to
verify that the lock is inactive, if you have any doubts about
the activity of another upgrade operation. In addition to the
configUpgrade, the mongos may need to wait for
specific collection locks. Do not force the specific collection
locks.

	Upgrade and restart other mongos processes in the
sharded cluster, without the --upgrade
option.

See Complete Sharded Cluster Upgrade for more information.

	Re-enable the balancer. You can now perform
operations that modify cluster meta-data.

Once you have upgraded, do not introduce version 2.0 MongoDB
processes into the sharded cluster. This can reintroduce old meta-data
formats into the config servers. The meta-data change made by this
upgrade process will help prevent errors caused by cross-version
incompatibilities in future versions of MongoDB.

Resync after an Interruption of the Critical Section

During the short critical section of the upgrade that applies changes
to the meta-data, it is unlikely but possible that a network
interruption can prevent all three config servers from verifying or
modifying data. If this occurs, the config servers must be re-synced, and there may be problems
starting new mongos processes. The sharded cluster
will remain accessible, but avoid all cluster meta-data changes until
you resync the config servers. Operations that change meta-data include:
adding shards, dropping databases, and dropping collections.

Note

Only perform the following procedure if something (e.g. network,
power, etc.) interrupts the upgrade process during the short
critical section of the upgrade. Remember, you may always safely
attempt the meta data upgrade procedure.

To resync the config servers:

	Turn off the balancer in the
sharded cluster and stop all meta-data operations. If you are in the
middle of an upgrade process (Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4), you
have already disabled the balancer.

	Shut down two of the three config servers, preferably the last two listed
in the configdb string. For example, if your configdb
string is configA:27019,configB:27019,configC:27019, shut down
configB and configC. Shutting down the last two config servers
ensures that most mongos instances will have
uninterrupted access to cluster meta-data.

	mongodump the data files of the active config server
(configA).

	Move the data files of the deactivated config servers (configB
and configC) to a backup location.

	Create new, empty data directories.

	Restart the disabled config servers with --dbpath
pointing to the now-empty data directory and --port
pointing to an alternate port (e.g. 27020).

	Use mongorestore to repopulate the data files on the
disabled documents from the active
config server (configA) to the restarted config servers on the new
port (configB:27020,configC:27020). These config servers are now
re-synced.

	Restart the restored config servers on the old port, resetting the
port back to the old settings (configB:27019 and configC:27019).

	In some cases connection pooling may cause spurious failures, as
the mongos disables old connections only after attempted
use. 2.4 fixes this problem, but to avoid this issue in version
2.2, you can restart all mongos instances (one-by-one,
to avoid downtime) and use the rs.stepDown() method
before restarting each of the shard replica set
primaries.

	The sharded cluster is now fully resynced; however before you
attempt the upgrade process again, you must manually reset the
upgrade state using a version 2.2 mongos. Begin by
connecting to the 2.2 mongos with the mongo
shell:

mongo <mongos.example.net>

Then, use the following operation to reset the upgrade process:

db.getMongo().getCollection("config.version").update({ _id : 1 }, { $unset : { upgradeState : 1 } })

	Finally retry the upgrade process, as in
Upgrade a Sharded Cluster from MongoDB 2.2 to MongoDB 2.4.

Complete Sharded Cluster Upgrade

After you have successfully completed the meta-data upgrade process
described in Meta-Data Upgrade Procedure, and the 2.4
mongos instance starts, you can upgrade the other processes
in your MongoDB deployment.

While the balancer is still disabled, upgrade the components of your
sharded cluster in the following order:

	Upgrade all mongos instances in the cluster, in any
order.

	Upgrade all 3 mongod config server instances, upgrading
the first system in the mongos --configdb argument
last.

	Upgrade each shard, one at a time, upgrading the mongod
secondaries before running replSetStepDown and
upgrading the primary of each shard.

When this process is complete, you can now re-enable the
balancer.

Rolling Upgrade Limitation for 2.2.0 Deployments Running with auth Enabled

MongoDB cannot support deployments that mix 2.2.0 and 2.4.0, or
greater, components. MongoDB version 2.2.1 and later processes can
exist in mixed deployments with 2.4-series processes. Therefore you
cannot perform a rolling upgrade from MongoDB 2.2.0 to MongoDB
2.4.0. To upgrade a cluster with 2.2.0 components, use one of the
following procedures.

	Perform a rolling upgrade of all 2.2.0 processes to the latest
2.2-series release (e.g. 2.2.3) so that there are no processes in
the deployment that predate 2.2.1. When there are no 2.2.0
processes in the deployment, perform a rolling upgrade to 2.4.0.

	Stop all processes in the cluster. Upgrade all processes to a
2.4-series release of MongoDB, and start all processes at the same
time.

Upgrade from 2.3 to 2.4

If you used a mongod from the 2.3 or 2.4-rc (release
candidate) series, you can safely transition these databases to 2.4.0
or later; however, if you created 2dsphere or text indexes
using a mongod before v2.4-rc2, you will need to rebuild
these indexes. For example:

db.records.dropIndex({ loc: "2dsphere" })
db.records.dropIndex("records_text")

db.records.ensureIndex({ loc: "2dsphere" })
db.records.ensureIndex({ records: "text" })

Downgrade MongoDB from 2.4 to Previous Versions

For some cases the on-disk format of data files used by 2.4 and 2.2
mongod is compatible, and you can upgrade and downgrade if
needed. However, several new features in 2.4 are incompatible with
previous versions:

	2dsphere indexes are incompatible with 2.2 and earlier
mongod instances.

	text indexes are incompatible with 2.2 and earlier
mongod instances.

	using a hashed index as a shard key are incompatible with 2.2 and
earlier mongos instances.

	hashed indexes are incompatible with 2.0 and earlier
mongod instances.

Important

Collections sharded using hashed shard keys, should
not use 2.2 mongod instances, which cannot correctly
support cluster operations for these collections.

If you completed the meta-data upgrade for a sharded cluster, you can safely downgrade to 2.2 MongoDB
processes. Do not use 2.0 processes after completing the upgrade
procedure.

Note

In sharded clusters, once you have completed the meta-data upgrade
procedure, you cannot use 2.0
mongod or mongos instances in the same
cluster.

If you complete the meta-data upgrade, you can have a mixed cluster
that has both 2.2 and 2.4 mongod and mongos
instances, if needed. However, do not create 2dsphere or
text indexes in a cluster that has 2.2 components.

Considerations and Compatibility

If you upgrade to MongoDB 2.4, and then need to run MongoDB 2.2 with
the same data files, consider the following limitations.

	If you use a hashed index as the shard key index, which is only
possible under 2.4 you will not be able to query data in this
sharded collection. Furthermore, a 2.2 mongos cannot
properly route an insert operation for a collections sharded using a
hashed index for the shard key index: any data that you insert
using a 2.2 mongos, will not arrive on the correct shard
and will not be reachable by future queries.

	If you never create an 2dsphere or text index, you can
move between a 2.4 and 2.2 mongod for a given data set;
however, after you create the first 2dsphere or text index
with a 2.4 mongod you will need to run a 2.2
mongod with the --upgrade
option and drop any 2dsphere or text index.

Upgrade and Downgrade Procedures

Basic Downgrade and Upgrade

Except as described below, moving between 2.2 and 2.4 is a drop-in
replacement:

	stop the existing mongod, using the --shutdown option as follows:

mongod --dbpath /var/mongod/data --shutdown

Replace /var/mongod/data with your MongoDB dbpath.

	start the new mongod processes with the same
dbpath setting, for example:

mongod --dbpath /var/mongod/data

Replace /var/mongod/data with your MongoDB dbpath.

Downgrade to 2.2 After Creating a 2dsphere or text Index

If you have created 2dsphere or text indexes while running a
2.4 mongod instance, you can downgrade at any time, by
starting the 2.2 mongod with the --upgrade option as follows:

mongod --dbpath /var/mongod/data/ --upgrade

Then, you will need to drop any existing 2dsphere or text
indexes using db.collection.dropIndex(), for example:

db.records.dropIndex({ loc: "2dsphere" })
db.records.dropIndex("records_text")

Warning

--upgrade will run
repairDatabase on any database where you have created
a 2dsphere or text index, which will rebuild all
indexes.

Troubleshooting Upgrade/Downgrade Operations

If you do not use --upgrade, when you
attempt to start a 2.2 mongod and you have created a
2dsphere or text index, mongod will return the
following message:

'need to upgrade database index_plugin_upgrade with pdfile version 4.6, new version: 4.5 Not upgrading, exiting'

While running 2.4, to check the data file version of a MongoDB
database, use the following operation in the shell:

db.getSiblingDB('<databasename>').stats().dataFileVersion

The major data file [1] version for both 2.2 and 2.4 is
4, the minor data file version for 2.2 is 5 and the minor data
file version for 2.4 is 6 after you create a 2dsphere or
text index.

	[1]	The data file version (i.e. pdfile version)
is independent and unrelated to the release version of MongoDB.

 Compatibility and Index Type Changes in MongoDB 2.4

Compatibility and Index Type Changes in MongoDB 2.4

In 2.4 MongoDB includes two new features related to indexes that users
upgrading to version 2.4 must consider, particularly with regard to
possible downgrade paths. For more information on downgrades, see
Downgrade MongoDB from 2.4 to Previous Versions.

New Index Types

In 2.4 MongoDB adds two new index types: 2dsphere and
text. These index types do not exist in 2.2, and for each
database, creating a 2dsphere or text index, will upgrade the
data-file version and make that database incompatible with 2.2.

If you intend to downgrade, you should always drop all 2dsphere
and text indexes before moving to 2.2.

You can use the downgrade procedure to downgrade these
databases and run 2.2 if needed, however this will run a full database
repair (as with repairDatabase) for all affected
databases.

Index Type Validation

In MongoDB 2.2 and earlier you could specify invalid index types that
did not exist. In these situations, MongoDB would create an ascending
(e.g. 1) index. Invalid indexes include index types specified by
strings that do not refer to an existing index type, and all numbers
other than 1 and -1. [1]

In 2.4, creating any invalid index will result in an error.
Furthermore, you cannot create a 2dsphere or text index on a
collection if its containing database has any invalid index types.
[1]

Example

If you attempt to add an invalid index in MongoDB 2.4, as in the
following:

db.coll.ensureIndex({ field: "1" })

MongoDB will return the following error document:

{
 "err" : "Unknown index plugin '1' in index { field: \"1\" }"
 "code": 16734,
 "n": <number>,
 "connectionId": <number>,
 "ok": 1
}

	[1]	(1, 2) In 2.4, indexes that specify a type of
"1" or "-1" (the strings "1" and "-1") will continue
to exist, despite a warning on start-up. However, a
secondary in a replica set cannot complete an initial sync
from a primary that has a "1" or "-1" index. Avoid all
indexes with invalid types.

 Release Notes for MongoDB 2.2

Release Notes for MongoDB 2.2

See the full index of this page for
 a complete list of changes included in 2.2.

	Upgrading

	Changes

	Licensing Changes

	Resources

Upgrading

MongoDB 2.2 is a production release series and succeeds the 2.0
production release series.

MongoDB 2.0 data files are compatible with 2.2-series binaries without any
special migration process. However, always perform the upgrade process for replica
sets and sharded clusters using the procedures that follow.

Synopsis

	mongod, 2.2 is a drop-in replacement for 2.0 and 1.8.

	Check your driver documentation for
information regarding required compatibility upgrades, and always
run the recent release of your driver.

Typically, only users running with authentication, will need to
upgrade drivers before continuing with the upgrade to 2.2.

	For all deployments using authentication, upgrade the
drivers (i.e. client libraries), before upgrading the
mongod instance or instances.

	For all upgrades of sharded clusters:

	turn off the balancer during the upgrade process. See the
Disable the Balancer section for more
information.

	upgrade all mongos instances before upgrading any
mongod instances.

Other than the above restrictions, 2.2 processes can interoperate with
2.0 and 1.8 tools and processes. You can safely upgrade the
mongod and mongos components of a deployment
one by one while the deployment is otherwise operational. Be sure to
read the detailed upgrade procedures below before upgrading production
systems.

	[1]	To minimize the interruption caused by
election process, always upgrade the
secondaries of the set first, then step down the primary, and then upgrade the primary.

Upgrading a Standalone mongod

	Download binaries of the latest release in the 2.2 series from the
MongoDB Download Page [http://downloads.mongodb.org/].

	Shutdown your mongod instance. Replace the existing
binary with the 2.2 mongod binary and restart MongoDB.

Upgrading a Replica Set

You can upgrade to 2.2 by performing a “rolling”
upgrade of the set by upgrading the members individually while the
other members are available to minimize downtime. Use the following
procedure:

	Upgrade the secondary members of the set one at a time by
shutting down the mongod and replacing the 2.0 binary
with the 2.2 binary. After upgrading a mongod instance,
wait for the member to recover to SECONDARY state
before upgrading the next instance.
To check the member’s state, issue rs.status() in the
mongo shell.

	Use the mongo shell method rs.stepDown() to
step down the primary to allow the normal failover procedure. rs.stepDown()
expedites the failover procedure and is preferable to shutting down
the primary directly.

Once the primary has stepped down and another member has assumed
PRIMARY state, as observed in the output of
rs.status(), shut down the previous primary and replace
mongod binary with the 2.2 binary and start the new
process.

Note

Replica set failover is not instant but will
render the set unavailable to read or accept writes
until the failover process completes. Typically this takes
10 seconds or more. You may wish to plan the upgrade during
a predefined maintenance window.

Upgrading a Sharded Cluster

Use the following procedure to upgrade a sharded cluster:

	Disable the balancer.

	Upgrade all mongos instances first, in any order.

	Upgrade all of the mongod config server instances
using the stand alone procedure.
To keep the cluster online, be sure that at all times at least one config
server is up.

	Upgrade each shard’s replica set, using the upgrade
procedure for replica sets detailed above.

	re-enable the balancer.

Note

Balancing is not currently supported in mixed 2.0.x and 2.2.0
deployments. Thus you will want to reach a consistent version for all
shards within a reasonable period of time, e.g. same-day.
See SERVER-6902 [https://jira.mongodb.org/browse/SERVER-6902] for more information.

Changes

Major Features

Aggregation Framework

The aggregation framework makes it possible to do aggregation
operations without needing to use map-reduce. The
aggregate command exposes the aggregation framework, and the
aggregate() helper in the mongo shell
provides an interface to these operations. Consider the following
resources for background on the aggregation framework and its use:

	Documentation: Aggregation Concepts

	Reference: Aggregation Reference

	Examples: Aggregation Examples

TTL Collections

TTL collections remove expired data from a collection, using a special
index and a background thread that deletes expired documents every
minute. These collections are useful as an alternative to
capped collections in some cases, such as for data
warehousing and caching cases, including: machine generated event data,
logs, and session information that needs to persist in a database
for only a limited period of time.

For more information, see the Expire Data from Collections by Setting TTL tutorial.

Concurrency Improvements

MongoDB 2.2 increases the server’s capacity for concurrent
operations with the following improvements:

	DB Level Locking [https://jira.mongodb.org/browse/SERVER-4328]

	Improved Yielding on Page Faults [https://jira.mongodb.org/browse/SERVER-3357]

	Improved Page Fault Detection on Windows [https://jira.mongodb.org/browse/SERVER-4538]

To reflect these changes, MongoDB now provides changed and improved
reporting for concurrency and use, see locks and
recordStats in server status and see
db.currentOp(),
mongotop, and mongostat.

Improved Data Center Awareness with Tag Aware Sharding

MongoDB 2.2 adds additional support for geographic distribution or
other custom partitioning for sharded collections in clusters. By using this “tag aware” sharding, you can
automatically ensure that data in a sharded database system is always
on specific shards. For example, with tag aware sharding, you can
ensure that data is closest to the application servers that use that
data most frequently.

Shard tagging controls data location, and is complementary but
separate from replica set tagging, which controls read
preference and write concern. For example, shard tagging can pin all
“USA” data to one or more logical shards, while replica set tagging
can control which mongod instances (e.g. “production”
or “reporting”) the application uses to service requests.

See the documentation for the following helpers in the mongo
shell that support tagged sharding configuration:

	sh.addShardTag()

	sh.addTagRange()

	sh.removeShardTag()

Also, see Tag Aware Sharding and
Manage Shard Tags.

Fully Supported Read Preference Semantics

All MongoDB clients and drivers now support full read
preferences, including consistent
support for a full range of read preference modes and tag sets. This support extends to the
mongos and applies identically to single replica sets and
to the replica sets for each shard in a sharded cluster.

Additional read preference support now exists in the mongo
shell using the readPref() cursor method.

Compatibility Changes

Authentication Changes

MongoDB 2.2 provides more reliable and robust support for
authentication clients, including drivers and mongos
instances.

If your cluster runs with authentication:

	For all drivers, use the latest release of your driver and check
its release notes.

	In sharded environments,
to ensure that your cluster remains available during the upgrade
process you must use the upgrade procedure for sharded clusters.

findAndModify Returns Null Value for Upserts that Perform Inserts

In version 2.2, for upsert that perform inserts with the
new option set to false, findAndModify commands will
now return the following output:

{ 'ok': 1.0, 'value': null }

In the mongo shell, upsert findAndModify
operations that perform inserts (with new set to false.)only output a null value.

In version 2.0 these operations would return an empty document,
e.g. { }.

See: SERVER-6226 [https://jira.mongodb.org/browse/SERVER-6226] for more information.

mongodump 2.2 Output Incompatible with Pre-2.2 mongorestore

If you use the mongodump tool from the 2.2 distribution to
create a dump of a database, you must use a 2.2 (or later) version of
mongorestore to restore that dump.

See: SERVER-6961 [https://jira.mongodb.org/browse/SERVER-6961] for more information.

ObjectId().toString() Returns String Literal ObjectId("...")

In version 2.2, the toString() method returns the
string representation of the ObjectId()
object and has the format ObjectId("...").

Consider the following example that calls the
toString() method on the
ObjectId("507c7f79bcf86cd7994f6c0e") object:

ObjectId("507c7f79bcf86cd7994f6c0e").toString()

The method now returns the string
ObjectId("507c7f79bcf86cd7994f6c0e").

Previously, in version 2.0, the method would return the hexadecimal
string 507c7f79bcf86cd7994f6c0e.

If compatibility between versions 2.0 and 2.2 is required, use
ObjectId().str, which holds the
hexadecimal string value in both versions.

ObjectId().valueOf() Returns hexadecimal string

In version 2.2, the valueOf() method returns the
value of the ObjectId() object as a
lowercase hexadecimal string.

Consider the following example that calls the valueOf() method on the
ObjectId("507c7f79bcf86cd7994f6c0e") object:

ObjectId("507c7f79bcf86cd7994f6c0e").valueOf()

The method now returns the hexadecimal string
507c7f79bcf86cd7994f6c0e.

Previously, in version 2.0, the method would return the object
ObjectId("507c7f79bcf86cd7994f6c0e").

If compatibility between versions 2.0 and 2.2 is required, use
ObjectId().str attribute, which holds the
hexadecimal string value in both versions.

Behavioral Changes

Restrictions on Collection Names

In version 2.2, collection names cannot:

	contain the $.

	be an empty string (i.e. "").

This change does not affect collections created with now illegal names
in earlier versions of MongoDB.

These new restrictions are in addition to the existing restrictions on
collection names which are:

	A collection name should begin with a letter or an underscore.

	A collection name cannot contain the null character.

	Begin with the system. prefix. MongoDB
reserves system.
for system collections, such as the
system.indexes collection.

	The maximum size of a collection name is 128 characters, including
the name of the database. However, for maximum flexibility,
collections should have names less than 80 characters.

Collections names may have any other valid UTF-8 string.

See the SERVER-4442 [https://jira.mongodb.org/browse/SERVER-4442] and the
Are there any restrictions on the names of Collections? FAQ item.

Restrictions on Database Names for Windows

Database names running on Windows can no longer contain the following
characters:

/\. "*<>:|?

The names of the data files include the database name. If you attempt
to upgrade a database instance with one or more of these characters,
mongod will refuse to start.

Change the name of these databases before upgrading. See
SERVER-4584 [https://jira.mongodb.org/browse/SERVER-4584] and SERVER-6729 [https://jira.mongodb.org/browse/SERVER-6729] for more information.

_id Fields and Indexes on Capped Collections

All capped collections now have an _id
field by default, if they exist outside of the local database,
and now have indexes on the _id field. This change only affects capped
collections created with 2.2 instances and does not affect existing
capped collections.

See: SERVER-5516 [https://jira.mongodb.org/browse/SERVER-5516] for more information.

New $elemMatch Projection Operator

The $elemMatch operator allows applications to narrow
the data returned from queries so that the query operation will only
return the first matching element in an array. See the
$elemMatch (projection) documentation and the
SERVER-2238 [https://jira.mongodb.org/browse/SERVER-2238] and SERVER-828 [https://jira.mongodb.org/browse/SERVER-828] issues for more
information.

Windows Specific Changes

Windows XP is Not Supported

As of 2.2, MongoDB does not support Windows XP. Please upgrade to a
more recent version of Windows to use the latest releases of
MongoDB. See SERVER-5648 [https://jira.mongodb.org/browse/SERVER-5648] for more information.

Service Support for mongos.exe

You may now run mongos.exe instances as a Windows
Service. See the mongos.exe reference and
MongoDB as a Windows Service and SERVER-1589 [https://jira.mongodb.org/browse/SERVER-1589] for
more information.

Log Rotate Command Support

MongoDB for Windows now supports log rotation by way of the
logRotate database command. See SERVER-2612 [https://jira.mongodb.org/browse/SERVER-2612] for
more information.

New Build Using SlimReadWrite Locks for Windows Concurrency

Labeled “2008+” on the Downloads Page [http://www.mongodb.org/downloads], this build for 64-bit
versions of Windows Server 2008 R2 and for Windows 7 or newer, offers
increased performance over the standard 64-bit Windows build of
MongoDB. See SERVER-3844 [https://jira.mongodb.org/browse/SERVER-3844] for more information.

Tool Improvements

Index Definitions Handled by mongodump and mongorestore

When you specify the --collection
option to mongodump, mongodump will now backup
the definitions for all indexes that exist on the source
database. When you attempt to restore this backup with
mongorestore, the target mongod will rebuild all
indexes. See SERVER-808 [https://jira.mongodb.org/browse/SERVER-808] for more information.

mongorestore now includes the --noIndexRestore option to provide the preceding
behavior. Use --noIndexRestore
to prevent mongorestore from building
previous indexes.

mongooplog for Replaying Oplogs

The mongooplog tool makes it possible to pull oplog
entries from mongod instance and apply them to another
mongod instance. You can use mongooplog to
achieve point-in-time backup of a MongoDB data set. See the
SERVER-3873 [https://jira.mongodb.org/browse/SERVER-3873] case and the mongooplog
documentation.

Authentication Support for mongotop and mongostat

mongotop and mongostat now contain support for
username/password authentication. See SERVER-3875 [https://jira.mongodb.org/browse/SERVER-3875] and
SERVER-3871 [https://jira.mongodb.org/browse/SERVER-3871] for more information regarding this change. Also
consider the documentation of the following options for additional
information:

	mongotop --username

	mongotop --password

	mongostat --username

	mongostat --password

Write Concern Support for mongoimport and mongorestore

mongoimport now provides an option to halt the import if
the operation encounters an error, such as a network interruption, a
duplicate key exception, or a write error.
The --stopOnError option
will
produce an error rather than silently continue importing data. See
SERVER-3937 [https://jira.mongodb.org/browse/SERVER-3937] for more information.

In mongorestore, the --w
option provides support for configurable write concern.

mongodump Support for Reading from Secondaries

You can now run mongodump when connected to a
secondary member of a replica set. See
SERVER-3854 [https://jira.mongodb.org/browse/SERVER-3854] for more information.

mongoimport Support for full 16MB Documents

Previously, mongoimport would only import documents that
were less than 4 megabytes in size. This issue is now corrected, and
you may use mongoimport to import documents that are at
least 16 megabytes ins size. See SERVER-4593 [https://jira.mongodb.org/browse/SERVER-4593] for more
information.

Timestamp() Extended JSON format

MongoDB extended JSON now includes a new Timestamp() type to
represent the Timestamp type that MongoDB uses for timestamps in the
oplog among other contexts.

This permits tools like mongooplog and mongodump
to query for specific timestamps. Consider the following
mongodump operation:

mongodump --db local --collection oplog.rs --query '{"ts":{"$gt":{"$timestamp" : {"t": 1344969612000, "i": 1 }}}}' --out oplog-dump

See SERVER-3483 [https://jira.mongodb.org/browse/SERVER-3483] for more information.

Shell Improvements

Improved Shell User Interface

2.2 includes a number of changes that improve the overall quality and
consistency of the user interface for the mongo shell:

	Full Unicode support.

	Bash-like line editing features. See SERVER-4312 [https://jira.mongodb.org/browse/SERVER-4312] for more
information.

	Multi-line command support in shell history.
See SERVER-3470 [https://jira.mongodb.org/browse/SERVER-3470] for more information.

	Windows support for the edit command. See SERVER-3998 [https://jira.mongodb.org/browse/SERVER-3998] for
more information.

Helper to load Server-Side Functions

The db.loadServerScripts() loads the contents of the current
database’s system.js collection into the current mongo
shell session. See SERVER-1651 [https://jira.mongodb.org/browse/SERVER-1651] for more information.

Support for Bulk Inserts

If you pass an array of documents to the
insert() method, the mongo
shell will now perform a bulk insert operation. See
SERVER-3819 [https://jira.mongodb.org/browse/SERVER-3819] and SERVER-2395 [https://jira.mongodb.org/browse/SERVER-2395] for more information.

Note

For bulk inserts on sharded clusters, the getLastError
command alone is insufficient to verify success. Applications
should must verify the success of bulk inserts in application
logic.

Operations

Support for Logging to Syslog

See the SERVER-2957 [https://jira.mongodb.org/browse/SERVER-2957] case and the documentation of
the syslog run-time option or the mongod --syslog
and mongos --syslog command line-options.

touch Command

Added the touch command to read the data and/or indexes
from a collection into memory. See: SERVER-2023 [https://jira.mongodb.org/browse/SERVER-2023] and
touch for more information.

indexCounters No Longer Report Sampled Data

indexCounters now report actual counters that reflect index
use and state. In previous versions, these data were sampled. See
SERVER-5784 [https://jira.mongodb.org/browse/SERVER-5784] and indexCounters for more information.

Padding Specifiable on compact Command

See the documentation of the compact and the
SERVER-4018 [https://jira.mongodb.org/browse/SERVER-4018] issue for more information.

Added Build Flag to Use System Libraries

The Boost library, version 1.49, is now embedded in the MongoDB
code base.

If you want to build MongoDB binaries using system Boost libraries,
you can pass scons using the --use-system-boost flag, as follows:

scons --use-system-boost

When building MongoDB, you can also pass scons a flag to compile
MongoDB using only system libraries rather than the included versions
of the libraries. For example:

scons --use-system-all

See the SERVER-3829 [https://jira.mongodb.org/browse/SERVER-3829] and SERVER-5172 [https://jira.mongodb.org/browse/SERVER-5172] issues for more
information.

Memory Allocator Changed to TCMalloc

To improve performance, MongoDB 2.2 uses the TCMalloc memory
allocator from Google Perftools. For more information about this
change see the SERVER-188 [https://jira.mongodb.org/browse/SERVER-188] and SERVER-4683 [https://jira.mongodb.org/browse/SERVER-4683]. For more
information about TCMalloc, see the documentation of TCMalloc [http://goog-perftools.sourceforge.net/doc/tcmalloc.html] itself.

Replication

Improved Logging for Replica Set Lag

When secondary members of a replica set fall behind in
replication, mongod now provides better reporting in the
log. This makes it possible to track replication in general and
identify what process may produce errors or halt replication. See
SERVER-3575 [https://jira.mongodb.org/browse/SERVER-3575] for more information.

Replica Set Members can Sync from Specific Members

The new replSetSyncFrom command and new
rs.syncFrom() helper in the mongo shell make it
possible for you to manually configure from which member of the set a
replica will poll oplog entries. Use these commands to
override the default selection logic if needed. Always exercise
caution with replSetSyncFrom when overriding the default
behavior.

Replica Set Members will not Sync from Members Without Indexes Unless buildIndexes: false

To prevent inconsistency between members of replica sets, if the
member of a replica set has
buildIndexes set to true,
other members of the replica set will not sync from this member,
unless they also have
buildIndexes set to
true. See SERVER-4160 [https://jira.mongodb.org/browse/SERVER-4160] for more information.

New Option To Configure Index Pre-Fetching during Replication

By default, when replicating options, secondaries
will pre-fetch Indexes associated with a query to improve replication
throughput in most cases. The replIndexPrefetch setting and
--replIndexPrefetch option allow administrators to disable
this feature or allow the mongod to pre-fetch only the
index on the _id field. See SERVER-6718 [https://jira.mongodb.org/browse/SERVER-6718] for more information.

Map Reduce Improvements

In 2.2 Map Reduce received the following improvements:

	Improved support for sharded MapReduce [https://jira.mongodb.org/browse/SERVER-4521], and

	MapReduce will retry jobs following a config error [https://jira.mongodb.org/browse/SERVER-4158].

Sharding Improvements

Index on Shard Keys Can Now Be a Compound Index

If your shard key uses the prefix of an existing index, then you do not
need to maintain a separate index for your shard key in addition to
your existing index. This index, however, cannot be a multi-key
index. See the Shard Key Indexes documentation and
SERVER-1506 [https://jira.mongodb.org/browse/SERVER-1506] for more information.

Migration Thresholds Modified

The migration thresholds have
changed in 2.2 to permit more even distribution of chunks in collections that have smaller quantities of data. See the
Migration Thresholds documentation for more
information.

Licensing Changes

Added License notice for Google Perftools (TCMalloc Utility). See the
License Notice [https://github.com/mongodb/mongo/blob/v2.2/distsrc/THIRD-PARTY-NOTICES#L231]
and the SERVER-4683 [https://jira.mongodb.org/browse/SERVER-4683] for more information.

Resources

	MongoDB Downloads [http://mongodb.org/downloads].

	All JIRA issues resolved in 2.2 [https://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+SERVER+AND+fixVersion+in+%28%222.1.0%22%2C+%222.1.1%22%2C+%222.1.2%22%2C+%222.2.0-rc0%22%2C+%222.2.0-rc1%22%2C+%222.2.0-rc2%22%29+ORDER+BY+component+ASC%2C+key+DESC].

	All backwards incompatible changes [https://jira.mongodb.org/secure/IssueNavigator.jspa?requestId=11225].

	All third party license notices [https://github.com/mongodb/mongo/blob/v2.2/distsrc/THIRD-PARTY-NOTICES].

	What’s New in MongoDB 2.2 Online Conference [http://www.mongodb.com/events/webinar/mongodb-online-conference-sept].

 Release Notes for MongoDB 2.0

Release Notes for MongoDB 2.0

See the full index of this page for
 a complete list of changes included in 2.0.

	Upgrading

	Changes

	Resources

Upgrading

Although the major version number has changed, MongoDB 2.0 is a
standard, incremental production release and works as a drop-in
replacement for MongoDB 1.8.

Preparation

Read through all release notes before upgrading, and ensure that no
changes will affect your deployment.

If you create new indexes in 2.0, then downgrading to 1.8 is possible
but you must reindex the new collections.

mongoimport and mongoexport now correctly adhere to the CSV spec
for handling CSV input/output. This may break existing import/export
workflows that relied on the previous behavior. For more information see
SERVER-1097 [https://jira.mongodb.org/browse/SERVER-1097].

Journaling [http://www.mongodb.org/display/DOCS/Journaling] is enabled by default in 2.0 for 64-bit builds.
If you still prefer to run without journaling, start mongod
with the --nojournal run-time option.
Otherwise, MongoDB creates journal files during startup. The first time you start mongod with
journaling, you will see a delay as mongod creates new files.
In addition, you may see reduced write throughput.

2.0 mongod instances are interoperable with 1.8
mongod instances; however, for best results, upgrade your
deployments using the following procedures:

Upgrading a Standalone mongod

	Download the v2.0.x binaries from the MongoDB Download Page [http://downloads.mongodb.org/].

	Shutdown your mongod instance. Replace the existing
binary with the 2.0.x mongod binary and restart MongoDB.

Upgrading a Replica Set

	Upgrade the secondary members of the set one at a time by
shutting down the mongod and replacing the 1.8 binary
with the 2.0.x binary from the MongoDB Download Page [http://downloads.mongodb.org/].

	To avoid losing the last few updates on failover you can
temporarily halt your application (failover should take less than 10
seconds), or you can set write concern in your application
code to confirm that each update reaches multiple servers.

	Use the rs.stepDown() to step down the primary to allow
the normal failover procedure.

rs.stepDown() and replSetStepDown provide for
shorter and more consistent failover procedures than simply
shutting down the primary directly.

When the primary has stepped down, shut down its instance and
upgrade by replacing the mongod binary with the 2.0.x
binary.

Upgrading a Sharded Cluster

	Upgrade all config server instances
first, in any order. Since config servers use two-phase commit,
shard configuration metadata updates will halt until all are
up and running.

	Upgrade mongos routers in any order.

Changes

Compact Command

A compact command is now available for compacting a single
collection and its indexes. Previously, the only way to compact was to
repair the entire database.

Concurrency Improvements

When going to disk, the server will yield the write lock when writing
data that is not likely to be in memory. The initial
implementation of this feature now exists:

See SERVER-2563 [https://jira.mongodb.org/browse/SERVER-2563] for more information.

The specific operations yield in 2.0 are:

	Updates by _id

	Removes

	Long cursor iterations

Default Stack Size

MongoDB 2.0 reduces the default stack size. This change can reduce total memory
usage when there are many (e.g., 1000+) client connections, as there is
a thread per connection. While portions of a thread’s stack can be
swapped out if unused, some operating systems do this slowly enough that
it might be an issue. The default stack size is lesser of the
system setting or 1MB.

Index Performance Enhancements

v2.0 includes significant improvements to the
index.
Indexes are often 25% smaller and 25% faster (depends on the use case).
When upgrading from previous versions, the benefits of the new index
type are realized only if you create a new index or re-index an old one.

Dates are now signed, and the max index key size has increased slightly
from 819 to 1024 bytes.

All operations that create a new index will result in a 2.0 index by
default. For example:

	Reindexing results on an older-version index results in a 2.0 index.
However, reindexing on a secondary does not work in versions prior
to 2.0. Do not reindex on a secondary. For a workaround, see
SERVER-3866 [https://jira.mongodb.org/browse/SERVER-3866].

	The repairDatabase command converts indexes to a 2.0
indexes.

To convert all indexes for a given collection to the 2.0 type, invoke the compact command.

Once you create new indexes, downgrading to 1.8.x will require a
re-index of any indexes created using 2.0. See
Build Old Style Indexes.

Sharding Authentication

Applications can now use authentication with sharded clusters.

Replica Sets

Hidden Nodes in Sharded Clusters

In 2.0, mongos instances can now determine when a member of
a replica set becomes “hidden” without requiring a restart. In 1.8,
mongos if you reconfigured a
member as hidden, you had to restart mongos to prevent
queries from reaching the hidden member.

Priorities

Each replica set member can now have a priority value consisting
of a floating-point from 0 to 1000, inclusive. Priorities let you
control which member of the set you prefer to have as primary
the member with the highest priority that can see a majority of the set
will be elected primary.

For example, suppose you have a replica set with three members, A, B, and
C, and suppose that their priorities are set as follows:

	A‘s priority is 2.

	B‘s priority is 3.

	C‘s priority is 1.

During normal operation, the set will always chose B as
primary. If B becomes unavailable, the set will elect A as primary.

For more information, see the
priority documentation.

Data-Center Awareness

You can now “tag” replica set members to indicate their
location. You can use these tags to design custom write rules
across data centers, racks, specific servers, or any other architecture
choice.

For example, an administrator can define rules such as “very important write” or
customerData or “audit-trail” to replicate to certain servers,
racks, data centers, etc. Then in the application code, the developer
would say:

db.foo.insert(doc, {w : "very important write"})

which would succeed if it fulfilled the conditions the DBA defined for
“very important write”.

For more information, see
Tagging [http://www.mongodb.org/display/DOCS/Data+Center+Awareness#DataCenterAwareness-Tagging%28version2.0%29].

Drivers may also support tag-aware reads. Instead of
specifying slaveOk, you specify slaveOk with tags indicating
which data-centers to read from. For details, see the
MongoDB Drivers and Client Libraries documentation.

w : majority

You can also set w to majority to ensure that the write
propagates to a majority of nodes, effectively committing it. The
value for “majority” will automatically adjust as you add or
remove nodes from the set.

For more information, see Write Concern.

Reconfiguration with a Minority Up

If the majority of servers in a set has been permanently lost, you can
now force a reconfiguration of the set to bring it back online.

For more information see Reconfigure a Replica Set with Unavailable Members.

Primary Checks for a Caught up Secondary before Stepping Down

To minimize time without a primary, the rs.stepDown()
method will now fail if the primary does not see a secondary
within 10 seconds of its latest optime. You can force the primary to
step down anyway, but by default it will return an error message.

See also Force a Member to Become Primary.

Extended Shutdown on the Primary to Minimize Interruption

When you call the shutdown command, the primary
will refuse to shut down unless there is a secondary whose
optime is within 10 seconds of the primary. If such a secondary isn’t
available, the primary will step down and wait up to a minute for the
secondary to be fully caught up before shutting down.

Note that to get this behavior, you must issue the shutdown
command explicitly; sending a signal to the process will not trigger
this behavior.

You can also force the primary to shut down, even without an up-to-date
secondary available.

Maintenance Mode

When repair or compact runs on a secondary, the
secondary will automatically drop into “recovering” mode until the
operation finishes. This prevents clients from trying to read from it
while it’s busy.

Geospatial Features

Multi-Location Documents

Indexing is now supported on documents which have multiple location
objects, embedded either inline or in nested sub-documents. Additional
command options are also supported, allowing results to return with
not only distance but the location used to generate the distance.

For more information, see Multi-location Documents [http://www.mongodb.org/display/DOCS/Geospatial+Indexing#GeospatialIndexing-MultilocationDocuments].

Polygon searches

Polygonal $within queries are also now supported for simple polygon
shapes. For details, see the $within operator documentation.

Journaling Enhancements

	Journaling is now enabled by default for 64-bit platforms. Use the
--nojournal command line option to disable it.

	The journal is now compressed for faster commits to disk.

	A new --journalCommitInterval run-time option exists for
specifying your own group commit interval. The default settings do
not change.

	A new { getLastError: { j: true } } option is
available to wait for the group commit. The group commit will happen
sooner when a client is waiting on {j: true}. If journaling is
disabled, {j: true} is a no-op.

New ContinueOnError Option for Bulk Insert

Set the continueOnError option for bulk inserts, in the
driver, so that bulk insert will
continue to insert any remaining documents even if an insert fails, as
is the case with duplicate key exceptions or network interruptions. The getLastError
command will report whether any inserts have failed, not just the
last one. If multiple errors occur, the client will only receive the
most recent getLastError results.

See OP_INSERT [http://www.mongodb.org/display/DOCS/Mongo+Wire+Protocol#MongoWireProtocol-OPINSERT].

Note

For bulk inserts on sharded clusters, the getLastError
command alone is insufficient to verify success. Applications
should must verify the success of bulk inserts in application
logic.

Map Reduce

Output to a Sharded Collection

Using the new sharded flag, it is possible to send the result of a
map/reduce to a sharded collection. Combined with the reduce or
merge flags, it is possible to keep adding data to very large
collections from map/reduce jobs.

For more information, see MapReduce Output Options [http://www.mongodb.org/display/DOCS/MapReduce#MapReduce-Outputoptions]
and mapReduce.

Performance Improvements

Map/reduce performance will benefit from the following:

	Larger in-memory buffer sizes, reducing the amount of disk I/O needed
during a job

	Larger javascript heap size, allowing for larger objects
and less GC

	Supports pure JavaScript execution with the jsMode flag. See mapReduce.

New Querying Features

Additional regex options: s

Allows the dot (.) to match all characters including new lines. This is
in addition to the currently supported i, m and x. See
Regular Expressions [http://www.mongodb.org/display/DOCS/Advanced+Queries#AdvancedQueries-RegularExpressions] and $regex.

$and

A special boolean $and query operator is now available.

Command Output Changes

The output of the validate command and the documents in the
system.profile collection have both been enhanced to return
information as BSON objects with keys for each value rather than as
free-form strings.

Shell Features

Custom Prompt

You can define a custom prompt for the mongo shell. You can
change the prompt at any time by setting the prompt variable to a string
or a custom JavaScript function returning a string. For examples, see
Custom Prompt [http://www.mongodb.org/display/DOCS/Overview+-+The+MongoDB+Interactive+Shell#Overview-TheMongoDBInteractiveShell-CustomPrompt].

Default Shell Init Script

On startup, the shell will check for a .mongorc.js file in the
user’s home directory. The shell will execute this file after connecting
to the database and before displaying the prompt.

If you would like the shell not to run the .mongorc.js file
automatically, start the shell with --norc.

For more information, see mongo.

Most Commands Require Authentication

In 2.0, when running with authentication (e.g. auth) all
database commands require authentication, except the following
commands.

	isMaster

	authenticate

	getnonce

	buildInfo

	ping

	isdbgrid

Resources

	MongoDB Downloads [http://mongodb.org/downloads]

	All JIRA Issues resolved in 2.0 [https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=11002]

	All Backward Incompatible Changes [https://jira.mongodb.org/secure/IssueNavigator.jspa?requestId=11023]

 Release Notes for MongoDB 1.8

Release Notes for MongoDB 1.8

See the full index of this page for
 a complete list of changes included in 1.8.

	Upgrading

	Changes

	Resources

Upgrading

MongoDB 1.8 is a standard, incremental production release and works as
a drop-in replacement for MongoDB 1.6, except:

	Replica set members should be upgraded in a
particular order, as described in Upgrading a Replica Set.

	The mapReduce command has changed in 1.8, causing
incompatibility with previous releases. mapReduce no
longer generates temporary collections (thus, keepTemp has been
removed). Now, you must always supply a value for out. See the
out field options in the mapReduce document. If you
use MapReduce, this also likely means you need a recent version of
your client driver.

Preparation

Read through all release notes before upgrading and ensure that no
changes will affect your deployment.

Upgrading a Standalone mongod

	Download the v1.8.x binaries from the MongoDB Download Page [http://downloads.mongodb.org/].

	Shutdown your mongod instance.

	Replace the existing binary with the 1.8.x mongod binary.

	Restart MongoDB.

Upgrading a Replica Set

1.8.x secondaries can replicate from 1.6.x
primaries.

1.6.x secondaries cannot replicate from 1.8.x primaries.

Thus, to upgrade a replica set you must replace all of your
secondaries first, then the primary.

For example, suppose you have a replica set with a primary, an
arbiter and several secondaries. To upgrade the set, do the
following:

	For the arbiter:

	Shut down the arbiter.

	Restart it with the 1.8.x binary from the MongoDB Download Page [http://downloads.mongodb.org/].

	Change your config (optional) to prevent election of a new primary.

It is possible that, when you start shutting down members of the set,
a new primary will be elected. To prevent this, you can give
all of the secondaries a priority of 0 before
upgrading, and then change them back afterwards. To do so:

	Record your current config. Run rs.config() and paste the
results into a text file.

	Update your config so that all secondaries have
priority 0. For example:

config = rs.conf()
{
 "_id" : "foo",
 "version" : 3,
 "members" : [
 {
 "_id" : 0,
 "host" : "ubuntu:27017"
 },
 {
 "_id" : 1,
 "host" : "ubuntu:27018"
 },
 {
 "_id" : 2,
 "host" : "ubuntu:27019",
 "arbiterOnly" : true
 }
 {
 "_id" : 3,
 "host" : "ubuntu:27020"
 },
 {
 "_id" : 4,
 "host" : "ubuntu:27021"
 },
]
}
config.version++
3
rs.isMaster()
{
 "setName" : "foo",
 "ismaster" : false,
 "secondary" : true,
 "hosts" : [
 "ubuntu:27017",
 "ubuntu:27018"
],
 "arbiters" : [
 "ubuntu:27019"
],
 "primary" : "ubuntu:27018",
 "ok" : 1
}
// for each secondary
config.members[0].priority = 0
config.members[3].priority = 0
config.members[4].priority = 0
rs.reconfig(config)

	For each secondary:

	Shut down the secondary.

	Restart it with the 1.8.x binary from the MongoDB Download Page [http://downloads.mongodb.org/].

	If you changed the config, change it back to its original state:

config = rs.conf()
config.version++
config.members[0].priority = 1
config.members[3].priority = 1
config.members[4].priority = 1
rs.reconfig(config)

	Shut down the primary (the final 1.6 server), and then restart it
with the 1.8.x binary from the MongoDB Download Page [http://downloads.mongodb.org/].

Upgrading a Sharded Cluster

	Turn off the balancer:

mongo <a_mongos_hostname>
use config
db.settings.update({_id:"balancer"},{$set : {stopped:true}}, true)

	For each shard:

	If the shard is a replica set, follow the directions above for
Upgrading a Replica Set.

	If the shard is a single mongod process, shut it down
and then restart it with the 1.8.x binary from the MongoDB Download Page [http://downloads.mongodb.org/].

	For each mongos:

	Shut down the mongos process.

	Restart it with the 1.8.x binary from the MongoDB Download Page [http://downloads.mongodb.org/].

	For each config server:

	Shut down the config server process.

	Restart it with the 1.8.x binary from the MongoDB Download Page [http://downloads.mongodb.org/].

	Turn on the balancer:

use config
db.settings.update({_id:"balancer"},{$set : {stopped:false}})

Returning to 1.6

If for any reason you must move back to 1.6, follow the steps above in
reverse. Please be careful that you have not inserted any documents
larger than 4MB while running on 1.8 (where the max size has increased
to 16MB). If you have you will get errors when the server tries to read
those documents.

Journaling

Returning to 1.6 after using 1.8
Journaling works
fine, as journaling does not change anything about the data file format.
Suppose you are running 1.8.x with journaling enabled and you decide to
switch back to 1.6. There are two scenarios:

	If you shut down cleanly with 1.8.x, just restart with the 1.6 mongod
binary.

	If 1.8.x shut down uncleanly, start 1.8.x up again and let the journal
files run to fix any damage (incomplete writes) that may have existed
at the crash. Then shut down 1.8.x cleanly and restart with the 1.6
mongod binary.

Changes

Journaling

MongoDB now supports write-ahead Journaling Mechanics to
facilitate fast crash recovery and durability in the storage engine.
With journaling enabled, a mongod can be quickly restarted
following a crash without needing to repair the collections. The aggregation framework makes it possible to do
aggregation

Sparse and Covered Indexes

Sparse Indexes are indexes that only include
documents that contain the fields specified in the index. Documents
missing the field will not appear in the index at all. This can
significantly reduce index size for indexes of fields that contain only a
subset of documents within a collection.

Covered Indexes enable MongoDB to answer
queries entirely from the index when the query only selects fields
that the index contains.

Incremental MapReduce Support

The mapReduce command supports new options that enable
incrementally updating existing collections.
Previously, a MapReduce job could output either to a temporary
collection or to a named permanent collection, which it would overwrite
with new data.

You now have several options for the output of your MapReduce jobs:

	You can merge MapReduce output into an existing collection. Output
from the Reduce phase will replace existing keys in the output
collection if it already exists. Other keys will remain in the
collection.

	You can now re-reduce your output with the contents of an existing
collection. Each key output by the reduce phase will be reduced with
the existing document in the output collection.

	You can replace the existing output collection with the new results of
the MapReduce job (equivalent to setting a permanent output
collection in previous releases)

	You can compute MapReduce inline and return results to the caller
without persisting the results of the job. This is similar to the
temporary collections generated in previous releases, except results
are limited to 8MB.

For more information, see the out field options in the
mapReduce document.

Additional Changes and Enhancements

1.8.1

	Sharding migrate fix when moving larger chunks.

	Durability fix with background indexing.

	Fixed mongos concurrency issue with many incoming connections.

1.8.0

	All changes from 1.7.x series.

1.7.6

	Bug fixes.

1.7.5

	Journaling.

	Extent allocation improvements.

	Improved replica set connectivity for mongos.

	getLastError improvements for sharding.

1.7.4

	mongos routes slaveOk queries to secondaries in replica sets.

	New mapReduce output options.

	Sparse Indexes.

1.7.3

	Initial covered index support.

	Distinct can use data from indexes when possible.

	mapReduce can merge or reduce results into an existing collection.

	mongod tracks and mongostat displays network usage. See mongostat.

	Sharding stability improvements.

1.7.2

	$rename operator allows renaming of fields in a document.

	db.eval() not to block.

	Geo queries with sharding.

	mongostat --discover option

	Chunk splitting enhancements.

	Replica sets network enhancements for servers behind a nat.

1.7.1

	Many sharding performance enhancements.

	Better support for $elemMatch on primitives in embedded arrays.

	Query optimizer enhancements on range queries.

	Window service enhancements.

	Replica set setup improvements.

	$pull works on primitives in arrays.

1.7.0

	Sharding performance improvements for heavy insert loads.

	Slave delay support for replica sets.

	getLastErrorDefaults for replica sets.

	Auto completion in the shell.

	Spherical distance for geo search.

	All fixes from 1.6.1 and 1.6.2.

Release Announcement Forum Pages

	1.8.1 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/v09MbhEm62Y],
1.8.0 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/JeHQOnam6Qk]

	1.7.6 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/3t6GNZ1qGYc],
1.7.5 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/S5R0Tx9wkEg],
1.7.4 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/9Om3Vuw-y9c],
1.7.3 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/DfNUrdbmflI],
1.7.2 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/df7mwK6Xixo],
1.7.1 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/HUR9zYtTpA8],
1.7.0 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/TUnJCg9161A]

Resources

	MongoDB Downloads [http://mongodb.org/downloads]

	All JIRA Issues resolved in 1.8 [https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10172]

 Release Notes for MongoDB 1.6

Release Notes for MongoDB 1.6

See the full index of this page for
 a complete list of changes included in 1.6.

	Upgrading

	Sharding

	Replica Sets

	Other Improvements

	Installation

	1.6.x Release Notes

	1.5.x Release Notes

Upgrading

MongoDB 1.6 is a drop-in replacement for 1.4. To upgrade, simply
shutdown mongod then restart with the new binaries.

Please note that you should upgrade to the latest version of whichever
driver you’re using. Certain drivers, including the Ruby driver, will
require the upgrade, and all the drivers will provide extra features for
connecting to replica sets.

Sharding

Sharding is now production-ready, making MongoDB horizontally
scalable, with no single point of failure. A single instance of
mongod can now be upgraded to a distributed cluster with zero
downtime when the need arises.

	Sharding

	Deploy a Sharded Cluster

	Convert a Replica Set to a Replicated Sharded Cluster

Replica Sets

Replica sets, which provide automated failover
among a cluster of n nodes, are also now available.

Please note that replica pairs are now deprecated; we strongly recommend
that replica pair users upgrade to replica sets.

	Replication

	Deploy a Replica Set

	Convert a Standalone to a Replica Set

Other Improvements

	The w option (and wtimeout) forces writes to be propagated to n
servers before returning success (this works especially well with
replica sets)

	$or queries

	Improved concurrency

	$slice operator for returning
subsets of arrays

	64 indexes per collection (formerly 40 indexes per collection)

	64-bit integers can now be represented in the shell using NumberLong

	The findAndModify command
now supports upserts. It also allows you to specify fields to return

	$showDiskLoc option to see disk location of a document

	Support for IPv6 and UNIX domain sockets

Installation

	Windows service improvements

	The C++ client is a separate tarball from the binaries

1.6.x Release Notes

	1.6.5 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/06_QCC05Fpk]

1.5.x Release Notes

	1.5.8 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/uJfF1QN6Thk]

	1.5.7 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/OYvz40RWs90]

	1.5.6 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/4l0N2U_H0cQ]

	1.5.5 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/oO749nvTARY]

	1.5.4 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/380V_Ec_q1c]

	1.5.3 [https://groups.google.com/forum/?hl=en&fromgroups=#!topic/mongodb-user/hsUQL9CxTQw]

	1.5.2 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/94EE3HVidAA]

	1.5.1 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/7SBPQ2RSfdM]

	1.5.0 [https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/VAhJcjDGTy0]

You can see a full list of all changes on
JIRA [https://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10107].

Thank you everyone for your support and suggestions!

 Release Notes for MongoDB 1.4

Release Notes for MongoDB 1.4

See the full index of this page for
 a complete list of changes included in 1.4.

	Upgrading

	Core Server Enhancements

	Replication and Sharding

	Deployment and Production

	Query Language Improvements

	Geo

Upgrading

We’re pleased to announce the 1.4 release of MongoDB. 1.4 is a drop-in
replacement for 1.2. To upgrade you just need to shutdown
mongod, then restart with the new binaries. (Users upgrading
from release 1.0 should review the 1.2 release notes,
in particular the instructions for upgrading the DB format.)

Release 1.4 includes the following improvements over release 1.2:

Core Server Enhancements

	concurrency improvements

	indexing memory improvements

	background index creation

	better detection of regular expressions so the index can be used in
more cases

Replication and Sharding

	better handling for restarting slaves offline for a while

	fast new slaves from snapshots (--fastsync)

	configurable slave delay (--slavedelay)

	replication handles clock skew on master

	$inc replication fixes

	sharding alpha 3 - notably 2-phase commit on config servers

Deployment and Production

	configure “slow threshold” for profiling

	ability to do fsync + lock for backing up raw files

	option for separate directory per db (--directoryperdb)

	http://localhost:28017/_status to get serverStatus via http

	REST interface is off by default for security (--rest to enable)

	can rotate logs with a db command, logRotate

	enhancements to serverStatus
command (db.serverStatus()) - counters and replication lag stats

	new mongostat tool

Query Language Improvements

	$all with regex

	$not

	partial matching of array elements $elemMatch

	$ operator for updating arrays

	$addToSet

	$unset

	$pull supports object matching

	$set with array indexes

Geo

	2d geospatial search

	geo $center and $box searches

 Release Notes for MongoDB 1.2.x

Release Notes for MongoDB 1.2.x

See the full index of this page for
 a complete list of changes included in 1.2.

	New Features

	DB Upgrade Required

	Replication Changes

	mongoimport

	field filter changing

New Features

	More indexes per collection

	Faster index creation

	Map/Reduce

	Stored JavaScript functions

	Configurable fsync time

	Several small features and fixes

DB Upgrade Required

There are some changes that will require doing an upgrade if your
previous version is <= 1.0.x. If you’re already using a version >= 1.1.x
then these changes aren’t required. There are 2 ways to do it:

	--upgrade
	stop your mongod process

	run ./mongod --upgrade

	start mongod again

	use a slave
	start a slave on a different port and data directory

	when its synced, shut down the master, and start the new slave on
the regular port.

Ask in the forums or IRC for more help.

Replication Changes

	There have been minor changes in replication. If you are upgrading a
master/slave setup from <= 1.1.2 you have to update the slave first.

mongoimport

	mongoimportjson has been removed and is replaced with
mongoimport that can do json/csv/tsv

field filter changing

	We’ve changed the semantics of the field filter a little bit.
Previously only objects with those fields would be returned. Now the
field filter only changes the output, not which objects are returned.
If you need that behavior, you can use $exists

 Release Notes for MongoDB 2.6 (Development Series 2.5.x)

Release Notes for MongoDB 2.6 (Development Series 2.5.x)

See the full index of this page for
 a complete list of changes included in 2.6 (Development
 Series 2.5.x).

	Downloading

	Compatibility Changes
	SNMP Enterprise Identifier Changed

	Default bind_ip for RPM and DEB Packages

	isMaster Command includes Wire Protocol Versions

	Replica Set Vote Configuration Validation

	Behavior of aggregate() Method in the mongo Shell

	Authentication and Authorization Incompatibility

	$mod Query Operator Enforces Strict Syntax

	SSL Certificate Hostname Validation

	Changes
	Aggregation Pipeline Changes

	Write Operation Improvements

	Sharding Improvements

	Collection-Level Access Control

	User Defined Roles

	SSL Improvements

	Index Building Improvements

	Tool Improvements

	Limit for maxConns Removed

	Additional Operation Termination Semantics

	Geospatial Enhancements

	C++ Driver Enhancement

	MSI Package for MongoDB Available for Windows

	New Replica Set Status Methods

	MongoDB Enterprise Features
	Support for Auditing

	MongoDB Enterprise for Windows

	SASL Library Change

	LDAP Support for Authentication

	Expanded SNMP Support

	Additional Information
	Upgrade Process

	Other Resources

MongoDB 2.6 is currently in development, as part of the 2.5
development release series. While 2.5-series releases are currently
available, these versions of MongoDB are for testing only and
not for production use.

This document will eventually contain the full release notes for
MongoDB 2.6; before its release this document covers the 2.5
development series as a work-in-progress.

Downloading

You can download the current 2.5 development release on the downloads
page [http://www.mongodb.org/downloads] in the Development Release (Unstable)
section. There are no distribution packages for development releases,
but you can use the binaries provided for testing purposes. See
Install MongoDB on Linux Systems,
Install MongoDB on Windows, or
Install MongoDB on OS X for the basic installation
process.

Compatibility Changes

Important

The MongoDB 2.5-series, which will become MongoDB 2.6,
is for testing and development only. All identifiers, names,
interfaces are subject to change. Do not use a MongoDB 2.5
release in production situations.

SNMP Enterprise Identifier Changed

In 2.5.1, the IANA enterprise identifier for MongoDB changed from
37601 to 34601. Users of SNMP monitoring must modify their SNMP
configuration (i.e. MIB) accordingly.

Default bind_ip for RPM and DEB Packages

In the official MongoDB packages in RPM (Red Hat, CentOS,
Fedora Linux, and derivatives) and DEB (Debian, Ubuntu, and
derivatives), the default bind_ip value attaches MongoDB
components to the localhost interface only. These packages set this
default in the default configuration file
(i.e. /etc/mongodb.conf.)

If you use one of these packages and have not modified the default
/etc/mongodb.conf file, you will need to set bind_ip
before or during the upgrade.

There is no default bind_ip setting in any other 10gen distributions
of MongoDB.

isMaster Command includes Wire Protocol Versions

New in version 2.5.0.

In order to support changes to the wire protocol both now and in the
future, the output of isMaster now contains two new
fields that report the earliest version of the wire protocol that this
mongod instance supports and the highest version of the
wire protocol that this mongo instance supports. See
minWireVersion and maxWireVersion
for more information.

Replica Set Vote Configuration Validation

New in version 2.5.3.

MongoDB now deprecates giving any replica set member more than
a single vote. During configuration,
local.system.replset.members[n].votes should only have a value
of 1 for voting members and 0 for non-voting members. MongoDB treats
values other than 1 or 0 as a value of 1 and produces a warning message.

Behavior of aggregate() Method in the mongo Shell

Changed in version 2.5.3.

The db.collection.aggregate() helper now returns a
cursor. As a result, you cannot use the
aggregate() method from a 2.5.3 (or later)
version of the mongo shell while connected to 2.4 (and
earlier) versions of MongoDB.

To perform aggregation on earlier versions of MongoDB, use either a
previous version of the mongo shell or if using the 2.5.3
(or later) version of the mongo shell, run the
aggregate command, not the
db.collection.aggregate() helper, without specifying the
cursor option.

Authentication and Authorization Incompatibility

MongoDB 2.5.4 introduces enhancements for managing user
credentials and privileges,
including a change to the user privilege model. To upgrade from the
version 2.4 user privilege model to the 2.5.4 model, you must convert existing users to
the new user privilege model.

Important

Before upgrading the authorization model, you should first upgrade
MongoDB binaries to 2.5.4. For sharded clusters, ensure that all
cluster components are 2.5.4.

For details on upgrading MongoDB to 2.5.4 as well as then upgrading the
user privilege model, see Upgrade MongoDB to 2.5.x.

Version 2.5.4 is for testing and development only.

$mod Query Operator Enforces Strict Syntax

The $mod operator now only accepts an array with exactly two
elements, and errors when passed an array with fewer or more elements.
In previous versions, if passed an array with one element, the
$mod operator uses 0 as the second element, and if passed
an array with more than two elements, the $mod ignores all but
the first two elements. Previous versions do return an error when
passed an empty array.

See Not Enough Elements Error and Too Many Elements Error for
details.

SSL Certificate Hostname Validation

New in version 2.5.4.

The SSL certificate validation now checks the Common Name (CN) and
the Subject Alternative Name (SAN) fields to ensure that either the
CN or one of the SAN entries matches the hostname of the
server. As a result, if you currently use SSL and neither the CN
nor any of the SAN entries of your current SSL certificates match
the hostnames, upgrading to version 2.5.4 will cause the SSL
connections to fail.

To allow for the continued use of these certificates, MongoDB provides
the sslAllowInvalidCertificates setting. The setting is
available for:

	mongod and mongos to bypass the validation of
SSL certificates on other servers in the cluster.

	mongo shell, MongoDB tools that support SSL, and the C++ driver to bypass the
validation of server certificates.

When using the sslAllowInvalidCertificates setting, MongoDB
logs as a warning the use of the invalid certificates.

Warning

The sslAllowInvalidCertificates setting
bypasses the other certificate validation, such as checks for
expiration and valid signatures.

Changes

Important

The MongoDB 2.5-series, which will become MongoDB 2.6,
is for testing and development only. All identifiers, names,
interfaces are subject to change. Do not use a MongoDB 2.5
release in production situations.

Aggregation Pipeline Changes

db.collection.aggregation() Accepts Second Parameter

In the 2.5.3 version of the mongo shell, the
db.collection.aggregate() helper can now accept as a second
parameter a document of options. See
db.collection.aggregate().

See also

Behavior of aggregate() Method in the mongo Shell

$out Stage to Write Data to a Collection

New in version 2.5.2.

The aggregation pipeline adds a new stage named $out that
writes the result of the pipeline operation to an output collection and
returns an empty result set. In version 2.5.3 of the mongo
shell, because the db.collection.aggregate() method returns a
cursor, specifying an $out stage returns an empty cursor.

See the $out documentation
for more information.

Aggregation Operations Now Return Cursors

The db.collection.aggregate() helper in the mongo
shell now returns a cursor. By returning a cursor, aggregation
pipelines can return result sets of any size. In previous versions, the
result of an aggregation operation could be no larger than 16
megabytes. See db.collection.aggregate().

The aggregate command can return a document that contains
results with which to instantiate a cursor object. See aggregate.

explain Option for the Aggregation Pipeline

The new explain option for aggregation provides information about
how mongod processes the pipeline. See
db.collection.aggregate() and aggregate for
details.

Improved Sorting

New in version 2.5.2.

The $sort and $group stages now use a more
efficient sorting system that provides improved performance.

The new allowDiskUsage option enables stages to write data to
temporary files. See db.collection.aggregate() and
aggregate.

$redact Stage to Provide Filtering for Field-Level Access Control

Important

The examples in this section use the
db.collection.aggregate() helper provided in the 2.5.3
version of the mongo shell against the 2.5.3 version of
the MongoDB server. To run the examples, you must update both the
mongo shell and the MongoDB servers.

	
$redact

	
New in version 2.5.2.

Provides a method to restrict the content of a returned document on
a per-field level.

Example

Given a collection with the following document in a test
collection:

{ a: {
 level: 1,
 b: {
 level: 5,
 c: {
 level: 1,
 message: "Hello"
 }
 },
 d: "World."
 }
}

Consider the following aggregation operation:

db.test.aggregate(
 { $match: {} },
 { $redact: { $cond: { if: { $lt: ['$level', 3] },
 then: "$$DESCEND",
 else: "$$PRUNE" }
 }
 }
)

This operation evaluates every object-typed field at every level for all
documents in the test collection, and uses the
$cond expression and the variables $$DESCEND
and $$PRUNE to specify the redaction of document parts in the
aggregation pipeline.

Specifically, if the field level is less than 3, (i.e. {
$lt: ['$level', 3'] }) $redact continues (i.e.
$$DESCEND) evaluating the fields and sub-documents at this
level of the input document. If the value of level is greater
than 3, then $redact removes all data at this
level of the document.

The result of this aggregation operation is as follows:

{ a: {
 level: 1,
 d: "World."
} }

You may also specify $$KEEP as a variable to
$cond, which returns the entire sub-document
without traversing, as $$DESCEND.

See

$cond.

Set Expression Operations in $project

In 2.5.2, the $project aggregation pipeline stage now
supports the following set expressions:

Important

Set operators take arrays as their arguments and treat
these arrays as sets. The set operators ignore duplicate entries in
an input array and produce arrays containing unique entries.

	
$setIsSubset

	Takes two arrays and returns true when the first array is a
subset of the second and false otherwise.

	
$setEquals

	Takes two arrays and returns true when they contain the same
elements, and false otherwise.

	
$setDifference

	Takes two arrays and returns an array containing the elements that
only exist in the first array.

	
$setIntersection

	Takes any number of arrays and returns an array that contains the
elements that appear in every input array.

	
$setUnion

	Takes any number of arrays and returns an array that containing the
elements that appear in any input array.

	
$allElementsTrue

	Takes a single expression that returns an array and returns true
if all its values are true and false otherwise. An empty
array returns true.

$anyElementsTrue was $all in versions of 2.5
before 2.5.3.

	
$anyElementTrue

	Takes a single expression that returns an array and returns true
if any of its values are true and false otherwise. An empty
array returns false.

$anyElementTrue was $any in versions of 2.5 before
2.5.3.

$map and $let Expressions in Aggregation Pipeline Stages

Tip

For $let and $map, the
aggregation framework introduces variables. To specify a variable,
use the name of the variable prefixed by 2 dollar signs
(i.e. $$) as in: $$<name>.

The $let and $map make it possible to
declare and manipulate variables within an aggregation pipeline
stages, specifically the $project, $group, and
$redact stages. See: $let (aggregation) and
$map (aggregation) for more information.

$literal Expression for Aggregation Pipeline Stages

The new $literal operator allows users to explicitly
specify documents in aggregation operations that the pipeline stage
would otherwise interpret directly. See
$literal (aggregation) for more information.

$cond Accepts Objects as Arguments

New in version 2.5.3.

The ternary $cond expression can now take either an object
or an array. Previously $cond always took an array. See
$cond (aggregation) for more information.

New $size Operator for the Aggregation Pipeline

New in version 2.5.3.

The new $size operator for the aggregation
pipeline returns the size of a specified
array. See $size (aggregation) for more
information.

Write Operation Improvements

New Write Commands

Changed in version 2.5.4.

MongoDB now supports new insert,
update, and delete commands for all write
operations. These commands allow you to specify a write concern for an
entire bulk write operation as well as the continuation behavior in
the event of a single failed write. See the documentation of these
commands for more information:

	insert

	update

	delete

The mongo shell uses these new commands by default for
all write operations when connected to a version 2.5.4 or above
MongoDB instance. The mongo shell will use legacy write
operations when connected to earlier MongoDB instances.

All officially supported MongoDB drivers will support the new write
commands before the official 2.6 release. Please see your driver’s
release notes for more information.

New Update Operators

MongoDB also introduces new changes to the update language:

$mul Update Operator

The new $mul operator allows you to multiply the value of a
field by the specified amount. See $mul for details.

xor operation for $bit Operator

The $bit operator now supports bitwise updates using a logical
xor operation. See the documentation of $bit for more
information on bitwise updates. Consider the following operation:

$min Update Operator

The new $min operator updates the value of the field to a
specified value if the specified value is less than the current
value of the field. See $min for details.

$max Update Operator

The new $max operator updates the value of the field to a
specified value if the specified value is greater than the
current value of the field. See $max for details.

$currentDate Update Operator

The $currentDate operator sets the value of a field to the
current date, either as a Date or a
timestamp. See
$currentDate for details.

Enhanced Modifiers for $push Update Operator

Changed in version 2.5.3.

The $push operator has enhanced support for the
$sort, $slice, and $each modifiers
to increase functionality and usability. MongoDB also provides a new
$position modifier for the $push operator.

$each Modifier Changes

When used in conjunction with the $sort, the
$slice, and the $position modifiers, the
$each modifier no longer needs to be the first modifier for
the $push.

$sort Modifier Enhancements

The $sort modifier can sort the array elements as a whole.
This change means that the $sort modifier can now sort
array elements that are not documents. Or, if the array elements are
documents, the modifier can sort by the whole documents, and not just
by the field in the documents. The $sort no longer requires
the $slice modifier. See $sort for details.

$slice Modifier Enhancements

The $slice modifier can accept positive numbers to slice
from the front of the array. See $slice for details.

$position Modifier

The $position modifier specifies the insert position for
the $push operator. See $position.

Sharding Improvements

Support for Removing Orphan Data From Shards

New in version 2.5.2.

The new cleanupOrphaned command helps support sharded
cluster maintenance, by providing a mechanism to removed orphaned data
from a shard. Orphaned data are those documents in a collection that
exist on shards that belong to another shard in the cluster. Orphaned
data are the result of failed migrations or incomplete migration
cleanup due to abnormal shutdown.

Ability to Merge Co-located Contiguous Chunks

New in version 2.5.2.

The mergeChunks provides the ability for users to combine
contiguous chunks located on a single shard. This makes it possible to
combine chunks in situations where document removal leaves a sharded
collection with too many empty chunks.

See mergeChunks for more information and
Merge Chunks in a Sharded Cluster for full
documentation of this operation.

Collection-Level Access Control

MongoDB 2.5.3 provides the ability to specify user privileges at a
collection-level granularity. See
Collection-Level Access Control for more information.

User Defined Roles

Important

For authentication/authorization, to upgrade from
version 2.4 model for user credentials and privileges to the 2.5.4
model, see Authentication and Authorization Incompatibility.

MongoDB provides the ability to create custom user roles in addition to
the roles provided by MongoDB. In addition, MongoDB now provides global
user management, storing all user and user-defined role data in the
admin database and providing a new set of commands for managing users
and roles.

For more information on the new authorization model and user-defined
roles, see Authorization.

SSL Improvements

See also

SSL Certificate Hostname Validation

Optionally Prompt for SSL Certificate Passphrases at Server Startup

In MongoDB 2.5.4, a mongod or mongos can now
interactively prompt the user at startup to enter the passphrase for
an encrypted SSL private key. This provides an alternative to
providing a cleartext passphrase on the command line or in a
configuration file. See SSL Certificate Passphrase.

Tools Now Support SSL

New in version 2.5.3.

MongoDB utility programs provide support for connecting to
mongod and mongos instances using SSL connection.
See MongoDB Tools for more information.

MongoDB Allows Only Strong SSL Ciphers

MongoDB’s SSL encryption only allows use of strong SSL ciphers, with a minimum
of 128-bit key length for all connections.

The strong-cipher requirement prevents an old or malicious client from forcing
use of a weak cipher.

Support for SSL and non-SSL Connections on the Same Port

To permit upgrades of MongoDB clusters to use SSL encrypted connections, the
MongoDB server supports listening for both SSL encrypted and unencrypted
connections on the same TCP port. See Upgrade a Cluster to Use SSL.

x.509 Authentication

MongoDB introduces x.509 certificate authentication for use with a secure SSL connection for client authentication as well as for
internal authentication of sharded and/or replica set cluster members.

See Use x.509 for Client Authentication and
Use x.509 for Replica Set/Sharded Cluster Member Authentication.

Index Building Improvements

Background Index Builds Replicate to Secondaries

Starting in MongoDB 2.5.0, if you initiate a background index
build on a primary, the
secondaries will replicate the index build in the background.
In previous versions of MongoDB, secondaries built all indexes in the
foreground, even if the primary built an index in the background.

For all index builds, secondaries will not begin building indexes
until the primary has successfully completed the index build.

mongod Automatically Continues in Progress Index Builds Following Restart

If your mongod instance was building an index when it
shutdown or terminated, mongod will now continue building
the index when the mongod restarts. Previously, the index
build had to finish building before mongod shutdown.

To disable this behavior the 2.5 series adds a new run time option,
noIndexBuildRetry (or via, --noIndexBuildRetry on the
command line), for mongod. noIndexBuildRetry
prevents mongod from continuing rebuilding indexes that did
not finished building when the mongod last shut down.

Tool Improvements

Global mongorc.js File

If the file mongorc.js exists in the /etc directory (or
%ProgramData%\MongoDB directory on Windows), the
mongo shell evaluates the contents of this file on start-up.
Then, the mongo shell evaluates the user’s
.mongorc.js file if the file exists in the user’s HOME
directory.

The --norc option for mongo suppresses only the
user’s .mongorc.js file.

Important

The mongorc.js in /etc directory must have read
permission for the user running the shell.

Support for --quiet Option for all Tools

New in version 2.5.0.

All MongoDB executable files now support
the --quiet option. This option suppresses all logging output
except for error messages.

mongoimport Uses Filename If Collection Name Is Not Specified

New in version 2.5.3.

When invoked without the -c or --collection command-line argument,
the mongoimport tool uses the input filename as the name
of the collection. MongoDB omits the extension of the file from the
collection name if the input file has an extension.

Example

The following command imports data from the contacts.csv file
into the contacts collection:

mongoimport --db users --type csv --file /opt/backups/contacts.csv

To specify the collection to import, use the -c or
--collection option:

mongoimport --db users --collection contacts --type csv --file /opt/backups/contacts.csv

mongostat Can Support --rowcount Option with --discover Option

New in version 2.5.3.

The mongostat program now produces the specified
number of lines of output when using --rowcount (-n)
with the --discover option. In earlier versions of
mongostat, the --discover option would override
--rowcount, and would continue to produce output until the
user terminated the program.

Limit for maxConns Removed

Starting in MongoDB 2.5.0, there is no longer any upward limit for the
maxConns, or mongod --maxConns and
mongos --maxConns options. Previous versions capped the
maximum possible maxConns setting at 20,000
connections.

See maxConns.

Additional Operation Termination Semantics

New in version 2.5.4.

MongoDB adds the cursor method maxTimeMS() and
corresponding option for commands. maxTimeMS allows operations to specify
a time limit. MongoDB terminates operations
that exceed their allotted time limit, using the same mechanism as
db.killOp(). MongoDB only terminates operations at
designated interrupt points.

Geospatial Enhancements

New in version 2.5.2.

MongoDB added support for the following GeoJSON [http://geojson.org/geojson-spec.html] object types for use with
2dsphere indexes: MultiPoint,
MultiLineString, MultiPolygon, and
GeometryCollection.

C++ Driver Enhancement

New in version 2.5.0.

The C++ driver now monitors replica set health with the
isMaster command instead of replSetGetStatus.
This allows the C++ driver to support systems that have access control
enabled.

MSI Package for MongoDB Available for Windows

New in version 2.5.3.

MongoDB now distributes MSI packages for Microsoft Windows. This is the
recommended method for MongoDB installation under Windows.

New Replica Set Status Methods

MongoDB provides two additional methods to provide information
regarding the status of a replica set:
rs.printReplicationInfo() and
rs.printSlaveReplicationInfo().

The rs.printReplicationInfo() method provides a formatted
report of the status of a replica set from the perspective of
the primary set member. The output is identical to that of the
db.printReplicationInfo() method.

The rs.printSlaveReplicationInfo() method provides a
formatted report of the status of a replica set from the
perspective of a secondary set member. The output is identical to that
of the db.printSlaveReplicationInfo() method.

MongoDB Enterprise Features

Support for Auditing

New in version 2.5.3.

Important

Auditing, like all new features in 2.5.3, is in ongoing
development. Specifically, the interface, output format, audited
events and the structure of audited events will change
significantly in the 2.5 series before the release of 2.6.

MongoDB Enterprise adds features to audit server and client activity
for mongod and mongos instances. See
System Event Auditing for details.

MongoDB Enterprise for Windows

New in version 2.5.3.

MongoDB Enterprise for Windows is now available. It includes advanced
Kerberos security, SSL, and SNMP support.

Note

MongoDB Enterprise for Windows does not include LDAP
support for authentication.

SASL Library Change

MongoDB Enterprise uses Cyrus SASL instead of GNU SASL (libgsasl).
This change has the following SASL2 and Cyrus SASL library and GSSAPI
plugin dependencies:

For Debian or Ubuntu, install the following:

sudo apt-get install cyrus-sasl2-dbg cyrus-sasl2-mit-dbg libsasl2-2 libsasl2-dev libsasl2-modules libsasl2-modules-gssapi-mit

For CentOS, Red Hat Enterprise Linux, and Amazon AMI, install the
following:

sudo yum install cyrus-sasl cyrus-sasl-lib cyrus-sasl-devel cyrus-sasl-gssapi

For SUSE, install the following:

sudo zypper install cyrus-sasl cyrus-sasl-devel cyrus-sasl-gssapi

LDAP Support for Authentication

MongoDB Enterprise provides support for proxy authentication of users.
This allows administrators to configure a MongoDB cluster to
authenticate users via Linux PAM or by proxying authentication requests
to a specified Lightweight Directory Access Protocol (LDAP) service.
See Authenticate Using SASL and LDAP.

Note

MongoDB Enterprise for Windows does not include LDAP
support for authentication.

Expanded SNMP Support

New in version 2.5.3.

MongoDB Enterprise has greatly expanded its SNMP support. Enterprise
clients who need fine-grained server statistics now have SNMP access to
nearly the full range of metrics provided by
db.serverStatus().

Additional Information

Upgrade Process

See Upgrade MongoDB to 2.5.x for full upgrade instructions.

Other Resources

MongoDB Downloads [http://mongodb.org/downloads].

 Upgrade MongoDB to 2.5.x

Upgrade MongoDB to 2.5.x

MongoDB 2.6 is currently in development, as part of the 2.5
development release series. While 2.5-series releases are currently
available, these versions of MongoDB are for testing only and
not for production use.

In the general case, the upgrade from MongoDB 2.4 to 2.5.x is a
binary-compatible “drop-in” upgrade: shut down the mongod
instances and replace them with mongod instances running
2.5.x. However, before you attempt any upgrade please familiarize
yourself with the content of this document, particularly the procedure
for upgrading sharded clusters and the
considerations for reverting to 2.4 after running 2.5.x.

Content

	Upgrade Recommendations and Checklist

	Upgrade Standalone mongod Instance to MongoDB 2.5.x

	Upgrade a Replica Set from MongoDB 2.4 to MongoDB 2.5.x

	Upgrade a Sharded Cluster from MongoDB 2.4 to MongoDB 2.5.x

	Upgrade from MongoDB 2.4 User Authorization Model to MongoDB 2.5.x Model

	Downgrade Recommendations and Checklist

	Downgrade from MongoDB 2.5.x User Authorization Model to MongoDB 2.4 Model

	Upgrade and Downgrade Procedures

Upgrade Recommendations and Checklist

When upgrading, consider the following:

	For all deployments using authentication, upgrade
drivers (i.e. client libraries) before
mongod instances.

	Before upgrading the authorization model, you should first upgrade
MongoDB binaries to 2.5.4. For sharded clusters, ensure that all
cluster components are 2.5.4.

	Sharded clusters must follow the upgrade procedure.

	Recommended.

Because downgrades are more difficult after you upgrade the user
authorization model, once you upgrade the MongoDB binaries to
version 2.5.4, allow your MongoDB deployment to run a day or two
without upgrading the user authorization model.

This allows 2.5.4 some time to “burn in” and decreases the likelihood
of downgrades occurring after the user privilege model upgrade. The
user authentication and access control will continue to work as
it did in 2.4, but it will be impossible to create or modify
users or to use user-defined roles until you run the authorization
upgrade.

Upgrade Standalone mongod Instance to MongoDB 2.5.x

	Download binaries of the latest release in the 2.5.x series from the
MongoDB Download Page [http://www.mongodb.org/downloads]. See Install MongoDB for more
information.

	Shut down your mongod instance. Replace the existing
binary with the 2.5.x mongod binary and restart mongod.

Upgrade a Replica Set from MongoDB 2.4 to MongoDB 2.5.x

You can upgrade to 2.5.x using a “rolling” upgrade to minimize downtime
by upgrading the members individually while the other members are
available:

	Upgrade the secondary members of the set one at a time by
shutting down the mongod and replacing the 2.4 binary
with the 2.5.x binary. After upgrading a mongod instance,
wait for the member to recover to SECONDARY state
before upgrading the next instance.
To check the member’s state, issue rs.status() in the
mongo shell.

	Use rs.stepDown() in the the mongo shell to
step down the primary and force the normal failover procedure. rs.stepDown()
expedites the failover procedure and is preferable to shutting down
the primary directly.

When rs.status() shows that the primary has stepped down
and another member has assumed PRIMARY state, shut down the
previous primary and replace the mongod binary with the
2.5.x binary and start the new instance.

Note

Replica set failover is not instant but will
render the set unavailable to read or accept writes
until the failover process completes. Typically this takes
10 seconds or more. You may wish to plan the upgrade during
a predetermined maintenance window.

Upgrade a Sharded Cluster from MongoDB 2.4 to MongoDB 2.5.x

Important

Only upgrade sharded clusters to 2.5.x if all members of the
cluster are currently running instances of 2.4. The only supported
upgrade path for sharded clusters running 2.2 is via 2.4.

Upgrading a sharded cluster from MongoDB version 2.4 to 2.5.x
(or 2.5) requires that you run a 2.5.x mongos with the
--upgrade option, as described in this
procedure. The upgrade process does not require downtime.

Warning

	Before you start the upgrade, ensure that the amount of free space on
the filesystem for the config database is 4 to 5 times the amount of space
currently used by the config database data files.

Additionally, ensure that all indexes in the config database are {v:1} indexes. If a critical
index is a {v:0} index, chunk splits can fail due to known issues
with the {v:0} format. {v:0} indexes are present on clusters created with
MongoDB 2.0 or earlier.

The duration of the metadata upgrade depends on the network latency
between the node performing the upgrade and the three config servers.
Ensure low latency between the upgrade process and the config servers.

	While the upgrade is in progress, you cannot make changes to the
collection meta-data. For example, during the upgrade, do not
do any of the following:

	sh.enableSharding()

	sh.shardCollection()

	sh.addShard()

	db.createCollection()

	db.collection.drop()

	db.dropDatabase()

	any operation that creates a database

	any other operation that modifies the cluster meta-data in any
way. See Sharding Reference for a complete list
of sharding commands. Note, however, that not all commands on
the Sharding Reference page modifies the
cluster meta-data.

Note

The upgraded config database will require more storage space than
before, to make backup and working copies of the
config.chunks and config.collections collections.
As always, if storage requirements increase, the mongod
might need to pre-allocate additional data files. See
What tools can I use to investigate storage use in MongoDB? for more information.

Upgrade Sharded Clusters

	Turn off the balancer in the
sharded cluster, as described in
Disable the Balancer.

	Start a single 2.5.x mongos instance with
configdb pointing to the sharded cluster’s config
servers and with the --upgrade option. The upgrade process happens before the
instance becomes a daemon (i.e. before
--fork.)

If you need to avoid reconfiguring a production mongos
instance, you can upgrade an existing mongos instance to
2.5.x or start a new mongos instance that can reach all config
servers.

Start mongos instance:

mongos --configdb <config servers> --upgrade

Invoking mongos without the --upgrade option will fail to start until the 2.5.x upgrade process
is complete.

The upgrade will prevent any chunk moves or splits from occurring
during the upgrade process. If the data files have many sharded
collections or if failed processes hold stale locks,
acquiring the locks for all collections can take
seconds or minutes. Watch the log for progress updates.

	When the mongos instance starts successfully, the upgrade
of the mongos instance is complete. If mongos
fails to start, check the log for more information.

If the mongos instance terminates or loses its connection to the
config servers during the upgrade, you may always safely retry the
upgrade.

	Upgrade and restart other mongos instances in the
sharded cluster, without the --upgrade
option. See Complete Sharded Cluster Upgrade for more information.

Complete Sharded Cluster Upgrade

After you have successfully upgraded all mongos instances,
you can upgrade the other instances in your MongoDB deployment.

Warning

Do not upgrade mongod instances until after you have
upgraded all mongos instances.

While the balancer is still disabled, upgrade the components of your
sharded cluster in the following order:

	Upgrade all 3 mongod config server instances, leaving
the first system in the mongos --configdb argument to upgrade
last.

	Upgrade each shard, one at a time, upgrading the mongod
secondaries before running replSetStepDown and
upgrading the primary of each shard.

When this process is complete, re-enable the
balancer.

Upgrade from MongoDB 2.4 User Authorization Model to MongoDB 2.5.x Model

Important

Before upgrading the authorization model, you should first upgrade
MongoDB binaries to 2.5.4. For sharded clusters, ensure that all
cluster components are 2.5.4.

Recommended

Because downgrades are more difficult after you upgrade the user
authorization model, once you upgrade the MongoDB binaries to
version 2.5.4, allow your MongoDB deployment to run a day or two
without upgrading the user authorization model.

This allows 2.5.4 some time to “burn in” and decreases the likelihood
of downgrades occurring after the user privilege model upgrade. The
user authentication and access control will continue to work as
it did in 2.4, but it will be impossible to create or modify
users or to use user-defined roles until you run the authorization
upgrade.

Tip

To upgrade the authorization data for a replica set, it is only
necessary to run the upgrade process on the primary as
the changes will automatically replicate to the secondaries.

	Connect and authenticate to the mongod instance for a
single deployment or a mongos for a sharded cluster as a
user with the role userAdminAnyDatabase.

Important

For a sharded cluster, you must upgrade the
cluster’s authorization data first by connecting to
mongos and running the upgrade procedure, and then the
authorization data of primary members of each shard.

Warning

For a sharded cluster, do not run the upgrade
process directly against the config servers.

	Use the authSchemaUpgradeStep command in the admin
database to update the user data. The
authSchemaUpgradeStep returns a document that contains
the boolean field done.

Run the authSchemaUpgradeStep repeatedly until the done field
is true, as in the following:

Tip

In case of an error with
authSchemaUpgradeStep, you may safely re-run the
authSchemaUpgradeStep command.

var res;
do {
 res = db.getSiblingDB("admin").runCommand({authSchemaUpgradeStep: 1});
} while (res.ok && !res.done);

print(tojson(res));

For a sharded cluster, repeat the upgrade process by connecting to the
primary replica set member for each shard.

Note

The upgrade procedure copies the version 2.4 admin.system.users
collection to admin.system.backup_users.

The upgrade procedure leaves the version 2.4 <non-admin
database>.system.users collection(s) intact.

Downgrade Recommendations and Checklist

If you have upgraded to the 2.5.x user authorization model, before
downgrading MongoDB 2.5.x to 2.4, you must first downgrade the user
authorization model to 2.4. See Downgrade from MongoDB 2.5.x User Authorization Model to MongoDB 2.4 Model.

Downgrade from MongoDB 2.5.x User Authorization Model to MongoDB 2.4 Model

Important

If you have upgraded to the 2.5.x user authorization
model, you must first downgrade the user authorization model to
2.4 before before downgrading MongoDB 2.5.x to 2.4.

Tip

To downgrade the authorization data for a replica set, it is
only necessary to run the downgrade process on the
primary as the changes will automatically replicate to the
secondaries.

The following downgrade procedure requires <database>.system.users
collections used in version 2.4. to be intact for non-admin
databases:

	Connect and authenticate to the mongod instance for a
single deployment or a mongos for a sharded cluster as a
user with the role userAdminAnyDatabase.

Note

For sharded clusters, although the procedure lists the downgrade
of the cluster’s authorization data first, you may downgrade the
authorization data of the cluster or shards first.

	Copy the contents of admin.system.users to admin.system.new_users.

	Update the version document for the authSchema:

db.getSiblingDB("admin").system.version.update(
 { _id: "authSchema" },
 { $set: { currentVersion: 2 } }
)

	Remove all documents from admin.system.users.

	Copy the contents of admin.system.backup_users, created during
upgrade, to admin.system.users.

	Update the version document for the authSchema:

db.getSiblingDB("admin").system.version.update(
 { _id: "authSchema" },
 { $set: { currentVersion: 1 } }
)

For a sharded cluster, repeat the downgrade process by connecting to
the primary replica set member for each shard.

Upgrade and Downgrade Procedures

Basic Downgrade and Upgrade

Except as described on this page, moving
between 2.4 and 2.5.x is a drop-in replacement:

	stop the existing mongod, using the --shutdown option as follows:

mongod --dbpath /var/mongod/data --shutdown

Replace /var/mongod/data with your MongoDB dbpath.

	start the new mongod instances with the same
dbpath setting, for example:

mongod --dbpath /var/mongod/data

Replace /var/mongod/data with your MongoDB dbpath.

 Default Write Concern Change

Default Write Concern Change

These release notes outline a change to all driver interfaces released
in November 2012. See release notes for specific drivers for
additional information.

Changes

As of the releases listed below, there are two major changes to all
drivers:

	All drivers will add a new top-level connection class that will
increase consistency for all MongoDB client interfaces.

This change is non-backward breaking: existing connection classes
will remain in all drivers for a time, and will continue to operate
as expected. However, those previous connection classes are now
deprecated as of these releases, and will eventually be removed
from the driver interfaces.

The new top-level connection class is named MongoClient, or
similar depending on how host languages handle namespacing.

	The default write concern on the new MongoClient class will be
to acknowledge all write operations [1]. This
will allow your application to receive acknowledgment of all write
operations.

See the documentation of Write Concern for
more information about write concern in MongoDB.

Please migrate to the new MongoClient class expeditiously.

	[1]	The drivers will call
getLastError without arguments, which is logically
equivalent to the w: 1 option; however, this operation allows
replica set users to override the default write concern
with the
getLastErrorDefaults
setting in the
Replica Set Configuration.

Releases

The following driver releases will include the changes outlined in
Changes. See each driver’s release notes for
a full account of each release as well as other related
driver-specific changes.

	C#, version 1.7

	Java, version 2.10.0

	Node.js, version 1.2

	Perl, version 0.501.1

	PHP, version 1.4

	Python, version 2.4

	Ruby, version 1.8

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	

 	$ (projection operator)

 	

 	(update operator)

 	$add (aggregation framework transformation expression)

 	$addToSet (aggregation framework group expression)

 	

 	(update operator)

 	$all (query)

 	$allElementsTrue (aggregation framework transformation expression)

 	$and (aggregation framework transformation expression)

 	

 	(query)

 	$anyElementTrue (aggregation framework transformation expression)

 	$atomic (update operator)

 	$avg (aggregation framework group expression)

 	$bit (update operator)

 	$box (query)

 	$center (query)

 	$centerSphere (query)

 	$cmd

 	$cmp (aggregation framework transformation expression)

 	$comment (operator)

 	$concat (aggregation framework transformation expression)

 	$cond (aggregation framework transformation expression)

 	$currentDate (update operator)

 	$dayOfMonth (aggregation framework transformation expression)

 	$dayOfWeek (aggregation framework transformation expression)

 	$dayOfYear (aggregation framework transformation expression)

 	$divide (aggregation framework transformation expression)

 	$each (update operator)

 	$elemMatch (projection operator)

 	

 	(query)

 	$eq (aggregation framework transformation expression)

 	$exists (query)

 	$explain (operator)

 	$first (aggregation framework group expression)

 	$geoIntersects (query)

 	$geometry (query)

 	$geoNear (aggregation framework pipeline operator)

 	$geoWithin (query)

 	$group (aggregation framework pipeline operator)

 	$gt (aggregation framework transformation expression)

 	

 	(query)

 	$gte (aggregation framework transformation expression)

 	

 	(query)

 	$hint (operator)

 	$hour (aggregation framework transformation expression)

 	$ifNull (aggregation framework transformation expression)

 	$in (query)

 	$inc (update operator)

 	$isolated (update operator)

 	$last (aggregation framework group expression)

 	$let (aggregation framework transformation expression)

 	$limit (aggregation framework pipeline operator)

 	$literal (aggregation framework transformation expression)

 	$lt (aggregation framework transformation expression)

 	

 	(query)

 	$lte (aggregation framework transformation expression)

 	

 	(query)

 	$map (aggregation framework transformation expression)

 	$match (aggregation framework pipeline operator)

 	$max (aggregation framework group expression)

 	

 	(operator)

 	(update operator)

 	$maxDistance (query)

 	$maxScan (operator)

 	$maxTimeMS (operator)

 	$millisecond (aggregation framework transformation expression)

 	$min (aggregation framework group expression)

 	

 	(operator)

 	(update operator)

 	$minute (aggregation framework transformation expression)

 	$mod (aggregation framework transformation expression)

 	

 	(query)

 	$month (aggregation framework transformation expression)

 	$mul (update operator)

 	$multiply (aggregation framework transformation expression)

 	$natural (operator)

 	$ne (aggregation framework transformation expression)

 	

 	(query)

 	$near (query)

 	$nearSphere (query)

 	$nin (query)

 	$nor (query)

 	$not (aggregation framework transformation expression)

 	

 	(query)

 	$options (operator)

 	$or (aggregation framework transformation expression)

 	

 	(query)

 	$orderby (query)

 	$out (aggregation framework pipeline operator)

 	$polygon (query)

 	$pop (update operator)

 	$position (update operator)

 	$project (aggregation framework pipeline operator)

 	$pull (update operator)

 	$pullAll (update operator)

 	$push (aggregation framework group expression)

 	

 	(update operator)

 	$pushAll (update operator)

 	$query (operator)

 	$redact (aggregation framework pipeline operator)

 	$regex (query)

 	$rename (update operator)

 	$returnKey (operator)

 	$second (aggregation framework transformation expression)

 	$set (update operator)

 	$setDifference (aggregation framework transformation expression)

 	$setEquals (aggregation framework transformation expression)

 	$setIntersection (aggregation framework transformation expression)

 	$setIsSubset (aggregation framework transformation expression)

 	$setOnInsert (update operator)

 	$setUnion (aggregation framework transformation expression)

 	$showDiskLoc (operator)

 	$size (aggregation framework transformation expression)

 	

 	(query)

 	$skip (aggregation framework pipeline operator)

 	$slice (projection operator)

 	

 	(update operator)

 	$snapshot (operator)

 	$sort (aggregation framework pipeline operator)

 	

 	(update operator)

 	$strcasecmp (aggregation framework transformation expression)

 	$substr (aggregation framework transformation expression)

 	$subtract (aggregation framework transformation expression)

 	$sum (aggregation framework group expression)

 	$toLower (aggregation framework transformation expression)

 	$toUpper (aggregation framework transformation expression)

 	$type (query)

 	$uniqueDocs (query)

 	$unset (update operator)

 	$unwind (aggregation framework pipeline operator)

 	$week (aggregation framework transformation expression)

 	$where (query)

 	$within (query)

 	$year (aggregation framework transformation expression)

 	
 --all

 	

 	command line option

 	
 --auditFilter

 	

 	command line option, [1]

 	
 --auditLog

 	

 	command line option, [1]

 	
 --auditPath

 	

 	command line option, [1]

 	
 --auth

 	

 	command line option

 	
 --authenticationDatabase <dbname>

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8]

 	
 --authenticationMechanism <name>

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8]

 	
 --autoresync

 	

 	command line option

 	
 --bind_ip <ip address>

 	

 	command line option, [1]

 	
 --chunkSize <value>

 	

 	command line option

 	
 --clusterAuthMode <option>

 	

 	command line option, [1]

 	
 --collection <collection>, -c <collection>

 	

 	command line option, [1], [2], [3], [4]

 	
 --config <filename>, -f <filename>

 	

 	command line option, [1]

 	
 --configdb <config1>,<config2><:port>,<config3>

 	

 	command line option

 	
 --configsvr

 	

 	command line option

 	
 --cpu

 	

 	command line option

 	
 --csv

 	

 	command line option

 	
 --db <db>, -d <db>

 	

 	command line option, [1], [2], [3], [4]

 	
 --dbpath <path>

 	

 	command line option, [1], [2], [3], [4], [5], [6]

 	
 --diaglog <value>

 	

 	command line option

 	
 --directoryperdb

 	

 	command line option, [1], [2], [3], [4], [5], [6]

 	
 --discover

 	

 	command line option

 	
 --drop

 	

 	command line option, [1]

 	
 --eval <javascript>

 	

 	command line option

 	
 --fastsync

 	

 	command line option

 	
 --fieldFile <file>

 	

 	command line option

 	
 --fieldFile <filename>

 	

 	command line option

 	
 --fields <field1<,field2>>, -f <field1[,field2]>

 	

 	command line option

 	
 --fields <field1[,field2]>, -f <field1[,field2]>

 	

 	command line option

 	

 	
 --file <filename>

 	

 	command line option

 	
 --filter '<JSON>'

 	

 	command line option, [1]

 	
 --forceTableScan

 	

 	command line option, [1]

 	
 --fork

 	

 	command line option, [1]

 	
 --forward <host><:port>

 	

 	command line option

 	
 --from <host[:port]>

 	

 	command line option

 	
 --headerline

 	

 	command line option

 	
 --help

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	
 --help, -h

 	

 	command line option

 	
 --help, -h

 	

 	command line option, [1]

 	
 --host <hostname>

 	

 	command line option

 	
 --host <hostname><:port>

 	

 	command line option, [1], [2], [3], [4], [5]

 	
 --host <hostname><:port>, -h

 	

 	command line option, [1]

 	
 --http

 	

 	command line option

 	
 --ignoreBlanks

 	

 	command line option

 	
 --install

 	

 	command line option, [1]

 	
 --ipv6

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	
 --journal

 	

 	command line option, [1], [2], [3], [4], [5], [6]

 	
 --journalCommitInterval <value>

 	

 	command line option

 	
 --journalOptions <arguments>

 	

 	command line option

 	
 --jsonArray

 	

 	command line option, [1]

 	
 --jsonp

 	

 	command line option, [1]

 	
 --keepIndexVersion

 	

 	command line option

 	
 --keyFile <file>

 	

 	command line option, [1]

 	
 --local <filename>, -l <filename>

 	

 	command line option

 	
 --localThreshold

 	

 	command line option

 	
 --locks

 	

 	command line option

 	
 --logappend

 	

 	command line option, [1]

 	
 --logpath <path>

 	

 	command line option, [1]

 	
 --master

 	

 	command line option

 	
 --maxConns <number>

 	

 	command line option, [1]

 	
 --moveParanoia

 	

 	command line option

 	
 --noauth

 	

 	command line option

 	
 --noAutoSplit

 	

 	command line option

 	
 --nodb

 	

 	command line option

 	
 --noheaders

 	

 	command line option

 	
 --nohttpinterface

 	

 	command line option, [1]

 	
 --noIndexBuildRetry

 	

 	command line option

 	
 --noIndexRestore

 	

 	command line option

 	
 --nojournal

 	

 	command line option

 	
 --noobjcheck

 	

 	command line option, [1], [2]

 	
 --noOptionsRestore

 	

 	command line option

 	
 --noprealloc

 	

 	command line option

 	
 --norc

 	

 	command line option

 	
 --noscripting

 	

 	command line option, [1]

 	
 --notablescan

 	

 	command line option

 	
 --nounixsocket

 	

 	command line option, [1]

 	
 --nssize <value>

 	

 	command line option

 	
 --objcheck

 	

 	command line option, [1], [2], [3], [4]

 	
 --only <arg>

 	

 	command line option

 	
 --oplog

 	

 	command line option

 	
 --oplogLimit <timestamp>

 	

 	command line option

 	
 --oplogns <namespace>

 	

 	command line option

 	
 --oplogReplay

 	

 	command line option

 	
 --oplogSize <value>

 	

 	command line option

 	
 --out <file>, -o <file>

 	

 	command line option

 	
 --out <path>, -o <path>

 	

 	command line option

 	
 --password <password>, -p <password>

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8]

 	
 --pidfilepath <path>

 	

 	command line option, [1]

 	
 --port

 	

 	command line option

 	
 --port <port>

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	
 --profile <level>

 	

 	command line option

 	
 --query <JSON>, -q <JSON>

 	

 	command line option

 	
 --query <json>, -q <json>

 	

 	command line option

 	
 --quiet

 	

 	command line option, [1], [2]

 	
 --quota

 	

 	command line option

 	
 --quotaFiles <number>

 	

 	command line option

 	
 --reinstall

 	

 	command line option, [1]

 	
 --remove

 	

 	command line option, [1]

 	
 --repair

 	

 	command line option, [1]

 	
 --repairpath <path>

 	

 	command line option

 	
 --replace, -r

 	

 	command line option

 	
 --replIndexPrefetch

 	

 	command line option

 	
 --replSet <setname>

 	

 	command line option

 	
 --rest

 	

 	command line option

 	
 --rowcount <number>, -n <number>

 	

 	command line option

 	
 --saslServiceName

 	

 	command line option

 	
 --seconds <number>, -s <number>

 	

 	command line option

 	
 --serviceDescription <description>

 	

 	command line option, [1]

 	
 --serviceDisplayName <name>

 	

 	command line option, [1]

 	
 --serviceName <name>

 	

 	command line option, [1]

 	
 --servicePassword <password>

 	

 	command line option, [1]

 	
 --serviceUser <user>

 	

 	command line option, [1]

 	
 --setParameter <options>

 	

 	command line option, [1]

 	
 --shardsvr

 	

 	command line option

 	
 --shell

 	

 	command line option

 	
 --shutdown

 	

 	command line option

 	
 --slave

 	

 	command line option

 	
 --slavedelay <value>

 	

 	command line option

 	
 --slaveOk, -k

 	

 	command line option

 	
 --slowms <value>

 	

 	command line option

 	
 --smallfiles

 	

 	command line option

 	
 --source <host><:port>

 	

 	command line option

 	
 --source <NET [interface]>, <FILE [filename]>, <DIAGLOG [filename]>

 	

 	command line option

 	
 --ssl

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8]

 	
 --sslAllowInvalidCertificates

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	
 --sslCAFile <filename>

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	
 --sslClusterFile <filename>

 	

 	command line option, [1]

 	
 --sslClusterPassword <value>

 	

 	command line option, [1]

 	
 --sslCRLFile <filename>

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	
 --sslFIPSMode

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	
 --sslMode <mode>

 	

 	command line option, [1]

 	
 --sslOnNormalPorts

 	

 	command line option, [1]

 	
 --sslPEMKeyFile <filename>

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	
 --sslPEMKeyPassword <value>

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	
 --sslWeakCertificateValidation

 	

 	command line option, [1]

 	
 --stopOnError

 	

 	command line option

 	
 --syncdelay <value>

 	

 	command line option

 	
 --sysinfo

 	

 	command line option

 	
 --syslog

 	

 	command line option, [1]

 	
 --test

 	

 	command line option

 	
 --traceExceptions

 	

 	command line option

 	
 --type <=json|=debug>

 	

 	command line option

 	
 --type <json|csv|tsv>

 	

 	command line option

 	
 --type <MIME>, t <MIME>

 	

 	command line option

 	
 --unixSocketPrefix <path>

 	

 	command line option, [1]

 	
 --upgrade

 	

 	command line option, [1]

 	
 --upsert

 	

 	command line option

 	
 --upsertFields <field1[,field2]>

 	

 	command line option

 	
 --username <username>, -u <username>

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8]

 	
 --verbose

 	

 	command line option

 	
 --verbose, -v

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	
 --version

 	

 	command line option, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 	
 --w <number of replicas per write>

 	

 	command line option

 	0 (error code)

 	100 (error code)

 	12 (error code)

 	14 (error code)

 	2 (error code)

 	20 (error code)

 	2d Geospatial queries cannot use the $or operator (MongoDB system limit)

 	3 (error code)

 	4 (error code)

 	45 (error code)

 	47 (error code)

 	48 (error code)

 	49 (error code)

 	5 (error code)

 	meta/410.html

File Deleted

The URL you requested has been deleted.

meta/403.html

Access Denied

You do not have access to the URL you requested.

meta/translation.html

MongoDB Manual Translation

The original authorship language for all MongoDB documentation is
American English. However, ensuring that speakers of other languages
can read and understand the documentation is of critical importance to
the documentation project.

In this direction, the MongoDB Documentation project uses the service
provided by Smartling [http://smartling.com/] to translate the
MongoDB documentation into additional non-English languages. This
translation project is largely supported by the work of volunteer
translators from the MongoDB community who contribute to the
translation effort.

If you would like to volunteer to help translate the MongoDB
documentation, please:

		complete the MongoDB Contributor Agreement [http://www.mongodb.com/legal/contributor-agreement], and

		create an account on Smartling at translate.docs.mongodb.org [http://translate.docs.mongodb.org/].

Please use the same email address you use to sign the contributor as
you use to create your Smartling account.

The mongodb-translators [http://groups.google.com/group/mongodb-translators] user group exists to facilitate
collaboration between translators and the documentation team at large.
You can join the Google Group without signing the contributor’s
agreement.

We currently have the following languages configured:

		Arabic [http://ar.docs.mongodb.org]

		Chinese [http://cn.docs.mongodb.org]

		Czech [http://cs.docs.mongodb.org]

		French [http://fr.docs.mongodb.org]

		German [http://de.docs.mongodb.org]

		Hungarian [http://hu.docs.mongodb.org]

		Indonesian [http://id.docs.mongodb.org]

		Italian [http://it.docs.mongodb.org]

		Japanese [http://jp.docs.mongodb.org]

		Korean [http://ko.docs.mongodb.org]

		Lithuanian [http://lt.docs.mongodb.org]

		Polish [http://pl.docs.mongodb.org]

		Portuguese [http://pt.docs.mongodb.org]

		Romanian [http://ro.docs.mongodb.org]

		Russian [http://ru.docs.mongodb.org]

		Spanish [http://es.docs.mongodb.org]

		Turkish [http://tr.docs.mongodb.org]

		Ukrainian [http://uk.docs.mongodb.org]

If you would like to initiate a translation project to an additional
language, please report this issue using the “Report a Problem” link
above or by posting to the mongodb-translators [http://groups.google.com/group/mongodb-translators] list.

Currently the translation project only publishes rendered translation.
While the translation effort is currently focused on the web site we are
evaluating how to retrieve the translated phrases for use in other
media.

See also

		Contribute to the Documentation

		Style Guide and Documentation Conventions

		MongoDB Manual Organization

		MongoDB Documentation Practices and Processes

		MongoDB Documentation Build System

meta/manual.html

MongoDB Manual Contents

See About MongoDB Documentation for more information about the MongoDB Documentation
project, this Manual and additional editions of this text.

		Install MongoDB
		Install on Linux
		Install MongoDB on Red Hat Enterprise, CentOS, or Fedora

		Install MongoDB on Ubuntu

		Install MongoDB on Debian

		Install MongoDB on Linux Systems

		Install MongoDB on OS X

		Install MongoDB on Windows

		Install MongoDB Enterprise on Linux

		Install MongoDB Enterprise on Windows

		Getting Started with MongoDB

		Generate Test Data

		MongoDB CRUD Operations
		MongoDB CRUD Introduction

		MongoDB CRUD Concepts
		Read Operations
		Cursors

		Query Optimization

		Query Plans

		Distributed Queries

		Write Operations
		Write Concern

		Distributed Write Operations

		Write Operation Performance

		Bulk Inserts in MongoDB

		Record Padding

		MongoDB CRUD Tutorials
		Insert Documents

		Query Documents

		Limit Fields to Return from a Query

		Iterate a Cursor in the mongo Shell

		Analyze Query Performance

		Modify Documents

		Remove Documents

		Perform Two Phase Commits

		Create Tailable Cursor

		Isolate Sequence of Operations

		Create an Auto-Incrementing Sequence Field

		Limit Number of Elements in an Array after an Update

		MongoDB CRUD Reference
		Write Concern Reference

		SQL to MongoDB Mapping Chart

		The bios Example Collection

		MongoDB Drivers and Client Libraries

		Data Models
		Data Modeling Introduction

		Data Modeling Concepts
		Data Model Design

		Operational Factors and Data Models

		GridFS

		Data Model Examples and Patterns
		Model Relationships Between Documents
		Model One-to-One Relationships with Embedded Documents

		Model One-to-Many Relationships with Embedded Documents

		Model One-to-Many Relationships with Document References

		Model Tree Structures
		Model Tree Structures with Parent References

		Model Tree Structures with Child References

		Model Tree Structures with an Array of Ancestors

		Model Tree Structures with Materialized Paths

		Model Tree Structures with Nested Sets

		Model Specific Application Contexts
		Model Data for Atomic Operations

		Model Data to Support Keyword Search

		Data Model Reference
		Documents

		Database References

		GridFS Reference

		ObjectId

		BSON Types

		Administration
		Administration Concepts
		Operational Strategies
		Backup Strategies for MongoDB Systems

		Monitoring for MongoDB

		Run-time Database Configuration

		Import and Export MongoDB Data

		Production Notes

		Data Management
		Data Center Awareness
		Operational Segregation in MongoDB Deployments

		Capped Collections

		Expire Data from Collections by Setting TTL

		Optimization Strategies for MongoDB
		Evaluate Performance of Current Operations

		Use Capped Collections for Fast Writes and Reads

		Optimize Query Performance

		Design Notes

		Administration Tutorials
		Configuration, Maintenance, and Analysis
		Use Database Commands

		Manage mongod Processes

		Terminate Running Operations

		Analyze Performance of Database Operations

		Monitor MongoDB with SNMP

		Rotate Log Files

		Manage Journaling

		Store a JavaScript Function on the Server

		Upgrade to the Latest Revision of MongoDB

		MongoDB Tutorials

		Backup and Recovery
		Backup and Restore with MongoDB Tools

		Backup and Restore with Filesystem Snapshots

		Restore a Replica Set from MongoDB Backups

		Backup and Restore Sharded Clusters
		Backup a Small Sharded Cluster with mongodump

		Backup a Sharded Cluster with Filesystem Snapshots

		Backup a Sharded Cluster with Database Dumps

		Schedule Backup Window for Sharded Clusters

		Restore a Single Shard

		Restore a Sharded Cluster

		Copy Databases Between Instances

		Recover Data after an Unexpected Shutdown

		MongoDB Scripting
		Server-side JavaScript

		Data Types in the mongo Shell

		Write Scripts for the mongo Shell

		Getting Started with the mongo Shell

		Access the mongo Shell Help Information

		mongo Shell Quick Reference

		Administration Reference
		UNIX ulimit Settings

		System Collections

		MongoDB Extended JSON

		Database Profiler Output

		Journaling Mechanics

		Exit Codes and Statuses

		Security
		Security Introduction

		Security Concepts
		Access Control

		Inter-Process Authentication

		Sharded Cluster Security

		Network Exposure and Security

		Security and MongoDB API Interfaces

		System Event Auditing

		Security Tutorials
		Network Security Tutorials
		Configure Linux iptables Firewall for MongoDB

		Configure Windows netsh Firewall for MongoDB

		Connect to MongoDB with SSL

		Upgrade a Cluster to Use SSL

		Access Control Tutorials
		Enable Authentication

		Create a User Administrator

		Add a User to a Database

		Define MongoDB Access Roles

		Modify User Privileges

		View Existing Access Roles

		Change a User’s Password

		Generate a Key File

		Deploy MongoDB with Kerberos Authentication

		Authenticate with x.509 Certificate

		Authenticate Using SASL and LDAP

		Configure System Events Auditing

		Create a Vulnerability Report

		Security Reference
		System-Defined Roles

		system.roles Collection

		system.users Collection

		Resource Document

		Privilege Actions

		Default MongoDB Port

		Audit Operations

		Security Release Notes

		Aggregation
		Aggregation Introduction

		Aggregation Concepts
		Aggregation Pipeline

		Map-Reduce

		Single Purpose Aggregation Operations

		Aggregation Mechanics
		Aggregation Pipeline Optimization

		Aggregation Pipeline Limits

		Aggregation Pipeline and Sharded Collections

		Map-Reduce and Sharded Collections

		Map Reduce Concurrency

		Aggregation Examples
		Aggregation with the Zip Code Data Set

		Aggregation with User Preference Data

		Map-Reduce Examples

		Perform Incremental Map-Reduce

		Troubleshoot the Map Function

		Troubleshoot the Reduce Function

		Aggregation Reference
		Aggregation Commands Comparison

		SQL to Aggregation Mapping Chart

		Aggregation Interfaces

		Indexes
		Index Introduction

		Index Concepts
		Index Types
		Single Field Indexes

		Compound Indexes

		Multikey Indexes

		Geospatial Indexes and Queries
		2dsphere Indexes

		2d Indexes

		Haystack Indexes

		2d Index Internals

		Text Indexes

		Hashed Index

		Index Properties
		TTL Indexes

		Unique Indexes

		Sparse Indexes

		Index Creation

		Indexing Tutorials
		Index Creation Tutorials
		Create an Index

		Create a Compound Index

		Create a Unique Index

		Create a Sparse Index

		Create a Hashed Index

		Build Indexes on Replica Sets

		Build Indexes in the Background

		Build Old Style Indexes

		Index Management Tutorials
		Remove Indexes

		Rebuild Indexes

		Manage In-Progress Index Creation

		Return a List of All Indexes

		Measure Index Use

		Geospatial Index Tutorials
		Create a 2dsphere Index

		Query a 2dsphere Index

		Create a 2d Index

		Query a 2d Index

		Create a Haystack Index

		Query a Haystack Index

		Calculate Distance Using Spherical Geometry

		Text Search Tutorials
		Enable Text Search

		Create a text Index

		Search String Content for Text

		Specify a Language for Text Index

		Create text Index with Long Name

		Control Search Results with Weights

		Limit the Number of Entries Scanned

		Create text Index to Cover Queries

		Indexing Strategies
		Create Indexes to Support Your Queries

		Use Indexes to Sort Query Results

		Ensure Indexes Fit in RAM

		Create Queries that Ensure Selectivity

		Indexing Reference

		Replication
		Replication Introduction

		Replication Concepts
		Replica Set Members
		Replica Set Primary

		Replica Set Secondary Members
		Priority 0 Replica Set Members

		Hidden Replica Set Members

		Delayed Replica Set Members

		Replica Set Arbiter

		Replica Set Deployment Architectures
		Three Member Replica Sets

		Replica Sets with Four or More Members

		Geographically Distributed Replica Sets

		Replica Set High Availability
		Replica Set Elections

		Rollbacks During Replica Set Failover

		Replica Set Read and Write Semantics
		Write Concern for Replica Sets

		Read Preference

		Read Preference Processes

		Replication Processes
		Replica Set Oplog

		Replica Set Data Synchronization

		Master Slave Replication

		Replica Set Tutorials
		Replica Set Deployment Tutorials
		Deploy a Replica Set

		Deploy a Replica Set for Testing and Development

		Deploy a Geographically Redundant Replica Set

		Add an Arbiter to Replica Set

		Convert a Standalone to a Replica Set

		Add Members to a Replica Set

		Remove Members from Replica Set

		Replace a Replica Set Member

		Member Configuration Tutorials
		Adjust Priority for Replica Set Member

		Prevent Secondary from Becoming Primary

		Configure a Hidden Replica Set Member

		Configure a Delayed Replica Set Member

		Configure Non-Voting Replica Set Member

		Convert a Secondary to an Arbiter

		Replica Set Maintenance Tutorials
		Change the Size of the Oplog

		Force a Member to Become Primary

		Resync a Member of a Replica Set

		Configure Replica Set Tag Sets

		Reconfigure a Replica Set with Unavailable Members

		Manage Chained Replication

		Change Hostnames in a Replica Set

		Configure a Secondary’s Sync Target

		Troubleshoot Replica Sets

		Replication Reference
		Replica Set Commands

		Replica Set Configuration

		The local Database

		Replica Set Member States

		Read Preference Reference

		Sharding
		Sharding Introduction

		Sharding Concepts
		Sharded Cluster Components
		Shards

		Config Servers

		Sharded Cluster Architectures
		Sharded Cluster Requirements

		Production Cluster Architecture

		Sharded Cluster Test Architecture

		Sharded Cluster Behavior
		Shard Keys

		Sharded Cluster High Availability

		Sharded Cluster Query Routing

		Sharding Mechanics
		Sharded Collection Balancing

		Chunk Migration Across Shards

		Chunk Splits in a Sharded Cluster

		Shard Key Indexes

		Sharded Cluster Metadata

		Sharded Cluster Tutorials
		Sharded Cluster Deployment Tutorials
		Deploy a Sharded Cluster

		Considerations for Selecting Shard Keys

		Shard a Collection Using a Hashed Shard Key

		Enable Authentication in a Sharded Cluster

		Add Shards to a Cluster

		Deploy Three Config Servers for Production Deployments

		Convert a Replica Set to a Replicated Sharded Cluster

		Convert Sharded Cluster to Replica Set

		Sharded Cluster Maintenance Tutorials
		View Cluster Configuration

		Migrate Config Servers with the Same Hostname

		Migrate Config Servers with Different Hostnames

		Replace a Config Server

		Migrate a Sharded Cluster to Different Hardware

		Backup Cluster Metadata

		Configure Behavior of Balancer Process in Sharded Clusters

		Manage Sharded Cluster Balancer

		Remove Shards from an Existing Sharded Cluster

		Sharded Cluster Data Management
		Create Chunks in a Sharded Cluster

		Split Chunks in a Sharded Cluster

		Migrate Chunks in a Sharded Cluster

		Merge Chunks in a Sharded Cluster

		Modify Chunk Size in a Sharded Cluster

		Tag Aware Sharding

		Manage Shard Tags

		Enforce Unique Keys for Sharded Collections

		Shard GridFS Data Store

		Troubleshoot Sharded Clusters

		Sharding Reference
		Config Database

		Sharding Command Quick Reference

		Frequently Asked Questions
		FAQ: MongoDB Fundamentals

		FAQ: MongoDB for Application Developers

		FAQ: The mongo Shell

		FAQ: Concurrency

		FAQ: Sharding with MongoDB

		FAQ: Replica Sets and Replication in MongoDB

		FAQ: MongoDB Storage

		FAQ: Indexes

		FAQ: MongoDB Diagnostics

		Release Notes
		Release Notes for MongoDB 2.4

		Release Notes for MongoDB 2.2

		Release Notes for MongoDB 2.0

		Release Notes for MongoDB 1.8

		Release Notes for MongoDB 1.6

		Release Notes for MongoDB 1.4

		Release Notes for MongoDB 1.2.x

		Release Notes for MongoDB 2.6 (Development Series 2.5.x)

		Default Write Concern Change

		About MongoDB Documentation
		Style Guide and Documentation Conventions

		MongoDB Documentation Practices and Processes

		MongoDB Manual Organization

		MongoDB Documentation Build System

meta/organization.html

MongoDB Manual Organization

This document provides an overview of the global organization of the
documentation resource. Refer to the notes below if you are having
trouble understanding the reasoning behind a file’s current location,
or if you want to add new documentation but aren’t sure how to
integrate it into the existing resource.

If you have questions, don’t hesitate to open a ticket in the
Documentation Jira Project [https://jira.mongodb.org/browse/DOCS]
or contact the documentation team.

Global Organization

Indexes and Experience

The documentation project has two “index files”: /contents.txt and
/index.txt. The “contents” file
provides the documentation’s tree structure, which Sphinx uses
to create the left-pane navigational structure, to power the “Next” and
“Previous” page functionality, and to provide all overarching outlines of the
resource. The “index” file is not included in the “contents” file (and
thus builds will produce a warning here) and is the page that users
first land on when visiting the resource.

Having separate “contents” and “index” files provides a bit more
flexibility with the organization of the resource while also making it
possible to customize the primary user experience.

Topical Organization

The placement of files in the repository depends on the type of
documentation rather than the topic of the content. Like the
difference between contents.txt and index.txt, by decoupling
the organization of the files from the organization of the information
the documentation can be more flexible and can more adequately address
changes in the product and in users’ needs.

Files in the source/ directory represent the tip of a logical
tree of documents, while directories are containers of types of
content. The administration and applications directories,
however, are legacy artifacts and with a few exceptions contain
sub-navigation pages.

With several exceptions in the reference/ directory, there is only
one level of sub-directories in the source/ directory.

Tools

The organization of the site, like all Sphinx sites derives from the
toctree [http://sphinx-doc.org/markup/toctree.html#directive-toctree] structure. However, in order to annotate
the table of contents and provide additional flexibility, the MongoDB
documentation generates toctree [http://sphinx-doc.org/markup/toctree.html#directive-toctree] structures using
data from YAML files stored in the source/includes/
directory. These files start with ref-toc or toc and generate
output in the source/includes/toc/ directory. Briefly this system
has the following behavior:

		files that start with ref-toc refer to the documentation of API
objects (i.e. commands, operators and methods), and the build
system generates files that hold toctree [http://sphinx-doc.org/markup/toctree.html#directive-toctree]
directives as well as files that hold tables that list objects and
a brief description.

		files that start with toc refer to all other documentation and
the build system generates files that hold toctree [http://sphinx-doc.org/markup/toctree.html#directive-toctree] directives as well as files that hold
definition lists that contain links to the documents and short
descriptions the content.

		file names that have spec following toc or ref-toc will
generate aggregated tables or definition lists and allow ad-hoc
combinations of documents for landing pages and quick reference guides.

meta/401.html

Authentication Required

You must log in to access the URL you requested.

meta/reference.html

MongoDB Reference Manual

This document contains all of the reference material from the
MongoDB Manual, reflecting the 2.5.4
release. See the full manual, for complete documentation of MongoDB,
it’s operation, and use.

Interfaces Reference

		mongo Shell Methods
		Collection Methods
		db.collection.aggregate()

		db.collection.count()

		db.collection.copyTo()

		db.collection.createIndex()

		db.collection.getIndexStats()

		db.collection.indexStats()

		db.collection.dataSize()

		db.collection.distinct()

		db.collection.drop()

		db.collection.dropIndex()

		db.collection.dropIndexes()

		db.collection.ensureIndex()

		db.collection.find()

		db.collection.findAndModify()

		db.collection.findOne()

		db.collection.getIndexes()

		db.collection.getShardDistribution()

		db.collection.getShardVersion()

		db.collection.group()

		db.collection.insert()

		db.collection.isCapped()

		db.collection.mapReduce()

		db.collection.reIndex()

		db.collection.remove()

		db.collection.renameCollection()

		db.collection.save()

		db.collection.stats()

		db.collection.storageSize()

		db.collection.totalSize()

		db.collection.totalIndexSize()

		db.collection.update()

		db.collection.validate()

		Cursor Methods
		cursor.addOption()

		cursor.batchSize()

		cursor.count()

		cursor.explain()

		cursor.forEach()

		cursor.hasNext()

		cursor.hint()

		cursor.limit()

		cursor.map()

		cursor.maxTimeMS()

		cursor.max()

		cursor.min()

		cursor.next()

		cursor.objsLeftInBatch()

		cursor.readPref()

		cursor.showDiskLoc()

		cursor.size()

		cursor.skip()

		cursor.snapshot()

		cursor.sort()

		cursor.toArray()

		Database Methods
		db.addUser()

		db.auth()

		db.changeUserPassword()

		db.cloneCollection()

		db.cloneDatabase()

		db.commandHelp()

		db.copyDatabase()

		db.createCollection()

		db.currentOp()

		db.dropDatabase()

		db.eval()

		db.fsyncLock()

		db.fsyncUnlock()

		db.getCollection()

		db.getCollectionNames()

		db.getLastError()

		db.getLastErrorObj()

		db.getMongo()

		db.getName()

		db.getPrevError()

		db.getProfilingLevel()

		db.getProfilingStatus()

		db.getReplicationInfo()

		db.getSiblingDB()

		db.help()

		db.hostInfo()

		db.isMaster()

		db.killOp()

		db.listCommands()

		db.loadServerScripts()

		db.logout()

		db.printCollectionStats()

		db.printReplicationInfo()

		db.printShardingStatus()

		db.printSlaveReplicationInfo()

		db.removeUser()

		db.repairDatabase()

		db.resetError()

		db.runCommand()

		db.serverBuildInfo()

		db.serverStatus()

		db.setProfilingLevel()

		db.shutdownServer()

		db.stats()

		db.version()

		User Management Methods
		db.createUser()

		Definition

		Considerations

		Required Access

		Example

		db.dropAllUsers()

		db.dropUser()

		db.grantRolesToUser()

		db.revokeRolesFromUser()

		db.getUser()

		db.getUsers()

		Role Management Methods
		db.grantRolesToRole()

		db.revokeRolesFromRole()

		db.getRole()

		db.getRoles()

		Replication Methods
		rs.add()

		rs.addArb()

		rs.conf()

		rs.freeze()

		rs.help()

		rs.initiate()

		rs.printReplicationInfo()

		rs.printSlaveReplicationInfo()

		rs.reconfig()

		rs.remove()

		rs.slaveOk()

		rs.status()

		rs.stepDown()

		rs.syncFrom()

		Sharding Methods
		sh._adminCommand()

		sh._checkFullName()

		sh._checkMongos()

		sh._lastMigration()

		sh.addShard()

		sh.addShardTag()

		sh.addTagRange()

		sh.disableBalancing()

		sh.enableBalancing()

		sh.enableSharding()

		sh.getBalancerHost()

		sh.getBalancerState()

		sh.help()

		sh.isBalancerRunning()

		sh.moveChunk()

		sh.removeShardTag()

		sh.setBalancerState()

		sh.shardCollection()

		sh.splitAt()

		sh.splitFind()

		sh.startBalancer()

		sh.status()

		sh.stopBalancer()

		sh.waitForBalancer()

		sh.waitForBalancerOff()

		sh.waitForDLock()

		sh.waitForPingChange()

		Subprocess Methods
		clearRawMongoProgramOutput()

		rawMongoProgramOutput()

		run()

		runMongoProgram()

		runProgram()

		startMongoProgram()

		stopMongoProgram()

		stopMongoProgramByPid()

		stopMongod()

		waitMongoProgramOnPort()

		waitProgram()

		Object Constructors and Methods
		Date()

		UUID()

		ObjectId.getTimestamp()

		ObjectId.toString()

		ObjectId.valueOf()

		Connection Methods
		Mongo.getDB()

		Mongo.getReadPrefMode()

		Mongo.getReadPrefTagSet()

		Mongo.setReadPref()

		mongo.setSlaveOk()

		Mongo()

		connect()

		Native Methods
		cat()

		version()

		cd()

		copyDbpath()

		resetDbpath()

		fuzzFile()

		getHostName()

		getMemInfo()

		hostname()

		_isWindows()

		listFiles()

		load()

		ls()

		md5sumFile()

		mkdir()

		pwd()

		quit()

		rand()

		removeFile()

		_srand()

		Database Commands
		Aggregation Commands
		aggregate

		count

		distinct

		group

		mapReduce

		Geospatial Commands
		geoNear

		geoSearch

		geoWalk

		Query and Write Operation Commands
		insert

		update

		delete

		findAndModify

		text

		getLastError

		getPrevError

		resetError

		eval

		Authentication Commands
		logout

		authenticate

		copydbgetnonce

		getnonce

		User Management Commands
		createUser

		updateUser

		dropUser

		dropAllUsersFromDatabase

		grantRolesToUser

		revokeRolesFromUser

		usersInfo

		Role Management Commands
		createRole

		updateRole

		dropRole

		dropAllRolesFromDatabase

		grantPrivilegesToRole

		revokePrivilegesFromRole

		grantRolesToRole

		revokeRolesFromRole

		rolesInfo

		Replication Commands
		replSetFreeze

		replSetGetStatus

		replSetInitiate

		replSetMaintenance

		replSetReconfig

		replSetStepDown

		replSetSyncFrom

		resync

		applyOps

		isMaster

		getoptime

		Sharding Commands
		flushRouterConfig

		addShard

		cleanupOrphaned

		checkShardingIndex

		enableSharding

		listShards

		removeShard

		getShardMap

		getShardVersion

		mergeChunks

		setShardVersion

		shardCollection

		shardingState

		unsetSharding

		split

		splitChunk

		splitVector

		medianKey

		moveChunk

		movePrimary

		isdbgrid

		Administration Commands
		renameCollection

		copydb

		dropDatabase

		drop

		create

		clone

		cloneCollection

		cloneCollectionAsCapped

		closeAllDatabases

		convertToCapped

		filemd5

		dropIndexes

		fsync

		clean

		connPoolSync

		compact

		collMod

		reIndex

		setParameter

		getParameter

		repairDatabase

		touch

		shutdown

		logRotate

		Diagnostic Commands
		listDatabases

		dbHash

		driverOIDTest

		listCommands

		availableQueryOptions

		buildInfo

		collStats

		connPoolStats

		dbStats

		cursorInfo

		dataSize

		diagLogging

		getCmdLineOpts

		netstat

		ping

		profile

		validate

		top

		indexStats

		whatsmyuri

		getLog

		hostInfo

		serverStatus

		features

		isSelf

		Internal Commands
		handshake

		recvChunkAbort

		recvChunkCommit

		recvChunkStart

		recvChunkStatus

		replSetFresh

		mapreduce.shardedfinish

		transferMods

		replSetHeartbeat

		replSetGetRBID

		migrateClone

		replSetElect

		writeBacksQueued

		writebacklisten

		Testing Commands
		testDistLockWithSkew

		testDistLockWithSyncCluster

		captrunc

		emptycapped

		godinsert

		_hashBSONElement

		journalLatencyTest

		sleep

		replSetTest

		forceerror

		skewClockCommand

		configureFailPoint

		System Events Auditing Commands
		logApplicationMessage

		Operators
		Query and Projection Operators
		Comparison Query Operators
		$gt

		$gte

		$in

		$lt

		$lte

		$ne

		$nin

		Logical Query Operators
		$or

		$and

		$not

		$nor

		Element Query Operators
		$exists

		$type

		Evaluation Query Operators
		$mod

		$regex

		$where

		Geospatial Query Operators
		$geoWithin

		$geoIntersects

		$near

		$nearSphere

		$geometry

		$maxDistance

		$center

		$centerSphere

		$box

		$polygon

		$uniqueDocs

		Query Operator Array
		$all

		$elemMatch (query)

		$size

		Projection Operators
		$ (projection)

		$elemMatch (projection)

		$slice (projection)

		Update Operators
		Field Update Operators
		$inc

		$mul

		$rename

		$setOnInsert

		$set

		$unset

		$min

		$max

		$currentDate

		Array Update Operators
		$ (update)

		$addToSet

		$pop

		$pullAll

		$pull

		$pushAll

		$push

		$each

		$slice

		$sort

		$position

		Bitwise Update Operator
		$bit

		Isolation Update Operator
		$isolated

		Aggregation Framework Operators
		Pipeline Aggregation Operators
		$project (aggregation)

		$match (aggregation)

		$limit (aggregation)

		$skip (aggregation)

		$unwind (aggregation)

		$group (aggregation)

		$sort (aggregation)

		$geoNear (aggregation)

		$out (aggregation)

		Group Aggregation Operators
		$addToSet (aggregation)

		$first (aggregation)

		$last (aggregation)

		$max (aggregation)

		$min (aggregation)

		$avg (aggregation)

		$push (aggregation)

		$sum (aggregation)

		Boolean Aggregation Operators
		$and (aggregation)

		$or (aggregation)

		$not (aggregation)

		Comparison Aggregation Operators
		$cmp (aggregation)

		$eq (aggregation)

		$gt (aggregation)

		$gte (aggregation)

		$lt (aggregation)

		$lte (aggregation)

		$ne (aggregation)

		Arithmetic Aggregation Operators
		$add (aggregation)

		$divide (aggregation)

		$mod (aggregation)

		$multiply (aggregation)

		$subtract (aggregation)

		String Aggregation Operators
		$concat (aggregation)

		$strcasecmp (aggregation)

		$substr (aggregation)

		$toLower (aggregation)

		$toUpper (aggregation)

		Array Aggregation Operators
		$size (aggregation)

		Aggregation Projection Expressions
		$map (aggregation)

		$let (aggregation)

		$literal (aggregation)

		Date Aggregation Operators
		$dayOfYear (aggregation)

		$dayOfMonth (aggregation)

		$dayOfWeek (aggregation)

		$year (aggregation)

		$month (aggregation)

		$week (aggregation)

		$hour (aggregation)

		$minute (aggregation)

		$second (aggregation)

		$millisecond (aggregation)

		Conditional Aggregation Operators
		$cond (aggregation)

		$ifNull (aggregation)

		Query Modifiers
		$comment

		$explain

		$hint

		$maxScan

		$maxTimeMS

		$max

		$min

		$orderby

		$returnKey

		$showDiskLoc

		$snapshot

		$query

		$natural

		Aggregation Reference
		Aggregation Commands Comparison

		SQL to Aggregation Mapping Chart

		Aggregation Interfaces

MongoDB and SQL Interface Comparisons

		SQL to MongoDB Mapping Chart

		SQL to Aggregation Mapping Chart

Program and Tool Reference Pages

		MongoDB Package Components
		mongod

		mongos

		mongo

		mongod.exe

		mongos.exe

		mongodump

		mongorestore

		bsondump

		mongooplog

		mongoimport

		mongoexport

		mongostat

		mongotop

		mongosniff

		mongoperf

		mongofiles

Internal Metadata

		Config Database

		The local Database

		System Collections

General System Reference

		Exit Codes and Statuses

		MongoDB Limits and Thresholds

		Glossary

Release Notes

Always install the latest, stable version of MongoDB. See
MongoDB Version Numbers for more information.

See the following release notes for an account of the changes in major
versions. Release notes also include instructions for upgrade.

Current Stable Release

(2.4-series)

		Release Notes for MongoDB 2.4

See Changes in MongoDB 2.4 for an overview of all changes
in 2.4.

Previous Stable Releases

		Release Notes for MongoDB 2.2

		Release Notes for MongoDB 2.0

		Release Notes for MongoDB 1.8

		Release Notes for MongoDB 1.6

		Release Notes for MongoDB 1.4

		Release Notes for MongoDB 1.2.x

Current Development Series

		Release Notes for MongoDB 2.6 (Development Series 2.5.x)

Other MongoDB Release Notes

		Default Write Concern Change
		Changes

		Releases

meta/404.html

File not found

The URL you requested does not exist or has been removed.

meta/build.html

MongoDB Documentation Build System

This document contains more direct instructions for building the
MongoDB documentation.

Getting Started

Install Dependencies

The MongoDB Documentation project depends on the following tools:

		GNU Make

		GNU Tar

		Python

		Git

		Sphinx (documentation management toolchain)

		Pygments (syntax highlighting)

		PyYAML (for the generated tables)

		Droopy (Python package for static text analysis)

		Fabric (Python package for scripting and orchestration)

		Inkscape (Image generation.)

		python-argparse (For Python 2.6.)

		LaTeX/PDF LaTeX (typically texlive; for building PDFs)

		Common Utilities (rsync, tar, gzip, sed)

OS X

Install Sphinx, Docutils, and their dependencies with easy_install
the following command:

easy_install Sphinx Jinja2 Pygments docutils PyYAML droopy fabric

Feel free to use pip rather than easy_install to install
python packages.

To generate the images used in the documentation, download and
install Inkscape [http://inkscape.org/download/].

Optional

To generate PDFs for the full production build, install a TeX
distribution (for building the PDF.) If you do not have a LaTeX
installation, use MacTeX [http://www.tug.org/mactex/2011/]. This
is only required to build PDFs.

Arch Linux

Install packages from the system repositories with the following command:

pacman -S python2-sphinx python2-yaml inkscape python2-pip

Then install the following Python packages:

pip install droopy fabric

Optional

To generate PDFs for the full production build, install the
following packages from the system repository:

pacman -S texlive-bin texlive-core texlive-latexextra

Debian/Ubuntu

Install the required system packages with the following command:

apt-get install python-sphinx python-yaml python-argparse inkscape python-pip

Then install the following Python packages:

pip install droopy fabric

Optional

To generate PDFs for the full production build, install the
following packages from the system repository:

apt-get install texlive-latex-recommended texlive-latex-recommended

Setup and Configuration

Clone the repository:

git clone git://github.com/mongodb/docs.git

Then run the bootstrap.py script in the docs/ repository, to
configure the build dependencies:

python bootstrap.py

This downloads and configures the mongodb/docs-tools [http://github.com/mongodb/docs-tools/] repository, which contains
the authoritative build system shared between branches of the MongoDB
Manual and other MongoDB documentation projects.

You can run bootstrap.py regularly to update build system.

Building the Documentation

The MongoDB documentation build system is entirely accessible via
make targets. For example, to build an HTML version of the
documentation issue the following command:

make html

You can find the build output in build/<branch>/html, where
<branch> is the name of the current branch.

In addition to the html target, the build system provides the
following targets:

		publish

		Builds and integrates all output for the production build. Build
output is in build/public/<branch>/. When you run publish
in the master, the build will generate some output in
build/public/.

		push; stage

		Uploads the production build to the production or staging web
servers. Depends on publish. Requires access production or
staging environment.

		push-all; stage-all

		Uploads the entire content of build/public/ to the web
servers. Depends on publish. Not used in common practice.

		push-with-delete; stage-with-delete

		Modifies the action of push and stage to remove remote file
that don’t exist in the local build. Use with caution.

		html; latex; dirhtml; epub; texinfo; man; json

		These are standard targets derived from the default Sphinx
Makefile, with adjusted dependencies. Additionally, for all of
these targets you can append -nitpick to increase Sphinx’s
verbosity, or -clean to remove all Sphinx build artifacts.

latex performs several additional post-processing steps on
.tex output generated by Sphinx. This target will also compile
PDFs using pdflatex.

html and man also generates a .tar.gz file of the build
outputs for inclusion in the final releases.

Build Mechanics and Tools

Internally the build system has a number of components and
processes. See the docs-tools README [https://github.com/mongodb/docs-tools/blob/master/README.rst] for
more information on the internals. This section documents a few
of these components from a very high level and lists useful operations
for contributors to the documentation.

Fabric

Fabric is an orchestration and scripting package for Python. The
documentation uses Fabric to handle the deployment of the build
products to the web servers and also unifies a number of independent
build operations. Fabric commands have the following form:

fab <module>.<task>[:<argument>]

The <argument> is optional in most cases. Additionally some tasks
are available at the root level, without a module. To see a full list
of fabric tasks, use the following command:

fab -l

You can chain fabric tasks on a single command line, although this
doesn’t always make sense.

Important fabric tasks include:

		tools.bootstrap

		Runs the bootstrap.py script. Useful for re-initializing the
repository without needing to be in root of the repository.

		tools.dev; tools.reset

		tools.dev switches the origin remote of the docs-tools
checkout in build directory, to ../docs-tools to facilitate
build system testing and development. tools.reset resets the
origin remote for normal operation.

		tools.conf

		tools.conf returns the content of the configuration object for
the current project. These data are useful during development.

		stats.report:<filename>

		Returns, a collection of readability statistics. Specify file names
relative to source/ tree.

		make

		Provides a thin wrapper around Make calls. Allows you to start make
builds from different locations in the project repository.

		process.refresh_dependencies

		Updates the time stamp of .txt source files with changed
include files, to facilitate Sphinx’s incremental rebuild
process. This task runs internally as part of the build process.

Buildcloth

Buildcloth [https://pypi.python.org/pypi/buildcloth/] is a
meta-build tool, used to generate Makefiles programatically. This
makes the build system easier to maintain, and makes it easier to use
the same fundamental code to generate various branches of the Manual
as well as related documentation projects. See makecloth/ in the
docs-tools repository [https://github.com/mongodb/docs-tools/tree/master/makecloth] for
the relevant code.

Running make with no arguments will regenerate these parts of the
build system automatically.

Rstcloth

Rstcloth [https://pypi.python.org/pypi/rstcloth] is a library for
generating reStructuredText programatically. This makes it possible to
generate content for the documentation, such as tables, tables of
contents, and API reference material programatically and
transparently. See rstcloth/ in the docs-tools repository [https://github.com/mongodb/docs-tools/tree/master/rstcloth] for
the relevant code.

meta/style-guide.html

Style Guide and Documentation Conventions

This document provides an overview of the style for the MongoDB
documentation stored in this repository. The overarching goal of this
style guide is to provide an accessible base style to ensure that our
documentation is easy to read, simple to use, and straightforward to
maintain.

For information regarding the MongoDB Manual organization, see
MongoDB Manual Organization.

Document History

2011-09-27: Document created with a (very) rough list of style
guidelines, conventions, and questions.

2012-01-12: Document revised based on slight shifts in practice,
and as part of an effort of making it easier for people outside of the
documentation team to contribute to documentation.

2012-03-21: Merged in content from the Jargon, and cleaned up
style in light of recent experiences.

2012-08-10: Addition to the “Referencing” section.

2013-02-07: Migrated this document to the manual. Added “map-reduce”
terminology convention. Other edits.

2013-11-15: Added new table of preferred terms.

Naming Conventions

This section contains guidelines on naming files, sections, documents
and other document elements.

		File naming Convention:
		For Sphinx, all files should have a .txt extension.

		Separate words in file names with hyphens (i.e. -.)

		For most documents, file names should have a terse one or two word
name that describes the material covered in the document. Allow
the path of the file within the document tree to add some of the
required context/categorization. For example it’s acceptable to
have /core/sharding.rst and /administration/sharding.rst.

		For tutorials, the full title of the document should be in the
file name. For example,
/tutorial/replace-one-configuration-server-in-a-shard-cluster.rst

		Phrase headlines and titles so that they the content contained
within the section so that users can determine what questions the
text will answer, and material that it will address without needing
them to read the content. This shortens the amount of time that
people spend looking for answers, and improvise search/scanning, and
possibly “SEO.”

		Prefer titles and headers in the form of “Using foo” over “How to Foo.”

		When using target references (i.e. :ref: references in
documents), use names that include enough context to be intelligible
thought all documentations. For example, use
“replica-set-secondary-only-node” as opposed to
“secondary-only-node”. This is to make the source more usable
and easier to maintain.

Style Guide

This includes the local typesetting, English, grammatical, conventions
and preferences that all documents in the manual should use. The goal
here is to choose good standards, that are clear, and have a stylistic
minimalism that does not interfere with or distract from the
content. A uniform style will improve user experience, and minimize
the effect of a multi-authored document.

Punctuation

		Use the oxford comma.

Oxford commas are the commas in a list of things (e.g. “something,
something else, and another thing”) before the conjunction
(e.g. “and” or “or.”).

		Do not add two spaces after terminal punctuation, such as
periods.

		Place commas and periods inside quotation marks.

		Use title case for headings and document titles. Title case capitalizes the first letter of the first,
last, and all significant words.

Verbs

Verb tense and mood preferences, with examples:

		Avoid the first person. For example do not say, “We will begin
the backup process by locking the database,” or “I begin the backup
process by locking my database instance,”

		Use the second person. “If you need to back up your database,
start by locking the database first.” In practice, however, it’s
more concise to imply second person using the imperative, as in
“Before initiating a backup, lock the database.”

		When indicated, use the imperative mood. For example: “Backup your
databases often” and “To prevent data loss, back up your databases.”

		The future perfect is also useful in some cases. For example,
“Creating disk snapshots without locking the database will lead to
an inconsistent state.”

		Avoid helper verbs, as possible, to increase clarity and
concision. For example, attempt to avoid “this does foo” and “this
will do foo” when possible. Use “does foo” over “will do foo” in
situations where “this foos” is unacceptable.

Referencing

		To refer to future or planned functionality in MongoDB or a driver,
always link to the Jira case. The Manual’s conf.py provides
an :issue: role that links directly to a Jira case
(e.g. :issue:\`SERVER-9001\`).

		For non-object references (i.e. functions, operators, methods,
database commands, settings) always reference only the first
occurrence of the reference in a section. You should always
reference objects, except in section headings.

		Structure references with the why first; the link second.

For example, instead of this:

Use the Convert a Replica Set to a Replicated Sharded Cluster
procedure if you have an existing replica set.

Type this:

To deploy a sharded cluster for an existing replica set, see
Convert a Replica Set to a Replicated Sharded Cluster.

General Formulations

		Contractions are acceptable insofar as they are necessary to
increase readability and flow. Avoid otherwise.

		Make lists grammatically correct.
		Do not use a period after every item unless the list item
completes the unfinished sentence before the list.

		Use appropriate commas and conjunctions in the list items.

		Typically begin a bulleted list with an introductory sentence or
clause, with a colon or comma.

		The following terms are one word:
		standalone

		workflow

		Use “unavailable,” “offline,” or “unreachable” to refer to a
mongod instance that cannot be accessed. Do not use the
colloquialism “down.”

		Always write out units (e.g. “megabytes”) rather than using
abbreviations (e.g. “MB”.)

Structural Formulations

		There should be at least two headings at every nesting level. Within
an “h2” block, there should be either: no “h3” blocks, 2 “h3”
blocks, or more than 2 “h3” blocks.

		Section headers are in title case (capitalize first, last, and
all important words) and should effectively describe the contents
of the section. In a single document you should strive to have
section titles that are not redundant and grammatically consistent
with each other.

		Use paragraphs and paragraph breaks to increase clarity and
flow. Avoid burying critical information in the middle of long
paragraphs. Err on the side of shorter paragraphs.

		Prefer shorter sentences to longer sentences. Use complex
formations only as a last resort, if at all (e.g. compound
complex structures that require semi-colons).

		Avoid paragraphs that consist of single sentences as
they often represent a sentence that has unintentionally become too
complex or incomplete. However, sometimes such paragraphs are useful
for emphasis, summary, or introductions.

As a corollary, most sections should have multiple paragraphs.

		For longer lists and more complex lists, use bulleted items rather
than integrating them inline into a sentence.

		Do not expect that the content of any example (inline or blocked)
will be self explanatory. Even when it feels redundant, make sure
that the function and use of every example is clearly described.

ReStructured Text and Typesetting

		Place spaces between nested parentheticals and elements in
JavaScript examples. For example, prefer { [a, a, a] } over
{[a,a,a]}.

		For underlines associated with headers in RST, use:

		= for heading level 1 or h1s. Use underlines and overlines for
document titles.

		- for heading level 2 or h2s.

		~ for heading level 3 or h3s.

		` for heading level 4 or h4s.

		Use hyphens (-) to indicate items of an ordered list.

		Place footnotes and other references, if you use them, at the end of
a section rather than the end of a file.

Use the footnote format that includes automatic numbering and a
target name for ease of use. For instance a footnote tag may look
like: [#note]_ with the corresponding directive holding the
body of the footnote that resembles the following: .. [#note].

Do not include .. code-block:: [language] in footnotes.

		As it makes sense, use the .. code-block:: [language] form to
insert literal blocks into the text. While the double colon,
::, is functional, the .. code-block:: [language] form makes the source easier to
read and understand.

		For all mentions of referenced types (i.e. commands, operators,
expressions, functions, statuses, etc.) use the reference types to
ensure uniform formatting and cross-referencing.

Jargon and Common Terms

		Preferred Term
		Concept
		Dispreferred Alternatives
		Notes

		document
		A single, top-level object/record in a MongoDB collection.
		record, object, row
		Prefer document over object because of concerns about
cross-driver langauge handling of objects. Reserve record for
“allocation” of storage. Avoid “row,” as possible.

		database
		A group of collections. Refers to a group of data files. This
is the “logical” sense of the term “database.”
		
		Avoid genericizing “database.” Avoid using database to refer to
a server process or a data set. This applies both to the
datastoring contexts as well as other (related) operational
contexts (command context, authentication/authorization
context.)

		instance
		A daemon process. (e.g. mongos or mongod)
		process (acceptable sometimes), node (never acceptable), server.
		Avoid using instance, unless it modifies something
specifically. Having a descriptor for a process/instance makes
it possible to avoid needing to make mongod or mongos
plural. Server and node are both vague and contextually
difficult to disambiguate with regards to application servers,
and underlying hardware.

		field name
		The identifier of a value in a document.
		key, column
		Avoid introducing unrelated terms for a single field. In the
documentation we’ve rarely had to discuss the identifier of a
field, so the extra word here isn’t burdensome.

		field/value
		The name/value pair that describes a unit of data in MongoDB.
		key, slot, attribute
		Use to emphasize the difference between the name of a field and
its value For exdample, “_id” is the field and the default
value is an ObjectId.

		value
		The data content of a field.
		data
		

		MongoDB
		A group of processes, or deployment that implement the MongoDB
interface.
		mongo, mongodb, cluster
		Stylistic preference, mostly. In some cases it’s useful to be
able to refer generically to instances (that may be either
mongod or mongos.)

		sub-document
		An embeded or nested document within a document or an array.
		embeded document, nested document
		

		map-reduce
		An operation performed by the mapReduce command.
		mapReduce, map reduce, map/reduce
		Avoid confusion with the command, shell helper, and driver
interfaces. Makes it possible to discuss the operation
generally.

		cluster
		A sharded cluster.
		grid, shard cluster, set, deployment
		Cluster is a great word for a group of processes; however, it’s
important to avoid letting the term become generic. Do not use
for any group of MongoDB processes or deployments.

		sharded cluster
		A sharded cluster.
		shard cluster, cluster, sharded system
		

		replica set
		A deployment of replicating mongod programs that
provide redundancy and automatic failover.
		set, replication deployment
		

		deployment
		A group of MongoDB processes, or a standalone mongod
instance.
		cluster, system
		Typically in the form MongoDB deployment. Includes standalones,
replica sets and sharded clusters.

		data set
		The collection of phyisical databases provided by a MongoDB
deployment.
		database, data
		Important to keep the distinction between the data provided by
a mongod or a sharded cluster as distinct from each “database”
(i.e. a logical database that refers to a group of collections
stored in a single series of data files.)

		primary
		The only member of a replica set that can accept writes.
		master
		Avoid “primary member” construction.

		secondary
		Read-only members of a replica set that apply operations from
the primary’s oplog.
		slave
		Accept “secondary member” as needed.

		primary shard
		The shard in a cluster that’s “primary” for a database.
		primary
		Avoid ambiguity with primary in the context of replica
sets.

		range based sharding
		Refers to sharding based on regular shard keys where the range
is the value of the field(s) selected as the shard key.
		
		

		hash based sharding
		Refers to sharding based on hashed shard keys where the range
is the hashed value of the field selected as the shard key.
		
		Even though hashed sharding is based on ranges of hashes, the
sequence of hases aren’t meaningful to users, and the
range-based aspect of hashed shard keys is an implementation
detail.

		sharding
		Describes the practice of horizontal scaling or partitioning as
implemented in sharded clusters.
		partitioning, horizontal scaling
		Only use the terms “partitioning” and “horizontal scaling” to
describe what sharding does, and its operation. Don’t refer to
sharding as “the partitioning system.”

		metadata
		data about data
		meta-data, meta data
		

Database Systems and Processes

		To indicate the entire database system, use “MongoDB,” not mongo or
Mongo.

		To indicate the database process or a server instance, use mongod
or mongos. Refer to these as “processes” or “instances.” Reserve
“database” for referring to a database structure, i.e., the structure
that holds collections and refers to a group of files on disk.

Distributed System Terms

		Refer to partitioned systems as “sharded clusters.” Do not use
shard clusters or sharded systems.

		Refer to configurations that run with replication as “replica sets” (or
“master/slave deployments”) rather than “clusters” or other variants.

Data Structure Terms

		“document” refers to “rows” or “records” in a MongoDB
database. Potential confusion with “JSON Documents.”

Do not refer to documents as “objects,” because drivers (and
MongoDB) do not preserve the order of fields when fetching data. If
the order of objects matter, use an array.

		“field” refers to a “key” or “identifier” of data within a MongoDB
document.

		“value” refers to the contents of a “field”.

		“sub-document” describes a nested document.

Other Terms

		Use example.net (and .org or .com if needed) for all
examples and samples.

		Hyphenate “map-reduce” in order to avoid ambiguous reference to the
command name. Do not camel-case.

Notes on Specific Features

		Geo-Location
		While MongoDB is capable of storing coordinates in
sub-documents, in practice, users should only store coordinates
in arrays. (See: DOCS-41 [https://jira.mongodb.org/browse/DOCS-41].)

meta/practices.html

MongoDB Documentation Practices and Processes

This document provides an overview of the practices and processes.

Practices

		Commits

		Standards and Practices

		Collaboration

		Builds

		Publication

		Branches

		Migration from Legacy Documentation

		Review Process
		Types of Review
		Initial Technical Review

		Content Review

		Consistency Review

		Subsequent Technical Review

		Review Methods

Commits

When relevant, include a Jira case identifier in a commit
message. Reference documentation cases when applicable, but feel free to
reference other cases from jira.mongodb.org [http://jira.mongodb.org/].

Err on the side of creating a larger number of discrete commits rather
than bundling large set of changes into one commit.

For the sake of consistency, remove trailing whitespaces in
the source file.

“Hard wrap” files to between 72 and 80 characters per-line.

Standards and Practices

		At least two people should vet all non-trivial
changes to the documentation before publication. One of the
reviewers should have significant technical experience with the
material covered in the documentation.

		All development and editorial work should transpire on GitHub branches
or forks that editors can then merge into
the publication branches.

Collaboration

To propose a change to the documentation, do either of the following:

		Open a ticket in the documentation project [https://jira.mongodb.org/browse/DOCS] proposing the change.
Someone on the documentation team will make the change and be in
contact with you so that you can review the change.

		Using GitHub [https://github.com/], fork the mongodb/docs
repository [https://github.com/mongodb/docs], commit your changes,
and issue a pull request. Someone on the documentation team will
review and incorporate your change into the documentation.

Builds

Building the documentation is useful because Sphinx [http://sphinx.pocoo.org/] and docutils can catch numerous errors in
the format and syntax of the documentation. Additionally, having
access to an example documentation as it will appear to the users is
useful for providing more effective basis for the review
process. Besides Sphinx, Pygments, and Python-Docutils, the
documentation repository contains all requirements for building the
documentation resource.

Talk to someone on the documentation team if you are having problems
running builds yourself.

Publication

The makefile for this repository contains targets that automate the
publication process. Use make html to publish a test build of
the documentation in the build/ directory of your
repository. Use make publish to build the full contents of the
manual from the current branch in the ../public-docs/ directory
relative the docs repository.

Other targets include:

		man - builds UNIX Manual pages for all Mongodb utilities.

		push - builds and deploys the contents of the
../public-docs/.

		pdfs - builds a PDF version of the manual (requires LaTeX
dependencies.)

Branches

This section provides an overview of the git branches in the MongoDB
documentation repository and their use.

At the present time, future work transpires in the master, with
the main publication being current. As the documentation
stabilizes, the documentation team will begin to maintain branches of
the documentation for specific MongoDB releases.

Migration from Legacy Documentation

The MongoDB.org Wiki contains
a wealth of information. As the transition to the Manual (i.e. this
project and resource) continues, it’s critical that no information
disappears or goes missing. The following process outlines how to
migrate a wiki page to the manual:

		Read the relevant sections of the Manual, and see what the new
documentation has to offer on a specific topic.

In this process you should follow cross references and gain an
understanding of both the underlying information and how the parts of
the new content relates its constituent parts.

		Read the wiki page you wish to redirect, and take note of all of the
factual assertions, examples presented by the wiki page.

		Test the factual assertions of the wiki page to the greatest extent
possible. Ensure that example output is accurate. In the case of
commands and reference material, make sure that documented options
are accurate.

		Make corrections to the manual page or pages to reflect any missing
pieces of information.

The target of the redirect need not contain every piece of
information on the wiki page, if the manual as a whole does, and
relevant section(s) with the information from the wiki page are
accessible from the target of the redirection.

		As necessary, get these changes reviewed by another writer and/or
someone familiar with the area of the information in question.

At this point, update the relevant Jira case with the target that
you’ve chosen for the redirect, and make the ticket unassigned.

		When someone has reviewed the changes and published those changes
to Manual, you, or preferably someone else on the team, should make
a final pass at both pages with fresh eyes and then make the
redirect.

Steps 1-5 should ensure that no information is lost in the
migration, and that the final review in step 6 should be trivial to
complete.

Review Process

Types of Review

The content in the Manual undergoes many types of review, including
the following:

Initial Technical Review

Review by an engineer familiar with MongoDB and the topic area of
the documentation. This review focuses on technical content, and
correctness of the procedures and facts presented, but can improve
any aspect of the documentation that may still be lacking. When both
the initial technical review and the content review are complete,
the piece may be “published.”

Content Review

Textual review by another writer to ensure stylistic consistency with
the rest of the manual. Depending on the content, this may precede or
follow the initial technical review. When both the initial technical
review and the content review are complete, the piece may be
“published.”

Consistency Review

This occurs post-publication and is content focused. The goals of
consistency reviews are to increase the internal consistency of the
documentation as a whole. Insert relevant cross-references, update the
style as needed, and provide background fact-checking.

When possible, consistency reviews should be as systematic as possible
and we should avoid encouraging stylistic and information drift by
editing only small sections at a time.

Subsequent Technical Review

If the documentation needs to be updated following a change in
functionality of the server or following the resolution of a user
issue, changes may be significant enough to warrant additional
technical review. These reviews follow the same form as the “initial
technical review,” but is often less involved and covers a smaller
area.

Review Methods

If you’re not a usual contributor to the documentation and would like
to review something, you can submit reviews in any of the following
methods:

		If you’re reviewing an open pull request in GitHub, the best way to
comment is on the “overview diff,” which you can find by clicking on
the “diff” button in the upper left portion of the screen. You can
also use the following URL to reach this interface:

https://github.com/mongodb/docs/pull/[pull-request-id]/files

Replace [pull-request-id] with the identifier of the pull
request. Make all comments inline, using GitHub’s comment system.

You may also provide comments directly on commits, or on the pull
request itself but these commit-comments are archived in less
coherent ways and generate less useful emails, while comments on the
pull request lead to less specific changes to the document.

		Leave feedback on Jira cases in the DOCS [http://jira.mongodb.org/browse/DOCS] project. These are better
for more general changes that aren’t necessarily tied to a specific
line, or affect multiple files.

		Create a fork of the repository in your GitHub account, make any
required changes and then create a pull request with your changes.

If you insert lines that begin with any of the following
annotations:

.. TODO:
TODO:
.. TODO
TODO

followed by your comments, it will be easier for the original writer
to locate your comments. The two dots .. format is a comment in
reStructured Text, which will hide your comments from Sphinx and
publication if you’re worried about that.

This format is often easier for reviewers with larger portions of
content to review.

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment-close.png

meta/administration.html

MongoDB Administration

The administration documentation addresses the ongoing operation and
maintenance of MongoDB instances and deployments. This documentation
includes both high level overviews of these concerns as well as
tutorials that cover specific procedures and processes for operating
MongoDB.

		
class hidden

		

		Administration Concepts
		Operational Strategies
		Backup Strategies for MongoDB Systems

		Monitoring for MongoDB

		Run-time Database Configuration

		Import and Export MongoDB Data

		Production Notes

		Data Management
		Data Center Awareness
		Operational Segregation in MongoDB Deployments

		Capped Collections

		Expire Data from Collections by Setting TTL

		Optimization Strategies for MongoDB
		Evaluate Performance of Current Operations

		Use Capped Collections for Fast Writes and Reads

		Optimize Query Performance

		Design Notes

		Administration Tutorials
		Configuration, Maintenance, and Analysis
		Use Database Commands

		Manage mongod Processes

		Analyze Performance of Database Operations

		Monitor MongoDB with SNMP

		Rotate Log Files

		Manage Journaling

		Store a JavaScript Function on the Server

		Upgrade to the Latest Revision of MongoDB

		MongoDB Tutorials

		Backup and Recovery
		Backup and Restore with MongoDB Tools

		Backup and Restore with Filesystem Snapshots

		Restore a Replica Set from MongoDB Backups

		Backup and Restore Sharded Clusters
		Backup a Small Sharded Cluster with mongodump

		Backup a Sharded Cluster with Filesystem Snapshots

		Backup a Sharded Cluster with Database Dumps

		Schedule Backup Window for Sharded Clusters

		Restore a Single Shard

		Restore a Sharded Cluster

		Copy Databases Between Instances

		Recover Data after an Unexpected Shutdown

		MongoDB Scripting
		Server-side JavaScript

		Data Types in the mongo Shell

		Write Scripts for the mongo Shell

		Getting Started with the mongo Shell

		Access the mongo Shell Help Information

		mongo Shell Quick Reference

		Administration Reference
		UNIX ulimit Settings

		System Collections

		MongoDB Extended JSON

		Database Profiler Output

		Journaling Mechanics

		Exit Codes and Statuses

Appendix

		Replica Set Tutorials
		Replica Set Deployment Tutorials
		Deploy a Replica Set

		Deploy a Replica Set for Testing and Development

		Deploy a Geographically Redundant Replica Set

		Add an Arbiter to Replica Set

		Convert a Standalone to a Replica Set

		Add Members to a Replica Set

		Remove Members from Replica Set

		Replace a Replica Set Member

		Member Configuration Tutorials
		Adjust Priority for Replica Set Member

		Prevent Secondary from Becoming Primary

		Configure a Hidden Replica Set Member

		Configure a Delayed Replica Set Member

		Configure Non-Voting Replica Set Member

		Convert a Secondary to an Arbiter

		Replica Set Maintenance Tutorials
		Change the Size of the Oplog

		Force a Member to Become Primary

		Resync a Member of a Replica Set

		Configure Replica Set Tag Sets

		Reconfigure a Replica Set with Unavailable Members

		Manage Chained Replication

		Change Hostnames in a Replica Set

		Configure a Secondary’s Sync Target

		Troubleshoot Replica Sets

		Sharded Cluster Tutorials
		Sharded Cluster Deployment Tutorials
		Deploy a Sharded Cluster

		Considerations for Selecting Shard Keys

		Shard a Collection Using a Hashed Shard Key

		Enable Authentication in a Sharded Cluster

		Add Shards to a Cluster

		Deploy Three Config Servers for Production Deployments

		Convert a Replica Set to a Replicated Sharded Cluster

		Convert Sharded Cluster to Replica Set

		Sharded Cluster Maintenance Tutorials
		View Cluster Configuration

		Migrate Config Servers with the Same Hostname

		Migrate Config Servers with Different Hostnames

		Replace a Config Server

		Migrate a Sharded Cluster to Different Hardware

		Backup Cluster Metadata

		Configure Behavior of Balancer Process in Sharded Clusters

		Manage Sharded Cluster Balancer

		Remove Shards from an Existing Sharded Cluster

		Sharded Cluster Data Management
		Create Chunks in a Sharded Cluster

		Split Chunks in a Sharded Cluster

		Migrate Chunks in a Sharded Cluster

		Merge Chunks in a Sharded Cluster

		Modify Chunk Size in a Sharded Cluster

		Tag Aware Sharding

		Manage Shard Tags

		Enforce Unique Keys for Sharded Collections

		Shard GridFS Data Store

		Troubleshoot Sharded Clusters

reference/users-collection.html

system.users Collection

Changed in version 2.5.3.

The admin.system.users collection in the admin database
stores user authentication credentials and role assignments. MongoDB
uses the admin.system.users collection to provide access to
users in the MongoDB system.

system.users Documents

MongoDB stores users globally in the system.users collection of the
admin database and provides access through the user
management commands.

The system.users collection stores user information in documents
with the following schema:

{
 _id: <system defined id>,
 user: "<name>",
 db: "<database>",
 credentials: { <authentication credentials> },
 roles: [{ role: "<role name>", db: "<database>" },
 ...
],
 customData: < custom information >
 }

Each system.users document has the following fields:

		
admin.system.users.user

		The user field is a string that
identifies the user. A user exists in the context of a single logical
database but can have access to other databases through roles
specified in the roles array.

		
admin.system.users.db

		The db field specifies the database
associated with the user. The user’s privileges are not necessarily
limited to this database. The user can have privileges in additional
databases through the roles array.

		
admin.system.users.credentials

		The credentials field contains the
user’s authentication information. For users with externally stored
authentication credentials, such as users that use Kerberos or x.509
certificates for authentication, the systems.users document for
that user does not contain the credentials field.

		
admin.system.users.roles

		The roles array lists the roles
granted to the user. The array can contain both strings and documents. The
array can contain the names of roles that exist in the same
database as the user. The array also can contain documents that
identify roles from other databases.

A roles array document has the following
syntax:

{ role: "<role name>", db: "<database>" }

A roles array document has the
following fields:

		
admin.system.users.roles[n].role

		The name of a role from the admin.system.roles collection. A role can be a
system role or custom role created with
the createRole command.

		
admin.system.users.roles[n].db

		The name of the database where role is defined.

		
admin.system.users.customData

		The customData field contains optional
custom information about the user.

Example system.users Document

In the following document in the system.users collection, the user
Kari is associated with the home database. Kari has the
read role in the home database, the readWrite role in the
test database, and the appUser role in the myApp database.

{
 _id: "home.Kari",
 user: "Kari",
 db: "home",
 credentials: { "MONGODB-CR" :"<hashed password>" },
 roles : [
 { role: "read", db: "home" },
 { role : "readWrite", db: "test" },
 { role: "appUser", db: "myApp" }
],
 customData: { zipCode: 64157 }
}

reference/privilege-documents.html

system.users Privilege Documents

Deprecated since version 2.5.3: MongoDB 2.5.3 introduced a new model for user
credentials and privileges and no longer uses privilege documents.
See system.users Collection.

For information on privilege documents, see Privilege Documents
in the v2.4 Manual [http://docs.mongodb.org/v2.4/reference/privilege-documents].

_static/up-pressed.png

_static/logo-mongodb.png
DB

_static/minus.png

release-notes/2.0-changes.html

Changes in MongoDB 2.0

		Release Notes for MongoDB 2.0
		Upgrading
		Preparation

		Upgrading a Standalone mongod

		Upgrading a Replica Set

		Upgrading a Sharded Cluster

		Changes
		Compact Command

		Concurrency Improvements

		Default Stack Size

		Index Performance Enhancements

		Sharding Authentication

		Replica Sets
		Hidden Nodes in Sharded Clusters

		Priorities

		Data-Center Awareness

		w : majority

		Reconfiguration with a Minority Up

		Primary Checks for a Caught up Secondary before Stepping Down

		Extended Shutdown on the Primary to Minimize Interruption

		Maintenance Mode

		Geospatial Features
		Multi-Location Documents

		Polygon searches

		Journaling Enhancements

		New ContinueOnError Option for Bulk Insert

		Map Reduce
		Output to a Sharded Collection

		Performance Improvements

		New Querying Features
		Additional regex options: s

		$and

		Command Output Changes

		Shell Features
		Custom Prompt

		Default Shell Init Script

		Most Commands Require Authentication

		Resources

release-notes/2.4-changes.html

Changes in MongoDB 2.4

		Release Notes for MongoDB 2.4
		Minor Releases
		2.4.7 - October 21, 2013

		2.4.6 - August 20, 2013

		2.4.5 - July 3, 2013

		2.4.4 - June 4, 2013

		2.4.3 - Apr 23, 2013

		2.4.2 - Apr 17, 2013

		2.4.1 - Apr 17, 2013

		Major New Features
		Text Search

		Geospatial Support Enhancements

		Hashed Index

		Improvements to the Aggregation Framework

		Changes to Update Operators

		Additional Limitations for Map-Reduce and $where Operations

		Improvements to serverStatus Command

		Security Enhancements

		Performance Improvements
		V8 JavaScript Engine

		BSON Document Validation Enabled by Default for mongod and mongorestore

		Index Build Enhancements

		Set Parameters as Command Line Options

		Increased Chunk Migration Write Concern

		Improved Chunk Migration Queue Behavior

		Enterprise
		SASL Library Change

		New Modular Authentication System with Support for Kerberos

		Additional Information
		Platform Notes

		Upgrade Process

		Other Resources

release-notes/1.6-changes.html

Changes in MongoDB 1.6

		Release Notes for MongoDB 1.6
		Upgrading

		Sharding

		Replica Sets

		Other Improvements

		Installation

		1.6.x Release Notes

		1.5.x Release Notes

release-notes/replica-set-features.html

Replica Set Features and Version Compatibility

Note

This table is for archival purposes and does not list all
features of replica sets. Always use the latest stable
release of MongoDB in production deployments.

		Features
		Version

		Slave Delay
		1.6.3

		Hidden
		1.7

		replSetFreeze and replSetStepDown
		1.7.3

		Replicated ops in mongostat
		1.7.3

		Syncing from Secondaries
		1.8.0

		Authentication
		1.8.0

		Replication from Nearest Server (by ping Time)
		2.0

		replSetSyncFrom support for replicating from specific
members.
		2.2

Additionally:

		1.8-series secondaries can replicate from 1.6-series primaries.

		1.6-series secondaries cannot replicate from 1.8-series primaries.

release-notes/1.2-changes.html

Changes in MongoDB 1.2

		Release Notes for MongoDB 1.2.x
		New Features

		DB Upgrade Required

		Replication Changes

		mongoimport

		field filter changing

release-notes/2.6-changes.html

Changes in MongoDB 2.6 (Development Series 2.5.x)

		Release Notes for MongoDB 2.6 (Development Series 2.5.x)
		Downloading

		Compatibility Changes
		SNMP Enterprise Identifier Changed

		Default bind_ip for RPM and DEB Packages

		isMaster Command includes Wire Protocol Versions

		Replica Set Vote Configuration Validation

		Behavior of aggregate() Method in the mongo Shell

		Authentication and Authorization Incompatibility

		$mod Query Operator Enforces Strict Syntax

		SSL Certificate Hostname Validation

		Changes
		Aggregation Pipeline Changes
		db.collection.aggregation() Accepts Second Parameter

		$out Stage to Write Data to a Collection

		Aggregation Operations Now Return Cursors

		explain Option for the Aggregation Pipeline

		Improved Sorting

		$redact Stage to Provide Filtering for Field-Level Access Control

		Set Expression Operations in $project

		$map and $let Expressions in Aggregation Pipeline Stages

		$literal Expression for Aggregation Pipeline Stages

		$cond Accepts Objects as Arguments

		New $size Operator for the Aggregation Pipeline

		Write Operation Improvements
		New Write Commands

		New Update Operators
		$mul Update Operator

		xor operation for $bit Operator

		$min Update Operator

		$max Update Operator

		$currentDate Update Operator

		Enhanced Modifiers for $push Update Operator
		$each Modifier Changes

		$sort Modifier Enhancements

		$slice Modifier Enhancements

		$position Modifier

		Sharding Improvements
		Support for Removing Orphan Data From Shards

		Ability to Merge Co-located Contiguous Chunks

		Collection-Level Access Control

		User Defined Roles

		SSL Improvements
		Optionally Prompt for SSL Certificate Passphrases at Server Startup

		Tools Now Support SSL

		MongoDB Allows Only Strong SSL Ciphers

		Support for SSL and non-SSL Connections on the Same Port

		x.509 Authentication

		Index Building Improvements
		Background Index Builds Replicate to Secondaries

		mongod Automatically Continues in Progress Index Builds Following Restart

		Tool Improvements
		Global mongorc.js File

		Support for --quiet Option for all Tools

		mongoimport Uses Filename If Collection Name Is Not Specified

		mongostat Can Support --rowcount Option with --discover Option

		Limit for maxConns Removed

		Additional Operation Termination Semantics

		Geospatial Enhancements

		C++ Driver Enhancement

		MSI Package for MongoDB Available for Windows

		New Replica Set Status Methods

		MongoDB Enterprise Features
		Support for Auditing

		MongoDB Enterprise for Windows

		SASL Library Change

		LDAP Support for Authentication

		Expanded SNMP Support

		Additional Information
		Upgrade Process

		Other Resources

release-notes/1.8-changes.html

Changes in MongoDB 1.8

		Release Notes for MongoDB 1.8
		Upgrading
		Preparation

		Upgrading a Standalone mongod

		Upgrading a Replica Set

		Upgrading a Sharded Cluster

		Returning to 1.6
		Journaling

		Changes
		Journaling

		Sparse and Covered Indexes

		Incremental MapReduce Support

		Additional Changes and Enhancements
		1.8.1

		1.8.0

		1.7.6

		1.7.5

		1.7.4

		1.7.3

		1.7.2

		1.7.1

		1.7.0

		Release Announcement Forum Pages

		Resources

release-notes/2.2-changes.html

Changes in MongoDB 2.2

		Release Notes for MongoDB 2.2
		Upgrading
		Synopsis

		Upgrading a Standalone mongod

		Upgrading a Replica Set

		Upgrading a Sharded Cluster

		Changes
		Major Features
		Aggregation Framework

		TTL Collections

		Concurrency Improvements

		Improved Data Center Awareness with Tag Aware Sharding

		Fully Supported Read Preference Semantics

		Compatibility Changes
		Authentication Changes

		findAndModify Returns Null Value for Upserts that Perform Inserts

		mongodump 2.2 Output Incompatible with Pre-2.2 mongorestore

		ObjectId().toString() Returns String Literal ObjectId("...")

		ObjectId().valueOf() Returns hexadecimal string

		Behavioral Changes
		Restrictions on Collection Names

		Restrictions on Database Names for Windows

		_id Fields and Indexes on Capped Collections

		New $elemMatch Projection Operator

		Windows Specific Changes
		Windows XP is Not Supported

		Service Support for mongos.exe

		Log Rotate Command Support

		New Build Using SlimReadWrite Locks for Windows Concurrency

		Tool Improvements
		Index Definitions Handled by mongodump and mongorestore

		mongooplog for Replaying Oplogs

		Authentication Support for mongotop and mongostat

		Write Concern Support for mongoimport and mongorestore

		mongodump Support for Reading from Secondaries

		mongoimport Support for full 16MB Documents

		Timestamp() Extended JSON format

		Shell Improvements
		Improved Shell User Interface

		Helper to load Server-Side Functions

		Support for Bulk Inserts

		Operations
		Support for Logging to Syslog

		touch Command

		indexCounters No Longer Report Sampled Data

		Padding Specifiable on compact Command

		Added Build Flag to Use System Libraries

		Memory Allocator Changed to TCMalloc

		Replication
		Improved Logging for Replica Set Lag

		Replica Set Members can Sync from Specific Members

		Replica Set Members will not Sync from Members Without Indexes Unless buildIndexes: false

		New Option To Configure Index Pre-Fetching during Replication

		Map Reduce Improvements

		Sharding Improvements
		Index on Shard Keys Can Now Be a Compound Index

		Migration Thresholds Modified

		Licensing Changes

		Resources

release-notes/1.4-changes.html

Changes in MongoDB 1.4

		Release Notes for MongoDB 1.4
		Upgrading

		Core Server Enhancements

		Replication and Sharding

		Deployment and Production

		Query Language Improvements

		Geo

tutorial/model-tree-structures.html

Model Tree Structures in MongoDB

To model hierarchical or nested data relationships, you can use
references to implement tree-like structures. The following Tree
pattern examples model book categories that have hierarchical
relationships.

Model Tree Structures with Child References

(link)

The Child References pattern stores each tree node in a document; in
addition to the tree node, document stores in an array the id(s) of the
node’s children.

Consider the following hierarchy of categories:

[image: Tree data model for a sample hierarchy of categories.]Tree data model for a sample hierarchy of categories.

The following example models the tree using Child References, storing
the reference to the node’s children in the field children:

db.categories.insert({ _id: "MongoDB", children: [] })
db.categories.insert({ _id: "Postgres", children: [] })
db.categories.insert({ _id: "Databases", children: ["MongoDB", "Postgres"] })
db.categories.insert({ _id: "Languages", children: [] })
db.categories.insert({ _id: "Programming", children: ["Databases", "Languages"] })
db.categories.insert({ _id: "Books", children: ["Programming"] })

		The query to retrieve the immediate children of a node is fast and
straightforward:

db.categories.findOne({ _id: "Databases" }).children

		You can create an index on the field children to enable fast
search by the child nodes:

db.categories.ensureIndex({ children: 1 })

		You can query for a node in the children field to find its parent
node as well as its siblings:

db.categories.find({ children: "MongoDB" })

The Child References pattern provides a suitable solution to tree storage
as long as no operations on subtrees are necessary. This pattern may
also provide a suitable solution for storing graphs where a node may
have multiple parents.

Model Tree Structures with Parent References

(link)

The Parent References pattern stores each tree node in a document; in
addition to the tree node, the document stores the id of the node’s
parent.

Consider the following hierarchy of categories:

[image: Tree data model for a sample hierarchy of categories.]Tree data model for a sample hierarchy of categories.

The following example models the tree using Parent References,
storing the reference to the parent category in the field parent:

db.categories.insert({ _id: "MongoDB", parent: "Databases" })
db.categories.insert({ _id: "Postgres", parent: "Databases" })
db.categories.insert({ _id: "Databases", parent: "Programming" })
db.categories.insert({ _id: "Languages", parent: "Programming" })
db.categories.insert({ _id: "Programming", parent: "Books" })
db.categories.insert({ _id: "Books", parent: null })

		The query to retrieve the parent of a node is fast and
straightforward:

db.categories.findOne({ _id: "MongoDB" }).parent

		You can create an index on the field parent to enable fast search
by the parent node:

db.categories.ensureIndex({ parent: 1 })

		You can query by the parent field to find its immediate children
nodes:

db.categories.find({ parent: "Databases" })

The Parent Links pattern provides a simple solution to tree storage
but requires multiple queries to retrieve subtrees.

Model Tree Structures with an Array of Ancestors

(link)

The Array of Ancestors pattern stores each tree node in a document;
in addition to the tree node, document stores in an array the id(s) of
the node’s ancestors or path.

Consider the following hierarchy of categories:

[image: Tree data model for a sample hierarchy of categories.]Tree data model for a sample hierarchy of categories.

The following example models the tree using Array of Ancestors. In
addition to the ancestors field, these documents also store the
reference to the immediate parent category in the parent field:

db.categories.insert({ _id: "MongoDB", ancestors: ["Books", "Programming", "Databases"], parent: "Databases" })
db.categories.insert({ _id: "Postgres", ancestors: ["Books", "Programming", "Databases"], parent: "Databases" })
db.categories.insert({ _id: "Databases", ancestors: ["Books", "Programming"], parent: "Programming" })
db.categories.insert({ _id: "Languages", ancestors: ["Books", "Programming"], parent: "Programming" })
db.categories.insert({ _id: "Programming", ancestors: ["Books"], parent: "Books" })
db.categories.insert({ _id: "Books", ancestors: [], parent: null })

		The query to retrieve the ancestors or path of a node is fast and
straightforward:

db.categories.findOne({ _id: "MongoDB" }).ancestors

		You can create an index on the field ancestors to enable fast
search by the ancestors nodes:

db.categories.ensureIndex({ ancestors: 1 })

		You can query by the field ancestors to find all its descendants:

db.categories.find({ ancestors: "Programming" })

The Array of Ancestors pattern provides a fast and efficient solution
to find the descendants and the ancestors of a node by creating an
index on the elements of the ancestors field. This makes Array of
Ancestors a good choice for working with subtrees.

The Array of Ancestors pattern is slightly slower than the
Materialized Paths pattern but
is more straightforward to use.

Model Tree Structures with Materialized Paths

(link)

The Materialized Paths pattern stores each tree node in a document;
in addition to the tree node, document stores as a string the id(s) of
the node’s ancestors or path. Although the Materialized Paths pattern
requires additional steps of working with strings and regular
expressions, the pattern also provides more flexibility in working with
the path, such as finding nodes by partial paths.

Consider the following hierarchy of categories:

[image: Tree data model for a sample hierarchy of categories.]Tree data model for a sample hierarchy of categories.

The following example models the tree using Materialized Paths,
storing the path in the field path; the path string uses the comma
, as a delimiter:

db.categories.insert({ _id: "Books", path: null })
db.categories.insert({ _id: "Programming", path: ",Books," })
db.categories.insert({ _id: "Databases", path: ",Books,Programming," })
db.categories.insert({ _id: "Languages", path: ",Books,Programming," })
db.categories.insert({ _id: "MongoDB", path: ",Books,Programming,Databases," })
db.categories.insert({ _id: "Postgres", path: ",Books,Programming,Databases," })

		You can query to retrieve the whole tree, sorting by the field
path:

db.categories.find().sort({ path: 1 })

		You can use regular expressions on the path field to find the
descendants of Programming:

db.categories.find({ path: /,Programming,/ })

		You can also retrieve the descendants of Books where the
Books is also at the topmost level of the hierarchy:

db.categories.find({ path: /^,Books,/ })

		To create an index on the field path use the following
invocation:

db.categories.ensureIndex({ path: 1 })

This index may improve performance depending on the query:

		For queries of the Books sub-tree (e.g. /^,Books,/) an
index on the path field improves the query performance
significantly.

		For queries of the Programming sub-tree
(e.g. /,Programming,/), or similar queries of sub-tress, where
the node might be in the middle of the indexed string, the query
must inspect the entire index.

For these queries an index may provide some performance
improvement if the index is significantly smaller than the
entire collection.

Model Tree Structures with Nested Sets

(link)

The Nested Sets pattern identifies each node in the tree as stops in
a round-trip traversal of the tree. The application visits each node
in the tree twice; first during the initial trip, and second during
the return trip. The Nested Sets pattern stores each tree node in a
document; in addition to the tree node, document stores the id of
node’s parent, the node’s initial stop in the left field, and its
return stop in the right field.

Consider the following hierarchy of categories:

[image: Example of a hierarchical data. The numbers identify the stops at nodes during a roundtrip traversal of a tree.]Example of a hierarchical data. The numbers identify the stops at nodes during a roundtrip traversal of a tree.

The following example models the tree using Nested Sets:

db.categories.insert({ _id: "Books", parent: 0, left: 1, right: 12 })
db.categories.insert({ _id: "Programming", parent: "Books", left: 2, right: 11 })
db.categories.insert({ _id: "Languages", parent: "Programming", left: 3, right: 4 })
db.categories.insert({ _id: "Databases", parent: "Programming", left: 5, right: 10 })
db.categories.insert({ _id: "MongoDB", parent: "Databases", left: 6, right: 7 })
db.categories.insert({ _id: "Postgres", parent: "Databases", left: 8, right: 9 })

You can query to retrieve the descendants of a node:

var databaseCategory = db.categories.findOne({ _id: "Databases" });
db.categories.find({ left: { $gt: databaseCategory.left }, right: { $lt: databaseCategory.right } });

The Nested Sets pattern provides a fast and efficient solution for
finding subtrees but is inefficient for modifying the tree structure.
As such, this pattern is best for static trees that do not change.

search.html

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

about.html

About MongoDB Documentation

The MongoDB Manual [http://docs.mongodb.org/manual/#] contains
comprehensive documentation on the MongoDB document-oriented
database management system. This page describes the manual’s licensing,
editions, and versions, and describes how to make a change request and
how to contribute to the manual.

For more information on MongoDB, see
MongoDB: A Document Oriented Database [http://www.mongodb.org/about/].
To download MongoDB, see the
downloads page [http://www.mongodb.org/downloads].

License

This manual is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 3.0 Unported [http://creativecommons.org/licenses/by-nc-sa/3.0/]”
(i.e. “CC-BY-NC-SA”) license.

The MongoDB Manual is copyright © 2011-2013 MongoDB, Inc.

Editions

In addition to the MongoDB Manual [http://docs.mongodb.org/manual/#], you can
also access this content in the following editions:

		ePub Format [http://docs.mongodb.org/master/MongoDB-manual.epub]

		Single HTML Page [http://docs.mongodb.org/master/single/]

		PDF Format [http://docs.mongodb.org/master/MongoDB-manual.pdf] (without reference.)

		HTML tar.gz [http://docs.mongodb.org/master/manual.tar.gz]

You also can access PDF files that contain subsets of the MongoDB Manual:

		MongoDB Reference Manual [http://docs.mongodb.org/master/MongoDB-reference-manual.pdf]

		MongoDB CRUD Operations [http://docs.mongodb.org/master/MongoDB-crud-guide.pdf]

		Data Models for MongoDB [http://docs.mongodb.org/master/MongoDB-sharding-guide.pdf]

		MongoDB Data Aggregation [http://docs.mongodb.org/master/MongoDB-aggregation-guide.pdf]

		Replication and MongoDB [http://docs.mongodb.org/master/MongoDB-replication-guide.pdf]

		Sharding and MongoDB [http://docs.mongodb.org/master/MongoDB-sharding-guide.pdf]

		MongoDB Administration [http://docs.mongodb.org/master/MongoDB-administration-guide.pdf]

		MongoDB Security [http://docs.mongodb.org/master/MongoDB-security-guide.pdf]

MongoDB Reference documentation is also available as part of dash [http://kapeli.com/dash]. You can also access the MongoDB
Man Pages [http://docs.mongodb.org/master/manpages.tar.gz] which are also distributed with the
official MongoDB Packages.

Version and Revisions

This version of the manual reflects version 2.5 of MongoDB.

See the MongoDB Documentation Project Page [http://docs.mongodb.org]
for an overview of all editions and output formats of the MongoDB
Manual. You can see the full revision history and track ongoing
improvements and additions for all versions of the manual from its GitHub
repository [https://github.com/mongodb/docs].

This edition reflects “master” branch of the documentation
as of the “816b464a9547a057c526862eabf64204ec7274ef” revision. This branch is explicitly accessible
via “http://docs.mongodb.org/master” and you can always reference the commit of the
current manual in the release.txt [http://docs.mongodb.org/master/release.txt] file.

The most up-to-date, current, and stable version of the manual is
always available at “http://docs.mongodb.org/manual/”.

Report an Issue or Make a Change Request

To report an issue with this manual or to make a change request, file
a ticket at the
MongoDB DOCS Project on Jira [https://jira.mongodb.org/browse/DOCS].

Contribute to the Documentation

The entire documentation source for this manual is available in the
mongodb/docs repository [https://github.com/mongodb/docs],
which is one of the
MongoDB project repositories on GitHub [http://github.com/mongodb].

To contribute to the documentation, you can open a
GitHub account [https://github.com/], fork the
mongodb/docs repository [https://github.com/mongodb/docs],
make a change, and issue a pull request.

In order for the documentation team to accept your change, you must
complete the
MongoDB Contributor Agreement [http://www.mongodb.com/contributor].

You can clone the repository by issuing the following command at your
system shell:

git clone git://github.com/mongodb/docs.git

About the Documentation Process

The MongoDB Manual uses Sphinx [http://sphinx-doc.org//], a
sophisticated documentation engine built upon Python Docutils [http://docutils.sourceforge.net/]. The original reStructured Text [http://docutils.sourceforge.net/rst.html] files, as well as all
necessary Sphinx extensions and build tools, are available in the same
repository as the documentation.

For more information on the MongoDB documentation process, see:

		Style Guide and Documentation Conventions

		MongoDB Documentation Practices and Processes

		MongoDB Manual Organization

		MongoDB Documentation Build System

If you have any questions, please feel free to open a Jira Case [https://jira.mongodb.org/browse/DOCS].

index.html

The MongoDB 2.5 Manual

Welcome to the MongoDB Manual! MongoDB is an open-source,
document-oriented database designed for ease of development and
scaling.

The Manual introduces MongoDB and continues to describe the query
language, operational considerations and procedures, administration,
and application development patterns, and other aspects of MongoDB use
and administration. The Manual also has a thorough reference section
of the MongoDB interface and tools.

This manual is under constant development. See the About MongoDB Documentation for
more information on the MongoDB Documentation project.

MongoDB 2.5 Development Release (2.6 series)

See Release Notes for MongoDB 2.6 (Development Series 2.5.x) for notes on all new features
currently in development for the 2.6 series. For documentation of
the latest stable production release see MongoDB 2.4 Manual

		Getting Started
		Developers
		Administrators
		Reference

		Introduction to MongoDB

Installation Guides

First Steps

Frequently Asked Questions

		Database Operations

Aggregation

SQL to MongoDB Mapping

Indexes

		Operations

Replica Sets

Sharded Clusters

MongoDB Security

		Shell Methods

Query Operators

Complete System Reference

Glossary

		
		
		
		

Community

MongoDB has an active community [http://www.mongodb.org/about/community]. You’ll get a quick
response to MongoDB questions (i.e. questions tagged mongodb) posted
to Stack Overflow [http://stackoverflow.com/questions/tagged/mongodb].

Additional Resources

The following resources provide additional information:

		MongoDB, Inc. [http://www.mongodb.com/]

		The company behind MongoDB.

		MongoDB Events [http://www.mongodb.com/events/]

		Upcoming events where you can learn more and meet members of the
MongoDB community.

		Planet MongoDB [http://planet.mongodb.org/]

		Aggregator of popular MongoDB blogs.

		Slides and Video [http://www.mongodb.com/presentations/]

		Presentations and videos from past MongoDB events.

		MongoDB Management Service [http://mms.mongodb.com/]

		Free cloud-based service for monitoring and backing up MongoDB deployments. Also
consider the MMS documentation [http://mms.mongodb.com/help/].

		MongoDB Books [http://mongodb.org/books]

		Books that provide additional information and background on
MongoDB.

reference/roles-collection.html

system.roles Collection

New in version 2.5.3.

The admin.system.roles collection in the admin database
stores the privileges that give users access to system resources. Each
document in the collection contains the privileges granted by a specific
role. Administrators create and assign roles through the
role-management commands.

The scope of each role is the database that defines the role. MongoDB
uniquely identifies each role using the name of the role and the name
of the database. When assigned a role, a user receives all the
privileges of that role.

A role defines its privileges by pairing resources (e.g.
database and collection) with actions (e.g. find and insert). To
inherit privileges from other roles, specify the roles from which to
inherit.

system.roles Schema

The role documents in the system.roles collection have the following
schema:

{
 _id: <system-defined id>,
 role: "<role name>",
 db: "<database>",
 privileges: [
 { resource: { db: "<database>", collection: "<collection>" | cluster: <Boolean> },
 actions: ["<action>", ...]
 },
 ...
],
 roles: [
 { role: "<role name>", db: "<role db>" },
 ...
]
}

A system.roles document has the following fields:

		
admin.system.roles.role

		The role field is a string that
identifies the role.

		
admin.system.roles.db

		The db field is a string that identifies
the database to which the role belongs.

		
admin.system.roles.privileges

		The privileges array contains the
privileges defined for the role. All roles must have a
privileges array but this array need
not have any privilege documents. Each document in the array
specifies the resources the role accesses and the actions permitted
on those resources.

A privileges array document resembles
one of the following prototype documents.

{ resource: { db: "<database>", collection: "<collection>" },
 actions: ["<action>", ...]
}

{ resource: { db: "<database>", cluster: <Boolean> },
 actions: ["<action>", ...]
}

A privileges array document has the
following fields:

		
admin.system.roles.privileges[n].resource

		A document that specifies the resources to which the privilege
applies. For the document’s syntax and rules, see
Resource Document.

		
admin.system.roles.privileges[n].actions

		The actions assigned to the resource. For a list of actions, see
User Actions.

		
admin.system.roles.roles

		The roles array lists other roles from
which this role inherits privileges. All roles must have a
roles array, but the array need not
have any role documents.

The array can contain both strings and documents. The array can contain
the string names of roles that exist in the same database as this
one. The array also can contain documents that identify roles from
other databases. A roles array document
has the following syntax:

{ role: "<role name>", db: "<role db>" }

A roles array document has the
following fields:

		
admin.system.roles.roles[n].role

		A role from another database.

		
admin.system.roles.roles[n].db

		The role’s database.

Resource Document

A resource document in the
admin.system.roles collection specifies either a database, a
collection or the cluster.

To specify databases and collections, use the following syntax:

{ db: <database>, collection: <collection> }

If both the db and collection fields are not empty strings
(""), the resource is the collection, providing
collection-level access control.

If the collection field is an empty string (""), the resource is
the whole database, excluding system collections.

If the db field is an empty string (""), the resource is all
collections with that name across all databases.

If both the db and collection fields are empty strings (""),
the resource is all collections, excluding the system collections, in
all the databases.

To specify the cluster, use the following syntax:

{ cluster : true }

Use the cluster resource for actions that affect the state of the
system rather than act on specific set of databases or collections.
Examples of such actions are shutdown, replSetReconfig, and
enableSharding. For example, the following document grants the
action shutdown on the cluster.

{ resource: { cluster : true }, actions: ["shutdown"] }

Example system.roles Documents

Consider following example admin.system.roles documents.

An appUser Role

The following document in the system.roles collection shows that
the appUser role specifies five privileges in the privileges
array. As indicated by the empty roles array, appUser
inherits no additional privileges from other roles.

{
 _id: "admin.appUser",
 role: "appUser",
 db: "myApp",
 privileges: [
 { resource: { db: "myApp" , collection: "" },
 actions: ["find", "createCollection", "dbStats", "collStats"] },
 { resource: { db: "myApp", collection: "logs" },
 actions: ["insert"] },
 { resource: { db: "myApp", collection: "data" },
 actions: ["insert", "update", "remove", "compact"] },
 { resource: { db: "myApp", collection: "system.indexes" },
 actions: ["find"] },
 { resource: { db: "myApp", collection: "system.namespaces" },
 actions: ["find"] },
],
 roles: []
}

The five privileges array documents
listed for the appUser role show that the appUser role has
privileges with actions permitted on the myApp database:

		The first privilege permits its actions ("find",
"createCollection", "dbStats", "collStats") on all the
collections in the myApp database excluding its system
collections.

		The next two privileges permits additional actions on specific
collections, logs and data, in the myApp database.

		The last two privileges permits actions on two system
collections. While the first
privilege gives database-wide permission for the find action,
the action does not apply to myApp‘s system collections. To
give access to a system collection, a privilege must explicitly
specify the collection.

An appAdmin Role

The following document shows that the appAdmin role specifies
privileges as as well as inherits privileges from other roles. The
privilege to perform the shutdown action applies to the
cluster resource:

{
 _id: "myApp.appAdmin",
 role: "appAdmin",
 db: "myApp",
 privileges: [
 { resource: { db: "myApp", collection: "" },
 actions: ["insert", "dbStats", "collStats", "compact", "repairDatabase"] },
 { resource: { cluster : true },
 actions: ["shutdown"] }
],
 roles: [{ role: "replAdmin", db: "admin" },
 { role: "appUser", db: "myApp" }
]
}

User Actions

This section lists the actions available in the
privileges array in the
admin.system.roles collection.

New in version 2.5.3: MongoDB adds the following actions. Actions apply to
the database where they are assigned, unless otherwise noted.

		
createUser

		The user can create new users in the given database.

		
createRole

		The user can create new roles in the given database.

		
dropUser

		The user can remove any user from the given database.

		
dropRole

		The user can delete any role from the given database.

		
grantAnyRole

		The user can grant any role in the database to any user from any
database in the system.

		
revokeAnyRole

		The user can remove any role from any user from any database in the
system.

		
changeOwnPassword

		Users with this action can change their own passwords.
Grant changeOwnPassword on the cluster resource.

		
changeAnyPassword

		The user can change the password of any user in the given database.

		
changeOwnCustomData

		Users with this action can change their own custom information, as
stored in the customData field of documents in the admin.system.users
collection. Grant changeOwnCustomData on the cluster
resource.

		
changeAnyCustomData

		The user can change the custom information of any user in the given
database. MongoDB stores custom information in the customData field of
the documents in admin.system.users collection.

		
viewUser

		The user can view the information of any user in the given database.

		
viewRole

		The user can view information about any role in the given database.

In addition, MongoDB provides the following user actions:

		
		_migrateClone

		_recvChunkAbort

		_recvChunkCommit

		_recvChunkStart

		_recvChunkStatus

		_transferMods

		addShard

		captrunc

		clean

		clone

		cloneCollectionLocalSource

		cloneCollectionTarget

		closeAllDatabases

		collMod

		collStats

		compact

		connPoolStats

		connPoolSync

		convertToCapped

		cpuProfiler

		createCollection

		cursorInfo

		dbHash

		dbStats

		delete

		diagLogging

		dropCollection

		dropDatabase

		enableSharding

		
		find

		flushRouterConfig

		fsync

		getCmdLineOpts

		getLog

		getParameter

		getShardMap

		getShardVersion

		handshake

		hostInfo

		indexStats

		inprog

		insert

		killCursors

		killop

		listDatabases

		listShards

		logRotate

		moveChunk

		movePrimary

		netstat

		profileEnable

		reIndex

		removeShard

		repairDatabase

		replSetElect

		replSetFreeze

		replSetFresh

		
		replSetGetRBID

		replSetGetStatus

		replSetHeartbeat

		replSetInitiate

		replSetMaintenance

		replSetReconfig

		replSetStepDown

		replSetSyncFrom

		resync

		serverStatus

		setParameter

		setShardVersion

		shardCollection

		shardingState

		shutdown

		split

		splitChunk

		splitVector

		storageDetails

		top

		touch

		unlock

		unsetSharding

		update

		userAdmin

		validate

		writeBacksQueued

		writebacklisten

reference/server-status.html

Server Status Output

This document provides a quick overview and example of the
serverStatus command. The helper db.serverStatus()
in the mongo shell provides access to this output. For full
documentation of the content of this output, see
serverStatus.

Note

The fields included in this output vary slightly depending on the
version of MongoDB, underlying operating system platform, and the
kind of node, including mongos, mongod or
replica set member.

The Instance Information section displays
information regarding the specific mongod and
mongos and its state.

{
 "host" : "<hostname>",
 "version" : "<version>",
 "process" : "<mongod|mongos>",
 "pid" : <num>,
 "uptime" : <num>,
 "uptimeMillis" : <num>,
 "uptimeEstimate" : <num>,
 "localTime" : ISODate(""),

The locks section reports data that reflect the
state and use of both global (i.e. .) and database specific locks:

"locks" : {
 "." : {
 "timeLockedMicros" : {
 "R" : <num>,
 "W" : <num>
 },
 "timeAcquiringMicros" : {
 "R" : <num>,
 "W" : <num>
 }
 },
 "admin" : {
 "timeLockedMicros" : {
 "r" : <num>,
 "w" : <num>
 },
 "timeAcquiringMicros" : {
 "r" : <num>,
 "w" : <num>
 }
 },
 "local" : {
 "timeLockedMicros" : {
 "r" : <num>,
 "w" : <num>
 },
 "timeAcquiringMicros" : {
 "r" : <num>,
 "w" : <num>
 }
 },
 "<database>" : {
 "timeLockedMicros" : {
 "r" : <num>,
 "w" : <num>
 },
 "timeAcquiringMicros" : {
 "r" : <num>,
 "w" : <num>
 }
 }
},

The globalLock field reports on MongoDB’s
global system lock. In most cases the locks document
provides more fine grained data that reflects lock use:

"globalLock" : {
 "totalTime" : <num>,
 "lockTime" : <num>,
 "currentQueue" : {
 "total" : <num>,
 "readers" : <num>,
 "writers" : <num>
 },
 "activeClients" : {
 "total" : <num>,
 "readers" : <num>,
 "writers" : <num>
 }
},

The mem field reports on MongoDB’s
current memory use:

"mem" : {
 "bits" : <num>,
 "resident" : <num>,
 "virtual" : <num>,
 "supported" : <boolean>,
 "mapped" : <num>,
 "mappedWithJournal" : <num>
},

The connections field reports on MongoDB’s
current memory use by the MongoDB process:

Changed in version 2.4: The totalCreated field.

"connections" : {
 "current" : <num>,
 "available" : <num>,
 "totalCreated" : NumberLong(<num>)

},

The fields in the extra_info document provide
platform specific information. The following example block is from a
Linux-based system:

"extra_info" : {
 "note" : "fields vary by platform",
 "heap_usage_bytes" : <num>,
 "page_faults" : <num>
},

The indexCounters document reports on index
use:

"indexCounters" : {
 "accesses" : <num>,
 "hits" : <num>,
 "misses" : <num>,
 "resets" : <num>,
 "missRatio" : <num>
},

The backgroundFlushing document reports on the
process MongoDB uses to write data to disk:

"backgroundFlushing" : {
 "flushes" : <num>,
 "total_ms" : <num>,
 "average_ms" : <num>,
 "last_ms" : <num>,
 "last_finished" : ISODate("")
},

The cursors document reports on current cursor
use and state:

"cursors" : {
 "totalOpen" : <num>,
 "clientCursors_size" : <num>,
 "timedOut" : <num>
},

The network document reports on network use and
state:

"network" : {
 "bytesIn" : <num>,
 "bytesOut" : <num>,
 "numRequests" : <num>
},

The repl document reports on the state of
replication and the replica set. This document only appears
for replica sets.

"repl" : {
 "setName" : "<string>",
 "ismaster" : <boolean>,
 "secondary" : <boolean>,
 "hosts" : [
 <hostname>,
 <hostname>,
 <hostname>
],
 "primary" : <hostname>,
 "me" : <hostname>

The opcountersRepl document reports the number
of replicated operations:

"opcountersRepl" : {
 "insert" : <num>,
 "query" : <num>,
 "update" : <num>,
 "delete" : <num>,
 "getmore" : <num>,
 "command" : <num>
},

The opcounters document reports the number of
operations this MongoDB instance has processed:

"opcounters" : {
 "insert" : <num>,
 "query" : <num>,
 "update" : <num>,
 "delete" : <num>,
 "getmore" : <num>,
 "command" : <num>
},

The asserts document reports the number of
assertions or errors produced by the server:

"asserts" : {
 "regular" : <num>,
 "warning" : <num>,
 "msg" : <num>,
 "user" : <num>,
 "rollovers" : <num>
},

The writeBacksQueued document reports the number of
writebacks:

"writeBacksQueued" : <num>,

The Journaling (dur) document reports on data that
reflect this mongod instance’s journaling-related operations
and performance during a journal group commit interval:

"dur" : {
 "commits" : <num>,
 "journaledMB" : <num>,
 "writeToDataFilesMB" : <num>,
 "compression" : <num>,
 "commitsInWriteLock" : <num>,
 "earlyCommits" : <num>,
 "timeMs" : {
 "dt" : <num>,
 "prepLogBuffer" : <num>,
 "writeToJournal" : <num>,
 "writeToDataFiles" : <num>,
 "remapPrivateView" : <num>
 }
},

The recordStats document reports data on
MongoDB’s ability to predict page faults and yield write operations
when required data isn’t in memory:

"recordStats" : {
 "accessesNotInMemory" : <num>,
 "pageFaultExceptionsThrown" : <num>,
 "local" : {
 "accessesNotInMemory" : <num>,
 "pageFaultExceptionsThrown" : <num>
 },
 "<database>" : {
 "accessesNotInMemory" : <num>,
 "pageFaultExceptionsThrown" : <num>
 }
},

The workingSet document provides an estimated
size of the MongoDB instance’s working set. This data may not exactly
reflect the size of the working set in all cases. Additionally, the
workingSet document is only present in the
output of serverStatus when explicitly enabled.

New in version 2.4.

"workingSet" : {
 "note" : "thisIsAnEstimate",
 "pagesInMemory" : <num>,
 "computationTimeMicros" : <num>,
 "overSeconds" : num
},

The metrics document contains a number of
operational metrics that are useful for monitoring the state and
workload of a mongod instance.

New in version 2.4.

"metrics" : {
 "document" : {
 "deleted" : NumberLong(<num>),
 "inserted" : NumberLong(<num>),
 "returned" : NumberLong(<num>),
 "updated" : NumberLong(<num>)
 },
 "getLastError" : {
 "wtime" : {
 "num" : <num>,
 "totalMillis" : <num>
 },
 "wtimeouts" : NumberLong(<num>)
 },
 "operation" : {
 "fastmod" : NumberLong(<num>),
 "idhack" : NumberLong(<num>),
 "scanAndOrder" : NumberLong(<num>)
 },
 "queryExecutor": {
 "scanned" : NumberLong(<num>)
 },
 "record" : {
 "moves" : NumberLong(<num>)
 },
 "repl" : {
 "apply" : {
 "batches" : {
 "num" : <num>,
 "totalMillis" : <num>
 },
 "ops" : NumberLong(<num>)
 },
 "buffer" : {
 "count" : NumberLong(<num>),
 "maxSizeBytes" : <num>,
 "sizeBytes" : NumberLong(<num>)
 },
 "network" : {
 "bytes" : NumberLong(<num>),
 "getmores" : {
 "num" : <num>,
 "totalMillis" : <num>
 },
 "ops" : NumberLong(<num>),
 "readersCreated" : NumberLong(<num>)
 },
 "oplog" : {
 "insert" : {
 "num" : <num>,
 "totalMillis" : <num>
 },
 "insertBytes" : NumberLong(<num>)
 },
 "preload" : {
 "docs" : {
 "num" : <num>,
 "totalMillis" : <num>
 },
 "indexes" : {
 "num" : <num>,
 "totalMillis" : <num>
 }
 }
 },
 "ttl" : {
 "deletedDocuments" : NumberLong(<num>),
 "passes" : NumberLong(<num>)
 }
},

The final ok field holds the return status for the
serverStatus command:

 "ok" : 1
}

reference/user-privileges.html

User Privileges

MongoDB uses role-based authorization to give users access to data and
commands. Each role defines specific privileges on specific resources.

A user assigned a role receives all the privileges of that role. Users
can have multiple roles and can have different roles on different
resources. Roles always grant privileges and never limit access. For
example, if a user has read and
readWriteAnyDatabase permissions on a database, the greater
access prevails.

MongoDB provides both built-in system roles and the ability to create
custom roles.

New in version 2.5.3: MongoDB gives administrators access to roles through the
role-management commands.
Administrators can use the commands to create custom roles.

A role defines its privileges by pairing resources (e.g. databases and
collections) with actions (e.g. insert and find operations), and
also by inheriting privileges from other roles. For a list of assignable
actions, see User Actions.

MongoDB stores roles in the system.roles collection of the admin database.

System Roles

MongoDB provides the roles described here. Administrators can optionally
create custom roles using the role-management commands.

Database User Roles

		
read

		Provides users with the ability to read data from any collection
within a specific logical database. This includes
find() and the following database
commands:

		aggregate

		checkShardingIndex

		cloneCollectionAsCapped

		collStats

		count

		dataSize

		dbHash

		dbStats

		distinct

		filemd5

		geoNear

		geoSearch

		geoWalk

		group

		mapReduce (inline output only.)

		text (beta feature.)

		
readWrite

		Provides users with the ability to read from or write to any
collection within a specific logical database. Users with
readWrite have access to all of the operations
available to read users, as well as the following basic
write operations: insert(),
remove(), and
update().

Additionally, users with the readWrite have access to
the following database commands:

		cloneCollection (as the target database.)

		convertToCapped

		create (and to create collections implicitly.)

		drop()

		dropIndexes

		emptycapped

		ensureIndex()

		findAndModify

		mapReduce (output to a collection.)

		renameCollection (within the same database.)

Database Administration Roles

		
dbAdmin

		Provides the ability to perform the following set of administrative
operations within the scope of this logical database.

		clean

		collMod

		collStats

		compact

		convertToCapped

		create

		db.createCollection()

		dbStats

		drop()

		dropIndexes

		ensureIndex()

		indexStats

		profile

		reIndex

		renameCollection (within a single database.)

		validate

Furthermore, only dbAdmin has the ability to read the
system.profile collection.

		
userAdmin

		Users with this role can modify permissions for existing users
and create new users. userAdmin does not restrict the
permissions that a user can grant, and a userAdmin
user can grant privileges to themselves or other users in excess of
the userAdmin users’ current privileges.

Important

userAdmin is effectively the superuser
role for a specific database. Users with userAdmin
can grant themselves all privileges. However,
userAdmin does not explicitly authorize a user for
any privileges beyond user administration.

Note

The userAdmin is a database specific privilege, and
only grants a user the ability to administer users on a single
database. However, for the admin database,
userAdmin allows a user the ability to gain
userAdminAnyDatabase, and so for the admin database
only these roles are effectively the same.

Administrative Roles

		
clusterAdmin

		clusterAdmin grants access to several administration
operations that affect or present information about the whole system,
rather than just a single database. These privileges include but
are not limited to replica set and sharded cluster
administrative functions.

clusterAdmin is only applicable on the admin
database, and does not confer any access to the local or
config databases.

Specifically, users with the clusterAdmin role have
access to the following operations:

		addShard

		closeAllDatabases

		connPoolStats

		connPoolSync

		_cpuProfilerStart

		_cpuProfilerStop

		cursorInfo

		diagLogging

		dropDatabase

		enableSharding

		flushRouterConfig

		fsync

		db.fsyncUnlock()

		getCmdLineOpts

		getLog

		getParameter

		getShardMap
